Department of Computer Science and Engineering, NIT Calicut

Lecture 1: Sets, Functions and Relations

K. Murali Krishnan

This lecture assumes that the reader has some familiarity with sets, relations and functions. We begin with a review of basic definitions primarily to set up the notation.

Let S and T be non-empty sets. Let $f: S \longrightarrow T$ be a map (function) from S to T. We called S the domain and T the co-domain of the function. Let A be a subset of S. We define $f(A)=\{y \mid y=f(a)$ for some $a \in A\}$. In other words $f(A)$ is the image of the set A under f. We will succinctly write $f(A)=\bigcup_{a \in A} f(a)$ (instead of $f(A)=\bigcup_{a \in A}\{f(a)\}$). The set $f(S)$ (corresponding to $A=S$) is simply called the image of f (instead of image of S under f).

Definition 1. f is said to be injective if for every $a, b \in S, f(a) \neq f(b)$ unless $a=b$. f is surjective if $f(S)=T$. A bijective function is one which is both injective and surjective.

If $x \in T$, define $f^{-1}(x)=\{a \mid a \in S, f(a)=x\}$. For $X \subseteq T$, we define $f^{-1}(X)=$ $\bigcup_{x \in X} f^{-1}(x)$. Thus $f^{-1}(X)$ is the collection of all elements in S whose image falls in the set X. Note that if f is surjective, then $f^{-1}(x)$ is non-empty for each $x \in T$. If f is injective, then $f^{-1}(x)$ has and has at most one element for each $x \in T$ (why?). In any case, if $x, y \in T$ satisfy $x \neq y$, then $f^{-1}(x) \cap f^{-1}(y)=\emptyset$ (why?). It follows that if X, Y are disjoint subsets of $T, f^{-1}(X)$ and $f^{-1}(Y)$ are disjoint.

Example 1. Let $S=\{0,1,2,3 .\}=$.$T and f(x)=2 x$. Let $A=\{0,2,4,6, .$.$\} . Then$ $f(A)=\{0,4,8, \ldots\}$. It is easy to see that f is injective (prove!) but not surjective. The image of f is $\{0,2,4,6, \ldots\}$. For $X=\{1,3,5, \ldots\}, f^{-1}(X)=\emptyset$.

Exercise 1. Let $f: S \longrightarrow T$ be a function. Let A, B be subsets of S and X, Y be subsets of T. We will use the notation A^{c}, X^{c} to denote the sets $S-A, T-X$ etc. (complements in the respective domains). We prove some, and leave to you the rest.

1. $f(A)-f(B) \subseteq f(A-B)$. Give an example to show that equality need not hold true in general. Show that equality holds if f is injective.

Proof. If $f(A)-f(B)$ is empty, the claim holds trivially. Otherwise, let $x \in f(A)-$ $f(B)$. As $x \in f(A)$ and $x \notin f(B)$, there exists $a \in A$ such that $a \notin B$ and $f(a)=x$. In other words, there exists $a \in A-B$ such that $f(a)=x$. Thus $x \in f(A-B)$.
Now, suppose that $f(A-B) \neq \emptyset$ and let $y \in f(A-B)$, there must be some $a \in A-B$ such that $f(a)=y$. Thus $a \in A$ and $a \notin B$ satisfy $y=f(a)$. Clearly, we have $y \in f(A)$. If f is injective, then there cannot be any other $b \neq a$ such that $f(b)=y$. Thus, if f is injective, $y \notin f(B)$. Consequently $y \in f(A)-f(B)$ when f is injective.
The following simple counterexample shows that equality may fail to hold when f is not injective. Let $S=\{a, b\}, T=\{x\}$. Let $f(a)=f(b)=x$. Let $A=\{a\}$ and $B=\{b\}$. Thus $A-B=\{a\}$ and $f(A-B)=\{x\}$. However, $f(A)=f(B)=\{x\}$ and hence $f(A)-f(B)=\emptyset$.
2. $f(A \cup B)=f(A) \cup f(B)$.
3. $f(A \cap B) \subseteq f(A) \cap f(B)$. Give an example to show that the inequality is strict. Show that equality holds if f is injective.
4. $A \subseteq f^{-1}(f(A))$, equality holds when f is injective.
5. $f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)$.
6. $f^{-1}(X \cap Y)=f^{-1}(X) \cap f^{-1}(Y)$.

Proof. First we prove that $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$. If $f^{-1}(X \cap Y)=\emptyset$, the claim holds trivially. Otherwise, Let $a \in f^{-1}(X \cap Y)$. Then, there exists $z \in X \cap Y$ such that $z=f(a)$. As $z \in X$ and $z \in Y, a \in f^{-1}(X)$ and $a \in f^{-1}(Y)$. Consequently, $a \in f^{-1}(X) \cap f^{-1}(Y)$.
Conversely, we prove that $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$. Let $a \in f^{-1}(X) \cap f^{-1}(Y)$. Thus $a \in f^{-1}(X)$ and $a \in f^{-1}(Y)$. Consequently, There exists $x \in X$ such that $f(a)=x$ and there exists $y \in Y$ such that $f(a)=y$. However, since f is a function, we must have $x=y$. Consequently, there exists $x \in X \cap Y$ such that $f(a)=x$. That is, $a \in f^{-1}(X \cap Y)$.
7. $f^{-1}(X-Y)=f^{-1}(X)-f^{-1}(Y)$
8. If f is surjective, then $[f(A)]^{c} \subseteq f\left(A^{c}\right)$. (What goes wrong if f is not surjective?).
9. $f^{-1}\left(X^{c}\right)=\left[f^{-1}(X)\right]^{c}$.
10. $f\left(f^{-1}(X)\right)=X$.

If $R \subseteq S \times T$ is a relation, and $a \in S$, define $R(a)=\{y:(a, y) \in R\}$. Thus $R(a)$ denotes the set of elements in R which are "related to" a. If $A \subseteq S$, we define $R(A)=\bigcup_{a \in A} R(a)$. With this notation, a relation R from S to T can be viewed as a function $f_{R}: S \mapsto 2^{T}$ (where 2^{T} is the power set of T) by defining $f_{R}(a)=R(a)$. This allows relations to be viewed as functions. Conversely, a function $f: S \mapsto T$ can be thought of as a relation $R_{f}-\{(a, f(a)): a \in S\}$. Observe that f^{-1} is function if and only if f is bijective (why?).

Just as with functions, for $x \in T$, we define $R^{-1}(x)=\{a \mid a \in A$ and $(a, x) \in R\}$. For $X \subseteq T$, define $R^{-1}(X)=\bigcup_{x \in X} R^{-1}(x)$.

Exercise 2. Let $R \subseteq S \times T$ be a relation. Let A, B be subsets of S and X, Y be subsets of T. Let A^{c}, X^{c} denote the sets $S-A, T-X$ etc. In each of the following cases, check whether the set on the left/right is included in the set of right/left. (Hint: Some results follow easily if you note that a relation from S to T is a function from S to 2^{T}. In some cases you may be able to find examples to show that neither side is a subset of the other always).

1. $R(A)-R(B)$ and $R(A-B)$.
2. $R(A \cup B)$ and $R(A) \cup R(B)$.
3. $R(A \cap B)$ and $R(A) \cap R(B)$.
4. A and $R^{-1}(R(A))$.
5. $R^{-1}(X \cup Y)$ and $R^{-1}(X) \cup R^{-1}(Y)$.
6. $R^{-1}(X \cap Y)$ and $R^{-1}(X) \cap R^{-1}(Y)$.
7. $R^{-1}(X-Y)$ and $R^{-1}(X)-R^{-1}(Y)$
8. $[R(A)]^{c}$ and $R(A)^{c}$.
9. $R^{-1}\left(X^{c}\right)=\left[R^{-1}(X)\right]^{c}$.
10. $R\left(R^{-1}(X)\right)$ and X.

Exercise 3. Let S be the set of real numbers. Consider the relation $R \subseteq S \times S$ given by $R=\{(x, y): x+y=1\}$. Let X be the set of all integers. Let Y be the set of positive real numbers. Find 1.) $R(X)$, 2.) $R(Y)$, 3.) $R^{-1}(X)$, 4.) $R^{-1}(Y)$. 5.) $R\left(R^{-1}(Y)\right.$ 6.) $R^{-1}(R(Y))$

Exercise 4. Let S be the set of positive integers. Consider the relation $R \subseteq S \times S$ given by $R=\{(a, b): G C D(a, b)=1\}$. Let X be the set of all prime numbers and let Y be the set of all even numbers. Find 1.) $R(X)$, 2.) $R(Y)$, 3.) $R^{-1}(X)$, 4.) $R^{-1}(Y)$. 5.) $R\left(R^{-1}(Y)\right.$ 6.) $R^{-1}(R(Y))$

Definition 2. Let R be a relation over a set S. define the complement of $R, \bar{R} \subseteq S \times T$ as $R=\{(a, b):(a, b) \notin R\}$.

Exercise 5. Let S, T be non-empty sets. Let $R_{1}, R_{2} \subseteq S \times T$. Show that

1. $\overline{R_{1} \cup R_{2}}=\overline{R_{1}} \cap \overline{R_{2}}, \overline{R_{1} \cap R_{2}}=\overline{R_{1}} \cup \overline{R_{2}}$.
2. $\left(R_{1} \cup R_{2}\right)^{-1}=R_{1}^{-1} \cup R_{2}^{-1},\left(R_{1} \cap R_{2}\right)^{-1}=R_{1}^{-1} \cap R_{2}^{-1}$.
