Department of Computer Science and Engineering, NIT Calicut

Lecture 1: Propositional Calculus

Prepared by: K. Murali Krishnan

In this lecture, we will study the logic of propositions. A proposition is a statement which takes value *true* or *false*. We will use propositional variables like p, q, r to denote propositions. Propositional formulas are constructed from variables using the *logical connectives* \land, \lor, \rightarrow and \neg . Once the *truth values* of the variables of a formula are known, the truth value of the formula can be evaluated. These notions are formalized below.

Syntax of Propositional Calculus

Let V be a collection of propositional variables. The set of Boolean (or propositional) formulas over V denoted by \mathcal{F}_V are inductively defined as follows:

• if $\phi \in V$ then $\phi \in \mathcal{F}_V$.

• if
$$\phi, \psi \in V$$
, then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$, $(\neg \phi)$, $(\neg \psi)$ are in \mathcal{F}_V .

Example 1. If $V = \{p, q, r\}$ the $(p \land (q \rightarrow r)), (\neg q \rightarrow (p \lor q))$ etc. are formulas.

The normal convention is that \neg has the highest precedence among the connectors. \land has higher precedence over \lor , which in turn has higher precedence over \rightarrow and \leftrightarrow . \land and \lor are left associative, whereas, \neg , \leftrightarrow and \rightarrow are right associative. This allows parenthesis to be omitted. For instance $p \lor q \rightarrow \neg r \land p$ denotes $(p \lor q) \rightarrow ((\neg r) \land p)$.

Formulas must be given "life" by assigning truth values. This is our next objective. We will use 1 and 0 instead of *true* and *false*.

Semantics of Propositional Calculus

Given a variable set V. A Truth assignment for V is a map $\tau : V \longrightarrow \{0, 1\}$ We can extend τ inductively into a function from \mathcal{F}_V to $\{0, 1\}$ (with a little abuse of notation) as follows:

- $\tau(\phi)$ is already defined if $\phi \in V$.
- $\tau(\phi \land \psi) = 1$ if both $\tau(\phi) = 1$ and $\tau(\psi) = 1$, 0 otherwise.
- $\tau(\phi \lor \psi) = 1$ if $\tau(\phi) = 1$ or $\tau(\psi) = 1, 0$ otherwise
- $\tau(\phi \to \psi) = 0$ if $\tau(\phi) = 1$ or $\tau(\psi) = 0, 1$ otherwise
- $\tau(\phi \leftrightarrow \psi) = 1$ if $\tau(\phi) = \tau(\psi)$, 0 otherwise
- $\tau(\neg \phi) = 1$ if $\tau(\phi) = 0, 1$ otherwise.

Example 2. Let $V = \{p, q, r\}$. Let $\tau(p) = \tau(q) = 1$ and $\tau(r) = 0$. Then $\tau(q \to r) = 0$, $\tau(p \land (q \to r)) = 0 \ \tau(p \leftrightarrow q) = 1$ etc.

For the rest of this lecture, we assume that a variable set V is given. The set of all truth assignments from V to $\{0,1\}$ will be denoted by \mathcal{T}_V . For $\phi \in \mathcal{F}_V$, we say $\tau \in \mathcal{T}_V$ satisfies ϕ if $\tau(\phi) = 1$. The notation $\tau \models \phi$ will be used instead of $\tau(\phi) = 1$. Define $\mathcal{M}(\phi) = \{\tau \in \mathcal{T}_V : \tau \models \phi\}$. The set $\mathcal{M}(\phi)$, called the set of all models of ϕ , is the collection of all truth assignments that satisfy ϕ . Let $\phi, \psi \in \mathcal{F}_V$. ψ is said to be a logical consequence of ϕ if every $\tau \in \mathcal{M}(\phi)$ satisfies $\tau \models \psi$. That is, whenever a truth assignment makes ϕ true, it should make ψ also true. In such case we write $\phi \Rightarrow \psi$. $\psi \in \mathcal{F}_V$ is said to be logically equivalent to $\phi \in \mathcal{F}_V$ if $\mathcal{M}(\phi) = \mathcal{M}(\psi)$. That is, ϕ and ψ are equivalent if every truth assignment in \mathcal{T}_V gives the same truth value to both ψ and ϕ . In this case, we write $\phi \Leftrightarrow \psi$. A formula $\phi \in \mathcal{F}_V$ is said to be satisfiable if $\mathcal{M}(\phi) \neq \emptyset$. That is, if there is a truth assignment to the variables that makes the formula evaluate to true. ϕ is said to be unsatisfiable otherwise. $\phi \in \mathcal{F}_V$ is a tautology if $\mathcal{M}(\phi) = \mathcal{T}_V$. That is, $\tau(\phi) = 1$ for all truth assignments $\tau \in \mathcal{T}_V$. ϕ is contradictory if $\mathcal{M}(\phi) = \emptyset$. That is, ϕ evaluates to false under any truth assignment. Note that ϕ is a tautology if and only if $\neg \phi$ is contradictory.

Example 3. Let $V = \{p,q\}$. The formula $\phi = (p \rightarrow q) \rightarrow q$ is satisfiable as $\mathcal{M}(\phi) = \{01, 10, 11\} \neq \emptyset$. The formula is not a tautology. Let $\psi = p \lor q$. Then, clearly $\phi \Leftrightarrow \psi$.

Next we extend these notions to collections of formulas. Let $\mathcal{A} \subseteq \mathcal{F}_V$. Define $\mathcal{M}(\mathcal{A}) = \bigcap_{\phi \in \mathcal{A}} \mathcal{M}(\phi)$. Thus models of \mathcal{A} are precisely those truth assignments that satisfy every formula in \mathcal{A} . For each $\tau \in \mathcal{M}(\mathcal{A})$, we write $\tau \models \mathcal{A}$. We set $\mathcal{M}(\emptyset) = \mathcal{T}_V$. \mathcal{A} is satisfiable or consistent if $\mathcal{M}(\mathcal{A}) \neq \emptyset$. \mathcal{A} is said to be **inconsistent** if \mathcal{A} is not consistent.

Definition 1. Let $\mathcal{A} \subseteq \mathcal{F}_V$.

- $\mathcal{A} \subseteq \mathcal{F}_V$ is said to be categorical (or sometimes called complete) if $|\mathcal{M}(\mathcal{A})| \leq 1$. That is, either \mathcal{A} is inconsistent or there is a unique $\tau \in \mathcal{T}_V$ such that $\tau \models \mathcal{A}$.
- $\phi \in \mathcal{F}_V$ is said to be independent of \mathcal{A} if both $\mathcal{A} \cup \{\phi\}$ and $\mathcal{A} \cup \{\neg\phi\}$ are consistent. That is, there exists truth assignments $\tau_1, \tau_2 \in \mathcal{M}(\mathcal{A})$ such that $\tau_1 \models \phi$ and $\tau_2 \models \neg\phi$.
- $\phi \in \mathcal{F}_V$ is said to be a logical consequence of $\mathcal{A} \subseteq \mathcal{F}_V$ if every $\tau \in \mathcal{M}(\mathcal{A})$ satisfies $\tau \models \psi$. In this case we write $\mathcal{A} \models \psi$.
- $\mathcal{A}, \mathcal{A}' \subseteq \mathcal{F}_V$ are said to be logically equivalent if $\mathcal{M}(\mathcal{A}) = \mathcal{M}(\mathcal{A}')$. That is, the set of truth assignments (models) that satisfy all formulas in \mathcal{A} and \mathcal{A}' are exactly the same.

Note that the sets \mathcal{A} and \mathcal{A}' in these definitions could contain infinitely many formulas from \mathcal{F} .

Example 4. Let $V = \{p, q, r\}$ and $\mathcal{A} = \{p \to q, q \to r, \neg r \lor \neg q q \lor r\}$. The set \mathcal{A} is consistent as $\tau(p) = \tau(q) = 0, \tau(r) = 1$ satisfies \mathcal{A} . The set is categorical as no other truth assignment satisfies the set. $\neg p$, is an example of a logical consequence of \mathcal{A} . Since the set is categorical, there is no formula in \mathcal{F}_V that is independent of \mathcal{A} (why?).

Example 5. The set $\mathcal{A} = \{p_1 \lor p_2, p_2 \lor p_3, p_3 \lor p_4, ...\}$ over $V = \{p_1, p_2, ...\}$ is consistent. $\tau(p_i) = 1$ for all *i* satisfies \mathcal{A} . \mathcal{A} is not categorical (why?). $\neg p_2 \to (p_1 \lor p_3)$ is a logical consequence of \mathcal{A} (why?). For each *i*, the formula $p_i \in \mathcal{F}_V$ is independent of \mathcal{A} (why?). **Exercise 1.** Show that if $\mathcal{A} \subseteq \mathcal{F}_V$ is categorical, then for every $\phi \in \mathcal{F}_V$ either $\mathcal{A} \cup \{\phi\}$ is inconsistent or $\mathcal{A} \cup \{\neg\phi\}$ is inconsistent. Hence there is no $\phi \in \mathcal{F}_V$ that is independent of a complete set $\mathcal{A} \subseteq \mathcal{F}_V$. Conversely, if there exists $\phi \in \mathcal{F}_V$ independent of \mathcal{A} , then show that \mathcal{A} is not categorical.

Exercise 2. Let $V = \{p, q, r\}$ Give an example for a consistent and complete set $\mathcal{A} \subseteq \mathcal{F}_V$ and formula $\phi \in \mathcal{F}_V$ such that both $\mathcal{A} \cup \{\phi\}$ and $\mathcal{A} \cup \{\neg\phi\}$ are inconsistent.

Exercise 3. Let $\mathcal{A} = \emptyset$. Then a formula $\phi \in \mathcal{F}_V$ is independent of \mathcal{A} if and only if neither ϕ nor $\neg \phi$ are tautologies.

Definition 2. Let $\phi, \psi \in \mathcal{F}_V$.

- ϕ tautologically implies ψ if the formula $\phi \rightarrow \psi$ is a tautology. In this case, we write $\phi \Rightarrow \psi$.
- ϕ is tautologically equivalent to ψ if $\phi \leftrightarrow \psi$ is a tautology. In this case we write $\phi \Leftrightarrow \psi$.

Exercise 4. Show that a ψ is a logical consequence of ϕ if and only if ϕ tautologically implies ψ .

Exercise 5. Show that a ψ is logically equivalent to ϕ if and only if $\phi \leftrightarrow \psi$ is a tautology (that is ϕ is tautologically equivalent to ψ).

The notions of tautological implication and logical consequence mean exactly the same concept in view of the exercises above. This notion has central importance in *deductions* which we will see as we proceed further through these notes.

The next definition states that a set of formulas form an independent set if there are no *redundant* formulas in the set in the sense none of the formulas in the set is a logical consequence of the others.

Definition 3. A set $\mathcal{A} \subseteq \mathcal{F}_V$ is said to be an independent set of formulas if for each $\phi \in \mathcal{A}$, ϕ is independent of $A - \{\phi\}$.

Example 6. The set $\mathcal{A} = \{p, p \to q, q \to r, r\}$ over $V = \{p, q, r\}$ is not an independent set because r is a logical consequence of the remaining formulas.

Exercise 6. Let $V = \{p, q, r\}$. In each case determine whether the given axiom set \mathcal{A} is consistent or complete. Whenever \mathcal{A} is incomplete, find a formula $\phi \in \mathcal{F}_V$ that is independent of \mathcal{A} .

- 1. $\mathcal{A} = \{p \to (q \to r), \neg q, p\}.$
- 2. $\mathcal{A} = \{p \to q, q \to r, r \to q, \neg q\}$
- 3. $\mathcal{A} = \{ p \lor q, q \land r, \neg r \}.$