Department of Computer Science and Engineering, NIT Calicut

Lecture 1: Sets, Functions and Relations
K. Murali Krishnan

This lecture assumes that the reader has some familiarity with sets, relations and func-
tions. We begin with a review of basic definitions primarily to set up the notation.

Let S and T be non-empty sets. Let f : S — T be a map (function) from S to T.
We called S the domain and T the co-domain of the function. Let A be a subset of S. We
define f(A) = {yly = f(a) for some a € A}. In other words f(A) is the image of the set
A under f. We will succinctly write f(A) = (J,ca f(a) (instead of f(A) = U,ealf(a)}).
The set f(S) (corresponding to A = S) is simply called the image of f (instead of image of
S under f).

Definition 1. f is said to be injective if for every a,b € S, f(a) # f(b) unlessa ="0>. f is
surjective if f(S) =T. A bijective function is one which is both injective and surjective.

If v € T, define f~1(z) = {ala € S, f(a) = v}. For X C T, we define f~1(X) =
Uzex /7 (z). Thus f~1(X) is the collection of all elements in S whose image falls in the
set X. Note that if f is surjective, then f~!(z) is non-empty for each x € T. If f is injective,
then f~!(x) has and has at most one element for each x € T' (why?). In any case, if 7,y € T
satisfy x # y, then f~1(z) N f~1(y) = 0 (why?). It follows that if X, Y are disjoint subsets
of T, f~1(X) and f~1(Y) are disjoint.

Example 1. Let S = {0,1,2,3..} = T and f(z) = 2z. Let A = {0,2,4,6,..}. Then
f(A) = {0,4,8,...}. It is easy to see that f is injective (prove!) but not surjective. The
image of f is {0,2,4,6,...}. For X ={1,3,5,...}, f~1(X) = 0.

Exercise 1. Let f : S — T be a function. Let A, B be subsets of S and X,Y be subsets
of T. We will use the notation A, X¢ to denote the sets S — A, T — X etc. (complements
in the respective domains). We prove some, and leave to you the rest.

1. f(A) — f(B) C f(A— B). Give an example to show that equality need not hold true
in general. Show that equality holds if f is injective.

Proof. If f(A) — f(B) is empty, the claim holds trivially. Otherwise, let x € f(A) —
f(B). Asz € f(A) and = ¢ f(B), there exists a € A such that a ¢ B and f(a) = x.
In other words, there exists a € A — B such that f(a) =x. Thus z € f(A — B).

Now, suppose that f(A— B) # () and let y € f(A— B), there must be some a € A— B
such that f(a) = y. Thus a € A and a ¢ B satisfy y = f(a). Clearly, we have
y € f(A). If f is injective, then there cannot be any other b # a such that f(b) = y.
Thus, if f is injective, y ¢ f(B). Consequently y € f(A) — f(B) when f is injective.

The following simple counterexample shows that equality may fail to hold when f
is not injective. Let S = {a,b},T = {z}. Let f(a) = f(b) = z. Let A = {a} and
B = {b}. Thus A— B = {a} and f(A— B) = {z}. However, f(A) = f(B) = {z} and
hence f(A) — f(B) = 0. O



2. f(AUB) = f(A) U f(B).

3. f(ANB) C f(A)N f(B). Give an example to show that the inequality is strict. Show
that equality holds if f is injective.

4. AC f7H(f(A)), equality holds when f is injective.
5. fFHXUY) = fHX)UfHY).
6. fHXNY)=f1X)nfH(Y).

Proof. First we prove that f~1(X NY) C f~1(X)n fL(Y). If f71(XNY) =0, the
claim holds trivially. Otherwise, Let a € f~'(X NY). Then, there exists z € X NY
such that z = f(a). Asz€ X andz€Y,a € f~1(X)and a € f~1(Y). Consequently,
ae fUX) NI,

Conversely, we prove that f~1(X)Nf~1(Y) C f~1(XNY). Leta € f~H(X)NfL(Y).
Thus a € f~1(X) and a € f~}(Y). Consequently, There exists x € X such that
f(a) = x and there exists y € Y such that f(a) = y. However, since f is a function,
we must have x = y. Consequently, there exists x € X NY such that f(a) = z. That
is,a € f7H(XNY). O

7NX =Y) = UX) - fHY)
8. If f is surjective, then [f(A)]° C f(A®). (What goes wrong if f is not surjective?).
9. fHX) =[x~

10. f(f7H(X)) = X.

If R C SxT isarelation, and a € S, define R(a) = {y : (a,y) € R}. Thus R(a) denotes
the set of elements in R which are “related to” a. If A C 5, we define R(A) = |J,c4 R(a).
With this notation, a relation R from S to T can be viewed as a function fr : S +— 27
(where 2T is the power set of T) by defining f,(a) = R(a). This allows relations to be
viewed as functions. Conversely, a function f : S — T can be thought of as a relation
Ry —{(a, f(a)) : a € S}. Observe that f~! is function if and only if f is bijective (why?).

Just as with functions, for x € T, we define R~1(z) = {ala € A and (a,x) € R}. For
X C T, define RYX) = ,cx B ().

Exercise 2. Let R C S x T be a relation. Let A, B be subsets of S and X,Y be subsets
of T. Let A¢, X¢ denote the sets S — A, T — X etec. In each of the following cases, check
whether the set on the left/right is included in the set of right/left. (Hint: Some results
follow easily if you note that a relation from S to T is a function from S to 2. In some
cases you may be able to find examples to show that neither side is a subset of the other
always).

1. R(A) — R(B) and R(A — B).
2. R(AUB) and R(A) U R(B).



R(AN B) and R(A) N R(B).
A and R™Y(R(A)).
“H(XUY) and RYX)URYY).
X NY) and RYX)NRYY).
R YX -Y) and R"Y(X) — RTIY)

[R(A)]¢ and R(A)°.
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RTHX€) = [RTH(X)]°.
10. R(R7Y(X)) and X.

Exercise 3. Let S be the set of real numbers. Consider the relation R C S x S given by
R = {(z,y) : ®+y = 1}. Let X be the set of all integers. Let Y be the set of positive
real numbers. Find 1.) R(X), 2.) R(Y), 8.) R7Y(X), 4.) R°}(Y). 5.) R(R7YY) 6.)
R™H(R(Y))

Exercise 4. Let S be the set of positive integers. Consider the relation R C .S x S given
by R ={(a,b) : GCD(a,b) = 1}. Let X be the set of all prime numbers and let Y be the set
of all even numbers. Find 1.) R(X), 2.) R(Y), 3.) R7Y(X), 4.) R7Y(Y). 5.) R(R™Y(Y)
6.) R™Y(R(Y))

Definition 2. Let R be a relation over a set S. define the complement of R, RC S x T
as R={(a,b) : (a,b) ¢ R}.

Exercise 5. Let S, T be non-empty sets. Let Ry, Ro C S xT. Show that
1. RiURy :Eﬂﬁg, Ri1N Ry :R71UR72.
2. (RiURy) ' =R'URY, (RiINRy) "' =R 'n Ry



