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Introduction

In the previous lecture, we covered the Fermat’s Primality test. In this lecture, we will
look at Rabin Miller test, a more fullproof method of primality testing and analyse its
effectiveness and running time. Before moving to the Rabin Miller test, let’s review the
Fermat’s Test.

1 Fermat’s Test

Theorem 1. Fermat’s Little Theorem: For a given number p,

p is Prime⇒ ap−1 = 1mod p ∀a ∈ {1, 2, · · · p− 1}

Fermat’s theorem follows from the fact that the group of integers modulo a prime p, form
a group of size p− 1 under multiplication. Let G be this group.Hence for any member(say
a) of the group a|G| = 1. Since |G| = p− 1, this proves Fermat’s Little Theorem.

1.1 Fermat’s Primality testing Algorithm

In this section we will describe an algorithm based on fermat’s test given in the previous
section.

Input: A number n
Output: Prime or Composite
1: Choose random a ∈ {2 · · ·n}. Compute an−1 mod n
2: if (a, n) 6= 1 then
3: return Composite
4: if an−1 mod n 6= 1, then
5: return Composite
6: else
7: return Prime

This algorithm returns Prime for all primes as proved by Fermat’s Little Theorem. How-
ever, it may return Prime for some composite numbers too. Repeating this procedure
whenever it returns Prime may help eliminate those errors which occurred due to the ran-
dom choice of ’a’. However, there exist composite numbers for which this algorithm always
returns Prime, irrespective of the choice of ’a’. Such numbers are called Charmichael
Numbers.
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Analysis of Fermat’s Test

The following theorem states that at least half the numbers coprime to a non-charmichael
number will give the correct certificate(of non-primality) if chosen in line 1 of the algorithm.

Theorem 2. If n is not a Charmichael Number then atleast half the numbers coprime to n
satisfy an−1 6= 1 mod n.

Proof. This follows from the fact that numbers satisfying (a, n) = 1 mod n and an−1 = 1
mod n form a subgroup of Z∗n. This is not a trivial subgroup since n is not a charmichael
number. By langrange theorem the order of this subgroup must divide the order of the
group Z∗n. Thus the size if the subgroup if atmost half the size of the group Z∗n.

So for non-charmichael numbers the above algorithm is correct on for atleast half the choices
of ’a’. Thus if it is repeated k times then the probability of declaring a composite number
to be prime falls exponentially. This is summarized in the following two equations.

Pr [n is decl. PRIME given n is composite, and non-charmichael] ≤ 1
2

Pr [n is decl. PRIME after k repetitions given n is composite and non-charmichael] ≤ (
1
2

)k

Hence the Fermat’s algorithm works with good enough accuracy for Non Carmichael num-
bers.

2 Rabin-Miller Test

In the previous section, we analysed a randomized technique of primality testing that worked
well for most numbers except for a small class of numbers. In this section we will analyse
another randomized method that does not have such an achilles’ heal. This primality test
relies on finding the square roots of unity in the group Z∗n. In the next few lines we will
define the square-roots of unity and explore their properties.
Square root of unity: In a group G, the square root of unity is an element x ∈ G, such
that x2 = 1.

Theorem 3. For a given prime, p, there are exactly two square roots of unity in the group
Z∗p. These are the trivial roots ±1.

Proof. Let x(≤ p) be a root of unity, then the following equations follow.

x2 ≡ 1 mod p

x2 − 1 ≡ 0 mod p

(x− 1)(x+ 1) ≡ 0 mod p

Thus p divides either x− 1 or x+ 1. But x is no greater than p, thus x equals ±1.

Before we continue further let us recall the Chinese Remainder Theorem.
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Theorem 4. Chinese Remainder Theorem : If p and q be two positive integers such
that (p, q) = 1 then the following set of equations have a unique solution modulo pq.

x ≡ a (mod p)
x ≡ b (mod q)

Theorem 5. For any composite number n, there are atleast two non-trivial square roots of
unity in the group Z∗n.

Proof. Proof follows from induction on the number n. We can see that the base case for
n = 2 is trivially true. Assume that the theorem holds for all k < n. Let n = ab such
that (a, b) = 1. Then by chinese remainder theorem the following equations have a unique
solution mod n.

y ≡ 1 (mod a) (1)
y ≡ −1 (mod b) (2)

Clearly y 6= ±1 and also the following two relations hold for y2.

y2 ≡ 1 (mod a) (3)
y2 ≡ 1 (mod b) (4)

Using the fact that (a, b) = 1 and equations (3) and (4) the solution to equations (1) and
(2) gives a non trivial square root of unity mod n.

These theorems collectively prove that if the given number n is prime iff it there are exactly
two trivial square-roots of unity mod n.

Rabin Miller Primality Testing Algorithm

We can safely say that the candidate number(say n) is odd hence, n− 1 is even. Let

n− 1 = 2ts, s is odd

Construct the following sequence for α ∈ Z∗n by repeatedly squaring αs .

Sα =
{
Sα(i) = α2is (mod n) | i ∈ {0, 1, 2, 3 · · · t}

}
If the last element in this sequence is not 1, then n is surely composite. If the 1st element of
the sequence is 1, we declare n to be prime. Let k be the smallest index at which Sα(k) = 1
is such that Sα(k − 1) 6= −1, then we have found a non-trivial square root of unity and
hence a certificate of the compositeness of n.

However, if Sα(k − 1) = −1, then we cannot be sure about the primality of n. As in the
previous algorithm, we want an upper bound on the probability of n being composite when
such a certificate cannot be produced for the random choice of α.
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Analysis of the Rabin Miller method

To analyze the effectiveness of the procedure for random choice of α we will prove that the
set of bad choices of α (ones that donot give a certificate of compositeness) is contained
in a non-trivial subgroup of Z∗n. Theorem 6 proves that this subgroup is not empty while
proposition 7 will prove that all such α lie in this subgroup.

Define α ∈ Z∗n to be a witness if by choosing it as the starting number in the procedure
described above we would have arrived at a certificate of the compositeness of n. Similarly
define non-witnesses in Z∗n .

Define k as follows,

k = max
i∈{0,1,2···φ(n)}

{
j | α2js

i ≡ −1 mod n
}

Note that n − 1 ∈ Z∗n. Since n − 1 ≡ −1 mod n and s is odd, (n − 1)s ≡ −1 mod n. So,
there surely exists an element α of Z∗n such that −1 ∈ Sα and hence k always exists.

Theorem 6. If n is composite then there exists an α ∈ Z∗n such that α is a witness.

Proof. Case 1: n = ab and (a,b) = 1. i.e. n is not a prime power.

Pick any row(say corresponding to v) such that v2ks ≡ −1 (mod n). Define w as follows,

w ≡ v (mod a) (5)
w ≡ 1 (mod b) (6)

By Chinese remainder theorem there exists a unique w which satisfies equations 5 and 6.
The following propositions complete the proof for this case.

Proposition 7. For the variable w defined above, w2ks 6= ±1(mod n) but w ∈ Z∗n.

Proof. Let w2ks ≡ 1(mod n). This implies w2ks ≡ 1(mod a). By equation 5 and using our
assumption it follows that,

w ≡ v (mod a)

w2ks ≡ v2ks (mod a)

w2ks ≡ −1 (mod a)

This contradicts our assumption.
On the other hand if we assume w2ks ≡ −1(mod n) then w2ks ≡ 1(mod b).By equation 6
and using our assumption it follows that,

w ≡ 1 (mod b)

w2ks ≡ 12ks (mod b)

w2ks ≡ 1 (mod b)
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This contradicts our assumption.

Hence w2ks 6= ±1(mod n). But by the given equations 5 and 6, (w, a) = (w, b) = 1. Since
w and a have no common factor and neither do w and b and a and b are co-prime. w and
ab have no commen factor. Thus, (w, ab) = 1, i.e. w ∈ Z∗n.

Case 2: n = pr i.e. n is the power of a prime
It was discussed in class that the following procedure be invoked at the beginning of our
algorithm to check for this case and hence to issue a compositeness-certificate to n.

Input: A number, n
Output: true if n is the power of a number else false.
1: for all k ∈ {1, 2 · · · log2(n)} do
2: Binary search for r such that rk = n
3: if ∃ r such that rk = n then
4: return Power of Prime
5: return Not the Power of Prime

This gives a computational(O(log3
2(n)) procedure) way to eleminate the this case in the

beginning of the algorithm. We can also handle this case analytically. For this we will use
the following theorem (without proof).

Theorem 8. Z∗n is a cyclic group.

Let g be the generator for Z∗n. Thus φ(n) is the least number such that

gφ(n) ≡ 1 (mod n)

Proposition 9. n is not a Charmichael number.

Proof. We need to find a number r, such that r and n are coprime and rn−1 6= 1 (mod n).
If possible let g(as defined earlier) be such that gn−1 ≡ 1 (mod n). Then φ(n) divides n-1.
This means pr − pr−1 divides pr − 1 which is not possible. Hence there exists a number(g)
for which gn−1 6= 1 (mod n). Thus n is not a charmicheal number.

Theorem 10. Atleast half the elements of Z∗n are witnesses.

Proof. Define the set B as follows,

B =
{
a ∈ Z∗n | a2ks ≡ ±1(mod n)

}
We can easily see that each non-witness lies in B. B may contain some witnesses. We can
also see that B is a subgroup of Z∗n. So if we can prove that it is a non-trivial subgroup
then its order must divide that of Z∗n. Hence order of B will be at most half the size of
Z∗n.
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Theorem 11. For any arbitrary composite number n, the event that for a random choice
of α we are unable to issue a certificate of compositeness happens with probability less than
1
2 .

Proof. The proof follows from the theorems given above.

By repeating the above procedure k times we can boost the probability of issuing correct-
certificates to all numbers. Note that the Rabin-Miller test does not suffer from the problems
of Fermat’s test. Unlike the Fermat’s test there is no bad input for Rabin-Miller test.
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