Dirac's Theorem

Theorem 1. Every graph G with $n \geq 3$ vertices and minimum degree $\delta(G) \geq n / 2$ has a Hamilton cycle.

Proof. Suppose that $G=(V, E)$ satisfies the hypotheses of the theorem. Then G is connected, since otherwise the degree of any vertex in a smallest component C of G would be at most $|C|-1<n / 2$, contradicting the hypothesis $\delta(G) \geq n / 2$.

Let $P=x_{0} x_{1} \cdots x_{k}$ be a longest path in G. Since P cannot be extended to a longer path, all the neighbours of x_{0} and all the neighbours of x_{k} lie on P. Hence, at least $n / 2$ of the vertices x_{0}, \ldots, x_{k-1} are adjacent to x_{k}, and at least $n / 2$ of the vertices x_{1}, \ldots, x_{k} are adjacent to x_{0}. Another way of saying the second part of the last sentence is: at least $n / 2$ of the vertices $x_{i} \in\left\{x_{0}, \ldots, x_{k-1}\right\}$ are such that $x_{0} x_{i+1} \in E$. Combining both statements and using the pigeonhole principle, we see that there is some x_{i} with $0 \leq i \leq k-1, x_{i} x_{k} \in E$ and $x_{0} x_{i+1} \in E$ (see the figure below).

We claim that the cycle

$$
C=x_{0} x_{i+1} x_{i+2} \cdots x_{k-1} x_{k} x_{i} x_{i-1} \cdots x_{1} x_{0}=x_{0} x_{i+1} P x_{k} x_{i} P x_{0}
$$

is a Hamilton cycle of G. Otherwise, since G is connected, there would be some vertex x_{j} of C adjacent to a vertex y not in C, so that $e=x_{j} y \in E$. But then we could attach e to a path ending in x_{j} containing k edges of C, constructing a path in G longer than P.

