
Assignment III Topics in Algorithms

1. Let G be a directed graph. A subgraph G′ of G is Eulerian if every vertex v in G′ has indegree(v) = outdegree(v).
Show that the edges of every Eulerian subgraph G′ can be decomposed into edge disjoint (directed) cycles.

2. The theorem of the last question will be re-phrased in the terminology of (linear) algebra in this and the next questions.
Let G be a directed graph with n vertices, m edges and k components. Let F be a directed spanning forest in G. Let
T1, T2, ..Tk be (the unique) decomposition of F into maximal (directed) trees in G. Let E be the n ×m edge vertex
incidence matrix of G. Nullspace(E) is called the cycle space of G.

1. Show that for each y ∈ Rm such that y is the characteristic vector of a (directed) cycle in G, Ey = 0.

2. Let ei and ej be two edges of G outside F . Let yi and yj be characteristic vectors in Rm corresponding to the
unique cycles formed by adding edges ei and ej to F . Show that yi and yj are linearly independent in Rm

3. Show that the cycle space of G has dimension at least m− n+ k.

4. Suppose S is any subset of vertices that forms a connected component of G. Let xS be the characteristic vector
of the set set S in Rm. show that ETxS = 0.

5. Argue from the above that Nullspace(ET ) ≥ k, or Rank(ET ) = Rank(E) ≥ n− k.

6. show that the cycle space of G has dimension exactly m− n+ k.

3. Continuing with the notation in the previous question, let G be a graph with n vertices and m edges. Let E be
the n × m incidence matrix of any arbitrary orientation of G. Let A be the adjacency matrix of G and D be the
n × n diagonal matrix with D(i, i) = deg(vi), that is, the diagonal entries holding the degrees of the vertices. let
L = EET = A−D be he Laplacian of G.

1. Show that Nullity(E) = Nullity(EET ). (This holds if E is any matrix, not necessarily an incidence matrix).
What can you conclude about Rank(L) from this?

2. Let S be any subset of n edges of G. Let ES be the n × n − 1 matrix formed by picking the columns of E
corresponding to the vertices in the set S. Show that ES has rank n − 1 if and only if S forms the edges of a
spanning tree of G.

3. Suppose we remove a row from ES to get an (n− 1)× (n− 1) matrix E′
S , show that Rank(ES) = Rank(E′

S).

4. Continuing with the notation in the previous questions, let G be a connected graph with n vertices and m edges. Let
E be the n ×m incidence matrix of an arbitrary orientation of G. Let T be a directed spanning tree in G. For any
edge e ∈ T removal of e from T disconnects T into exactly two components, with each vertex in G falling into exactly
one of the components. All (directed) edges of G which connect vertices from one component to the other forms the
fundamental cut defined by the edge e with respect to the tree T , denoted by Ce. Let ze ∈ Rm be the characteristic
vector of the set Ce.

1. Let e, e′ be two distinct edges of T , show that ze and ze′ are linearly independent.

2. If y is the characteristic vector of any cycle in G, show that yT ze = 0 for each edge e ∈ T .

3. Conclude that the cycle space of G has dimension at most m− n+ 1. (This gives an alternate route for proving
the dimension of the cycle space of a graph. Note that both approaches use the duality theorem).

5. Let A be an n×m matrix with m ≥ n. Let D = D(x1, x2, ..xm) be the m×m diagonal matrix with variables x1, x2, ..xm
on the diagonal. Consider the determinant Det(ADAT ). Clearly, each term in the expansion has a monomial with n
variables and there are mCn terms in the expansion. For any subset S of n columns of A, let AS be the n × n sub
matrix of A formed out of picking the columns in S (in the order they appear in A).

1. Consider the monomial term with the fewest number of variables. without loss of generality, let x1, x2, ..xr, r ≤ n
be the distinct variables appearing in the monomial. Show that the coefficient of the monomial is zero.

2. Argue that every monomial term with number of distinct variables fewer than n will have coefficient zero.

3. Let S be a subset of {1, 2, .., n}, |S| = n. Show that the coefficient of the monomial in the expansion of
Det(ADAT ) corresponding to the monomial

∏
i∈S xi is Det(AS)Det(ATS ). (These sequence of questions prove

the Cauchy Binut theorem correctly, for which the proof presented in the class had a mistake - what was the
mistake?)

6. Give an example for:

1. Non-planar Pfaffian orientable graph. (Give a Pfaffian orientation for the graph)

2. A graph that is not Pfaffian orientable.



7. Given an n× n matrix A, define permanent(A) =
∑
π∈Sn

∏
i ai,π(i). Note that if we ignore the signs of the terms in

the determinant expansion of A and consider each term positive, we get the permanent. Let G(L,R,E) be an n− n
bipartite graph. Let A = (aij) be the n× n matrix formed with entries aij = 1 if there is an edge from vertex i in G
to vertex j in R (aij = 0 otherwise); argue that the value of permanent(A) is the number of perfect matchings in G.

8. Let A be an n × n real matrix. Let ri ∈ Rm be the ith row of A. Let α be any real number. Let R(α, i, j), i 6= j
denote the elementary row operation of multiplying the jth row with α and adding this value to the ith row. (Note
that the jth row is unchanged by this operation.) Show that R(α, i, j) is equivalent to multiplying A on the left with
an n× n matrix whose determinant is 1. This proves that elementary row operations do not change the determinant.
This observation will be used in solving the next question.

9. This question aims at proving the Cayley formula for counting the number of (labelled) trees over vertex set {1, 2, .., n}.
using Kirchoff’s matrix tree theorem. Let Kn be the complete graph of n vertices . Let A be the adjacency matrix
and L be the Laplacian. Let Li be the ith minor of L. Note that Li has −1 on all entries except on the diagonal
where the values are n− 1.

1. Argue that that Det(Li) evaluates to the number of trees of n vertices.

2. Add all the rows of Li to the first row. Now add the (new) first row to all the remaining rows. You will find that
the determinant of this matrix is easy to evaluate. (Since all the above operations do not change the determinant
(see previous question), you will get the Cayley formula from the determinant).

3. Now we develop an alternate way to derive the same formula. First evaluate Trace(Li).

4. Show that Li − nI is a matrix of rank 1. Hence argue that n is an Eigen value of Li with multiplicity at least
n− 2. Let λ be the remaining Eigen value.

5. Now use the fact that Trace(Li) is the sum of its Eigen values and using the two expressions for trace, find λ.

6. Finally use the fact that the determinant of a matrix is the product of its Eigen values (except for the sign) to
derive the Cayley formula.

10. In this question, you will design a factor 2 approximation algorithm for the vertex cover problem. Given a graph
G(V,E) with a non-negative weight function w on the vertices. The problem is to find a minimum weight subset S of
vertices such that every edge has atleast one endpoint in the set S.

1. A weight function w is said to be degree weighted if there is a constant c > 0 such that w(v) = c.deg(v) for each
v ∈ V . if w is degree weighted and G connected, then show that the weight of any vertex cover in G is at most
2.OPT where OPT is the weight of the optimal vertex cover.

2. Given an arbitrary weight function w, write a formula for the largest positive constant c such that t(v) =
c.deg(v) ≤ w(v) for each vertex v.

3. For the c formulated above, define residual weight w′(v) = w(v)− t(v). When will a vertex have residual weight
zero?

4. Consider the following algorithm that takes as input a weighted graph G and returns a subset of vertices of G. If
G has no edges return ∅. Otherwise, let D be the subset of vertices of G of degree zero and let R be the subset of
vertices with residual weight zero. Remove all vertices in D ∪R from G to get a residual graph G′. let S be the
set returned when the algorithm recursively works on G′, then return R ∪ S. Show that the algorithm achieves
a factor 2 approximation for the vertex cover problem.

5. Find a graph on which the algorithm returns a vertex cover of weight twice the optimum value.
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