
Data Structures Test I Part II Max Marks: 15

1. 2Prove that (log n)2 = o(n).

Soln: By L’Hospital’s rule, limn→∞
logn
n2 = limn→∞

1
n

2n
= 0.

2. 2Suppose you are merging an m element array with an n element array. What is the minimum number
of comparisons required (in the best case)? Justify your answer.

Soln: When all elements of the smaller array is smaller than all elements of the larger array, min(m,n)
comparisions suffice.

3. 2In the version of quick sort eliminating tail recursion, Assume that we always invoke recursively the
partition of smaller size and do the larger part iteratively. Let c be constant indicating the amount of
stack memory required for each recursive all. Let S(n) denote the worst case stack memory required
for sorting an array of n elements. Write down a recurrence for estimating S(n). Justify your answer
and solve the recurrence.

Soln: If T (n) is the stack size for an array of size n and if each call takes c space, then since each
recursive call reduces the value of n by at least to half, we have T (n) = T (n

2
) + c = θ(log n).

4. 4Let t be a pointer to the root of a linked list defined over the following node structure:

typedef struct node{
int data;
struct node *next;

};

Eliminate recursion using a single while loop. (Assume functions push(struct node *t), struct node*
pop() and int stackempty() in the standard manner) [Answer on the reverse side]

void test(struct node * t) {
if (t==NULL) return;
else {

test(t->next);
print(t->data);

}
return;

}

Soln: This question is deliberately left unsolved.

5. 5Let A be an n element array. We want A to store a randomly generated permutation of the set

{1, 2, .., n}. Assume that we have a function Pick() that picks an element from the set {1, 2, .., n}
uniformly at random. Consider the following algorithm: [Answer on the reverse side]

A[1] = Pick()
for i = 2 to n do

L : x = Pick()
if x is equal to one among A[1], A[2],.., A[i-1], goto L
A[i] = x;

endfor

Compute the expected number of times the function Pick() will be invoked before the algorithm
completes execution.

Soln: For each i iteration, probability that each call to pick picks an element different from the ones
chosen previously is n−i+1

n
. The expected number of calls to Pick() for each i is given by the mean

of the geometric distribution, n
n−i+1

. Summing over all values of i and adding the first call to Pick()

outside the loop, the total cost if 1 +
∑n

i=2
n

n−i+1
= nHn = θ(n log n).

