
Assignment II

Computational Algebra

1. Let T be a linear transformation from a vector space V of dimension n to a vector spaceW of dimension
m over the same field F .

1. Show that ker(T ) is a subspace of V and Img(T ) is a subspace of W .

2. Let b1, b2, ..br ∈ V be chosen such that T (b1), T (b2), .., T (br) is a basis of Img(T ). Show that
b1, b2, ..., br forms a linearly independent set in V .

3. Let u1, u2, ..uk be a basis of ker(T ). Show that {b1, b2, .., br} ∪ {u1, u2, ..uk} is a basis of V .

4. Observe that r = Rank(T ) and k = Nullity(T ) (why?). Hence conclude that Rank(T ) +
Nullity(T ) = dim(V ). This result is known as the Rank Nullity Theorem.

2. Let V be a vector space. Let L(V ) be the set of all linear transformations from V to F (that is scalar

valued linear maps - these are called linear functionals). Fix any basis b = (b1, b2, ..., bn) of V .

Note that for any l ∈ L, the matrix of l with respect to basis b is the row vector [l(b1), l(b2), ..., l(bn)]
(why?) Hence action on l on a vector v is computationally a dot product (except that no conjugation
is needed) calculation (why?). Let l1, l2, .., ln be linear functionals defined by li(bj) = 1 if i = j and

li(bj) = 0 otherwise. Thus l1(b1) = 1, whereas l1(b2) = l1(b3) = ..l1(bn) = 0 and so on.

1. Find the matrix representations of (that is, the row vectors of) l1, l2, ..ln with reference to the
basis b1, b2, ..bn.

2. Let l ∈ L be any linear functional. Show that we can find scalars α1, α2, .., αn such that l =
α1 + α2l2 + ..αnln. (Hint: The right side and the left side of the above expression are functions.
To show that two functions are the same, what is needed is to show that for each input vector v,
l(v) = (α1l1 + α2l2 + ..αnln)(v). Let v = x1b1 + x2b2... + xnbn be any arbitrary vector,
show that if you can find scalars αi such that the LS and RS are equal. Note that l(b1), l(b2)..
are scalars that does not depend on v.)

3. Show that if β1l1 + β2l2 + ..βnln = 0 the β1 = β2 = ..βn = 0. (Hint: this too an expression
involving functions on the LS and RS. Evaluate the LS on b1 etc.)

4. Conclude that L is a vector space of dimension n. L(V ) is sometimes the dual space of V .
Given basis b1, b2, .., bn of V , the “corresponding basis” of L(V ), l1, l2, ..ln defined above is
called the dual basis of b1, ..bn. Note that the definition of l1, ..ln is dependent on b1, .., bn.
(Intutively, once a basis is fixed for V , the cordinate vector of each v ∈ V is an n entry column
vector and each l ∈ L is an n− entry row vector. The dual basis l1, ..ln defined above is simply
the “standard basis” of this row space. Thus L(V ) can be thought of as the space of all row
vectors).

5. Let U be a subspace of V . Define U o = {l ∈ L(V ) : l(u) = 0∀u ∈ U}. (Once a basis if fixed,

U o is the set of all row vectors whose dot product with vectors in U is zero). Show that U0 is a
subspace of L(V ).

6. Let U be a subspace of V of dimension k, Let u1, u2, ..uk be a basis of U . Extend the basis with
vectors uk+1, ..un to form a basis of V . Define the dual basis l1, l2, ..ln such that li(uj) = δi,j .
Show that lk+1, lk+2, .., ln is a basis of U0. The result can be interpreted as saying that set of row
vectors whose dot product with vectors in U evaluates to zero is a space of dimension n− k. This
result is called duality theorem

3. Let A be an m × n matrix over some scalar field F . Consdier ker(A) = {x : Ax = 0}. By the
Rank Nullity theorem, conclude that Dim(ker(A)) = n − ColumnRank(A). Also observe that

ker(A) = RowSpace(A)0 (why?). Hence conclude using the Duality theorem thatDim(ker(A)) =
n − RowRank(A). From the two equalities, conclude that ColumnRank(A) = RowRank(A).
(We simply call the quantity Rank(A)).



4. Let U and W be subspaces of a vector space V such that U ∩W = {0} and dim(U)+ dim(W ) =
dim(V ). Show that V = U⊕W . That is, V is a direct sum of U and W . Let v ∈ V . We know that
there exists u ∈ U,w ∈ W unique such that v = u+w. Define the linear transformation P (v) = u.
(Basically P (v) is the component along U in the representation of V as sum of U and W .)

1. Show that ker(P ) = W and Img(P ) = U .

2. Show that P 2 = P .

5. Let V be an inner product space and let U be a subspace of V . Let U⊥ = {v ∈ V : (u, v) = 0}.
We have seen in the class that dim(U⊥) = n− dim(U). (This is different from the dual space of the
previous question). We have seen in class that any v ∈ V can be written as v = u + w for unique

u ∈ U and w ∈ U⊥. The vector u is called the orthogonal projection of v on to the subspace U . In
this question some properties of the projection.

1. Let u′ ∈ U . Show that d(v, u′) ≥ d(v, u). That is, u is the point in U that is nearest to V .

(Hint: Write d2(v, u′) = ||v− u′||2 = ||v− u+ u− u′||2 =< w+ (u− u′), w+ (u− u′) >
etc.)

2. Define the P (v) = u. Note that P is well defined. Show that Img(P ) = U , ker(P ) = W ,

P 2 = P . show that P is Hermitian. Show that the Eigen values of P can be only be among
{0, 1}. (orthongonal projections are Hermitian operators. But, not all Hermitian operators and
orthogonal projections). The previous subquestion shows that the orthogonal projection is the
closest approximation of a vector when restricted to a subspace.
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