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Lecture 0: Preliminaries on Graphs
Prepared by: Sandeep R B., K Murali Krishnan

Basic Definitions!

These notes assume background in data structures and algorithms (see for example [1]) and
discrete mathematics as in [3] as prerequisites. Standard notions are defined here only for
fixing the notation.

A graph G = (V, E) will be simple undirected unless stated otherwise. Normally we
used n to denote the number of vertices and e (sometimes m) to denote the number edges
in a graph G. Similarly we will simply use V and E for V(G) and E(G) when the meaning
is clear from the context. We denote by deg(v) the degree of a vertex. A graph is regular
if all its vertices have the same degree

G’ is a subgraph of G if V(G’') C V(G), E(G') C E(G) and the end points of edges in
E(G") are in V(G'). G’ is an induced subgraph of G if it is a subgraph of G and it has all
the edges of G whose end points are in V(G").

(a) Subgraph but not induced (b) Induced subgraph

Figure 1: Darkened elements belong to subgraph

A walk in a graph is a list vg, ey, v1, ..., e, vg of vertices and edges such that for 1 < ¢ <
k, the edge e; has the endpoints v;_1 and v;. A path is a walk without vertices repeating.
If the end points of a path are connected by an edge, then the vertices of the path forms a
cycle. G is connected if there is a path connecting every pair of vertices. A forest is a graph
without a cycle. A tree is a connected graph without a cycle. A component in a graph G is
a maximally connected subgraph. A subgraph G’ of a graph G is called a spanning tree in
G if G’ is a tree and has n vertices.

Exercise 1. Show that the sum of the degrees of each vertex in a graph equals twise the
number of edges in G.

Exercise 2. How many edges are there in a graph without a cycle with n vertices and k
components?

We follow [4] for the terminology and fundamental concepts.
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The complement graph G of a graph G is a graph with the vertex set V(G) and all
possible edges between vertices in V(G) which are not there in G.

An independent set of a graph is a subset of its vertices such that there are no adjacent
pairs of vertices in it. A Matching of a graph is a subset of its edges so that no two of which
share a common vertex. A vertex cover of a graph is a subset of its vertices such that every
edge has atleast one endpoint in it.

The Clique number of a graph is the size of the maximum complete subgraph of it
whereas the chromatic number of a graph is the minimum number of colours required to
properly colour (adjacent vertices get different colours) the vertices of it.

PP

) Max. ind. set set ) Min. vertex cover ) Max. matching (d) Min. proper colouring

Figure 2: Various graph parameters are depicted using Petersen graph

Exercise 3. Show that the size of the mazimum matching in a graph G cannot exceeed the
size of the minimum vertex cover. Can you find a similar relation between clique number
and chromatic number?

Exercise 4. If max clique in G has size k what can you say about minimum vertex cover
in G¢ What can you say about the sizes of maximum independent set or chromatic number

of G?

A graph is k — partite if its vertex set can be partitioned into k (possibly empty)
partitions such that each partition contains vertices with no edges in between. For example,
bipartite graphs are graphs with two such partitions. A (proper) colouring of the vertices of
a graph assigns colours to each vertex in G such that adjacent vertices get different colours.
Clearly a graph is k colourable if and only if it is k partite and the chromatic number of
G is the minimum k for which G is k partite. In particular bipartite graphs precisely form
the class of two colourable graphs.

Bipartite, Eulerian and Hamiltonian Graphs

Bipartite graphs are characterized by the absence of odd cycles.

Theorem 1. (Konig, 1936) A graph is bipartite if and only if it has no odd cycle.



Proof. Assume that G is bipartite. Every walk in G alternates between the vertices in two
partitions. So, there can not have an odd cycle in G. Conversely let G be a connected
graph with no odd cycle. It suffices to show that GG is two colourable.

Consider a BFS on G starting from any vertex v. Let L; be the set of vertices at level ¢
(i > 0) in the DFS tree (with v at level 0). It is the property of BFS that an edge at level
i can have an edge only to vertices at level i,7 4 1 or i — 1. However two vertices w and w’
at level ¢ cannot have an edge as the edge (w,w’) along with the paths from u to w and u
to w’ will form an odd cycle. Now colouring every vertex at odd level RED and even level
BLUE gives a two colouring of G. O

A closed walk with all the edges with no repetition is known as Fulerian circuit. A
graph with an Fulerian circuit is known as Fulerian graph. There can only be atmost one
non-trivial component for an Eulerian graph. Note that, in an Eulerian circuit each passage
through a vertex uses two incident edges. It follows that the degree of each vertex in an
Eulerian graph is even. Euler stated in 1736 that this is sufficient for a graph with atmost
one non-trivial component.

Theorem 2. A graph G is Fulerian if and only if it has atmost one nontrivial component
and its vertices all have even degree.

Proof. Aassume G is connected and vertices have even degree. Start a traversal from any
vertex of (G. Stop it when it meets a vertex already traversed. This is possible as all the
vertex degrees are even for that component and hence there is an edge to leave any vertex
to which we enter. Thus we get a cycle from that walk. Delete those edges which forms
the cycle from the graph. We end up with possibly many non-trivial components having
only even-degreed vertices. Recursively find a Eulerian circuit and attach it to the removed

cycle to form an Eulerian circuit for G (Fig. 3). O
v )

Figure 3: Eulerian circuit is formed from that of the components obtained inductively.

A similar concept is Hamiltonian cycle. A Hamiltonian cycle is a cycle with every vertex
included. A graph with a Hamiltonian cycle is known as a Hamiltonian graph. Complete
graphs are Hamiltonian and for a bipartite Hamiltonian graph, the size of both the partitions
should be same. Though it is very easy to verify whether a graph has an Eulerian circuit
or not, it is NP Complete to recognize a Hamiltonian graph.
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Graph (vertex) colouring refers to assigning colours to vertices of a graph such that
adjacent vertices get different colours. The Chromatic number, x(G) of a graph is the
minimum number of colours required for a proper colouring of GG. It is easy to see that
the chromatic number of a graph G is nothing but the smallest k such that the graph is
k — paritite. The problem of finding a minimum proper colouring of graph is NP hard.

The greedy colouring of a graph G related to a vertex ordering vy, vs,...,v, of G is
obtained by colouring vertices in that order, assigning v; the smallest indexed colour which
is not used by its lower indexed neighbours.

Exercise 5. Show that using greedy colouring we can colour a graph with A(G) + 1 where
A(G) is the degree of the vertex with the mazimum degree in G. Show that the bound is
tight for odd cycles and complete graphs.

For another solution to the exercise, remove a vertex from the graph. Recursively colour
the resultant graph with A(G) colours. Put back the vertex and we have atleast one free
colour for it.

A graph is planar if it can be drawn on the plane without edges crossing. In this lecture,
we prove that every planar graph is 5 colourable and also see how to find such a colouring.

Suppose G is connected planar. Then a drawing of G on the plane divides the plane
into different disconnected regions called faces. Figure 4 illustrates planar graphs with one
and three faces respectively. We will denote by n, e and f the number of vertices, edges and
faces in a graph.

® ®
(a) f=1 (b) f=3

Figure 4: Planar graphs

Euler’s Formula

Assume that we are given connected planar graph G drawn on the plane without edges
crossing. Remove edges one by one from G till G is a tree. Let the resultant tree be called
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T. Since T is a tree, T has only one face and f = 1. Since e = n — 1 for a tree,
the relation,
f+n=e+2 (1)

holds.

Add each edge back into T'. Addition of each edge creates a new face and both sides of
the above equation increases by one. So the equation given above holds for any connected
planar graph. Note that the argument holds for any drawing of G on the plane. Thus we
have the theorem:

Theorem 3. Let n,e and f be the number of vertices, edges and faces of a connected planar
graph G then f +n=e+ 2.

The above characterisation of planar graphs was discovered by the famous mathemati-
cian Leonhard Euler [1707-1783].

Existence of a small degree vertex

For a planar graph G with at least three vertices, each face is surrounded by at least 3
edges. Hence, if we sum (over all faces) the number of edges around each face, we get at
as sum at least 3f. On the other hand each edge can occur at most twice in the sum as an
edge can be shared by at most two faces. Hence, the above sum cannot exceed 2e. Thus
we have:

Lemma 1. If G is a planar graph with at least three vertices, then 3f < 2e.

Multiplying (1) with 3 gives 3n + 3f = 3e + 6. Substituting for 3f from the lemma in
this equation yields 3n 4+ 2e > 3e + 6 or e < 3n — 6.

The sum of the degrees of all vertices in a graph is 2e as each edge contributes two to
the sum. Hence, the average degree of a vertex in G is given by:

degavg(G) =
Using the fact that e < 3n — 6 for a planar graph with n > 3 we get:

ZUGV(C;L) deg(v) = 2e/n. (2)

2(3n — 6) 12

degavg(G) S S 6 — ; <6 (3)

We thus have the theorem:

n

Theorem 4. If G is planar with at least 3 vertices, then there is a vertex in G of degree at
most 5.

This yields an immediate algorithm for six colouring planar graphs.
Theorem 5. Fvery planar graph is siz colourable.

Proof. Let G be planar. If G has less than 7 vertices, the result is trivial. Otherwise, let v
be a vertex satisfying deg(v) < 5 (see previous theorem). Remove v from G. The resultant
graph G’ is planar. Inductively do a six colouring of each component of this graph and put
back v. Since v has at most five neighbours in G’, we will be left with at least one free
colour for v. O



Five Colour Theorem

Five colours are sufficient to colour any planar graph. Heawood proved this using the
concept of Kempe chain introduced by Alfred Kempe.

Definition 1. (Kempe chain) An A — B Kempe chain in a properly coloured graph G is
a mazimal connected subgraph of G with vertices coloured A or B.

Red-Yellow

Red-Yellow .
Kempe chain

Kempe chain

Green

Yellow

Yellow

Figure 5

Theorem 6. (Five Colour Theorem, [2]) Every planar graph is five colourable.

Proof. The proof is by induction on the number of vertices. Proof is trivial for planar
graphs with atmost 5 vertices. Let a planar graph G has n > 5 vertices. Let the vertex
with smallest degree be v, where deg(v) < 5. Consider a proper colouring of G \ v. The
difficult case of the proof is when deg(v) = 5 and all its neighbours got different colours.
Without loss of generality assume that the neighbours of v are coloured Red, green,
Yellow, Cyan and Blue. Consider the Red-Yellow Kempe chain containing the Red coloured
neighbour. If this chain doesn’t contain the Yellow coloured neighbour (Fig. 5a) then we
can toggle the colours (Colour Red vertices with Yellow and vice versa) of the vertices in
the chain and colour v with Red. Otherwise assume that the Red-Yellow Kempe chain
containing the Red neighbour contains the Yellow neighbour as well (Fig. 5b). In this case
there can not be any Green-Blue Kempe chain containing both Green and Blue neighbours
of v (why?) . Now, toggle the Green-Blue chain containing Green neighbour and colour v
with Green. O

Note that the proof essentially gives us a way to colour a planar graph with 5 colours.
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