
Assignment IV Topics in Algorithms

1. Given a graph G(V,E) with each edge (i, j) assigned two weights: the similarity between two vertices i, j denoted by
sij and the difference between the vertices denoted by dij . We want to cluster the vertex set of G into disjoint vertex
clusters - say C = (C1, C2, .., Cn), such that every vertex is in exactly one Cn. Note that some Ck could be empty.
Two vertices i, j are said to be together in a clustering C if they belong to the same Ck. Otherwise we say i, j are
apart. The correlation of a clustering C, denoted by Cor(C) is the sum of the si,j values of all i, j that are together.
The anti-correlation of C, Acor(C) is the sum of the differences dij of all i, j which are apart. We want to find a
clustering C that maximizes the sum Cor(C)+Acor(C).

1. Considering the two trivial clusterings: 1). C that clusters all n vertices into a single cluster and 2). C ′ which
puts each vertex into a different cluster. Show that one of C or C ′ must be within a factor of 1

2 from the optimal.
Thus the problem is somewhat trivially 0.5-approximable. In the following, we develop an SDP formulation.

2. Given a clustering C of vertices, let vi be a unit vector such that vi(k) = 1 if and only if vertex i is in cluster
k. (Thus each vi ∈ {e1, e2, ..., en} where (e1, e2, ..en) is the standard basis of Rn). Show that the following
formulation Maximize

∑
i,j sij(vi, vj) +

∑
i,j dij(1− (vi, vj)) subject to constraints vi ∈ {e1, e2, ..., en} for each i

is an exact formulation for the problem.

3. However, the constraint vi ∈ {e1, e2, ..., en} makes the above formulation NP hard. Hence consider the relaxation
dropping this constraint and adding constraints (vi, vi) = 1 for each i. (Thus, we allow vi to be any unit vector,
no longer requiring it to be a standard basis vector). We also add additional constraints (vi, vj) ≥ 0 for all i, j.
Show that this is a vector program relaxation of the original problem in that any solution to the original problem
will satisfy the new system.

2. In this question, we develop a random hyperplane approximation algorithm for rounding the optimal solution to the
vector program developed in the previous question. Let v1, v2, .., vn be the optimal SDP solution values obtained by
solving the relaxation. To find an approximate solution, consider two random unit vectors r1 and r2 in Rn sampled
by normal distribution with mean 0 and variance 1 as discussed in the class. We divide the vertices of G into four
clusters, C1, C2, C3 and C4 as the following:

• Vertex i is added to cluster C1 if (vi, r1) ≥ 0 and (vi, r2) ≥ 0.

• Vertex i is added to cluster C2 if (vi, r1) ≥ 0 and (vi, r2) < 0.

• Vertex i is added to cluster C3 if (vi, r1) < 0 and (vi, r2) ≥ 0.

• Vertex i is added to cluster C4 if (vi, r1) < 0 and (vi, r2) < 0.

The following questions prove that this clustering yields a 0.75 factor approximation for the clustering problem
discussed in the previous question. Let θij = cos−1(vi, vj) be the angle between vi and vj . Let Xij be a random
variable that takes value 1 if vertices i and j are in the same cluster, 0 if i and j are in different clusters. You will
need the trigonometric inequalities (1− θ

π )2 ≥ 3
4 cos θ and 1− (1− θ

π )2 ≥ 3
4 (1− cos θ) if 0 ≤ θ ≤ π

2 .

1. Show that the optimal relaxed solution has value
∑
i,j sij cos θij +

∑
i,j dij(1− cos θij)

2. Show that the expected size of the rounded solution is
∑
i,j sijE(Xij) +

∑
i,j dij(1− E(Xij))

3. Show that the probability that a single random hyperplane separates vi and vj is (1 − θij
π ). Argue that the

probability that vertices i and j land up in the same cluster is (1− θij
π )2. Hence conclude that E(Xij) = (1− θij

π )2.

4. Using the trigonometric inequalities noted above, conclude that the expected value of the clustering obtained by
the rounding strategy is 3

4 factor within the optimal.

5. Where was the constraint (vi, vj) ≥ 0 used in deriving the approximation guarantee?

3. Consider the NP completeness reduction from 3SAT to CLIQUE discussed in the class. (For each clause we added
three vertices, one per literal in the clause, and added edges between literals in different clauses if they were mutually
consistent). Suppose φ is a boolean formula containing k literals. Let G be the graph constructed by the reduction.

1. Show that G has a clique of size t if and only if there is a truth assignment to φ that satisfies t clauses.

2. Show that the reduction is a gap preserving reduction from 3SAT to CLIQUE.

4. Given a graph G(V,E), consider the square graph G2 constructed as follows: V (G2) = V × V . Two vertices (u1, v1)
and (u2, v2) are adjacent in G2 if both the conditions below are true: 1) u1, u2 are either adjacent in G or u1 = u2
(that is, u1 and u2 are at distance at most 1 in G). 2) v1, v2 are adjacent in G or v1 = v2 (that is, v2 and v1 are at
distance at most 1 in G).

1. If S is a clique of size k in G, then show that S′ = S × S = {(u, v) : u, v ∈ S} is a clique of size k2 in G2.



2. Conversely, if S is a clique in G2, Let S1 and S2 be the vertices appearing in each coordinate of S. Argue that
S1 and S2 must be cliques in G. Let k = max{|S1|, |S2|}. Show that k ≥

√
|S|

3. Argue that if S is a largest clique in G2 of size k, then G must have a clique of size at least
√
k

4. From the above, conclude that if there is an algorithm that on an input graph G and max clique size k returns a
clique of size at least αk, then by running the algorithm of G2 and using the observation above, we can construct
a clique of size at least

√
αk in G. (Note that

√
α > α when 0 < α < 1).

5. Show that if MAXCLIQUE is approximable upto α for some α > 0, then MAXCLIQUE is α approximable for
every α > 0.

5. Given a graph G consider the problem of finding a maximum Independent set in G. Show that if there exists an
approximation algorithm for the problem achieving an α factor approximation for some α > 0, then the problem is
approximable within α for every α > 0. (Hint: G has a clique of size k if and only if G has an Independent of size k).

6. Assume that there is a polynomial time algorithm A that on input boolean formula φ produces a 3CNF formula A(φ)
such that if φ ∈ SAT, then A(φ) is satisfiable, whereas if φ is not satisfiable, then at least ε fraction of clauses of A(φ)
is unsatisfiable. Show that then NP⊆ PCP(log n, 1).
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