Department of Computer Science and Engineering, NIT Calicut

Lecture 3: First Order Logic for Graphs
Prepared by: K. Murali Krishnan

In this lecture, we will study first order logic for graphs (with equality) denoted by
FOLG(=). A graph G = (V, E) consists of a finite or countably infinite set of vertices and
a collection of (directed) edges E C V x V. Two graphs G1 = (V1, E1) and Gy = (Va, E3)
are isomorphic (written G7 = Ga) if there is a bijective map f : Vi — V4 such that
(v,v") € Ej if and only if (f(v), f(v")) € Es. For instance, G; = ({1,2},{(1,2),(2,2)})
and G2 = ({a,b},{(a,b),(b,b)}) are isomorphic via the map f(1) = a, f(2) = b from V] to
V4. Isomorphic graphs are essentially copies of the same graph with a different labelling of
the vertices. We do not distinguish between isomorphic graphs and treat them as the same
graph.

Syntax of FOLG(=)

The vocabulary of FOLG(=) consists of variables X = {z,y,z,z1,y1, 21, T2, Y2, 22, ... },
logical operators {A,V,—,—, <}, the quantifiers {V,3} and the two binary relations
relations {R,=}. The set F of formulas in FOLG(=) are defined as follows:

e R(z,y) and (x = y) are in F whenever z,y € X.

o If ¢,4) €V, then (¢/\¢), (¢V¢)’ (d) - 77[))’ (¢ A 1/})7 (—\(;5), (_‘d]) are in F.
o If x € X and ¢ € F, then (Vz¢), (Vzvp), (Jz¢), (1)) are in F.

Example 1. Vz(R(z,y) — - R(y,x)), Jz(Vy(R(z,y) — (z = y)) A (3y—R(z,y))) etc. are
syntactically correct formulas. In the second formula, note that the whole formula is within
the scope of the existential quantifier x whereas each of the two subformulas contain the
variable y which is under the scope of different quantifiers. Normal rules of parenthesizing
and scope resolution applies and we do not formally illustrate the scope rules here. The
variable y appearing in the first formula is not under the scope of any quantifier and is
called a free variable. A formula is said to be closed if it does not contain any free
variable. .

Semantics of FOLG(=)

Formulas come to life and gets true or false values when variables in X and the relation R are
interpreted over a graph. Let G = (V, E) be a graph. Define an assignment 7: X — V
to be any function that maps each variable in X to a vertex in G. Denote by Tg (written
simply 7 when the underlying graph is clear from the context) the set of all assignments
to X to V(G). The notation V(G) and E(G) will be used to represent the vertex and edge
sets of G. We will simply write V and F when the underlying graph is clear.



Let ve V and z € X and 7 € T. We define the new assignment 7,—,(y), (substitution
of x with v in T) by the rule: 7,—,(y) = 7(y) for all y € X \ {z} and 7=, (y) = v if y = .
The function 7,—, essentially is identical to 7 for each variable in X except for the variable
x which is re-assigned the new value v. If x,y are distinct variables, it is not hard to see
that order in which substitutions are done to z and y does not matter, and hence we write
Tr—u,y—v for the composition of the substitutions 7,—, and 7,—,.

Let ¢ € F. The notation (G, 7) = ¢ will mean that the formula ¢ is true in the graph
G when the variables in X are assigned values according to 7 (read as G with assignment
T satisfies ¢). Here is the formal definition:

Then for any x,y,z € X, Define:

e (G,7) E R(x,y) if (7(x),7(y)) € E, (G,7) ¥ R(x,y) otherwise.
o (G,7)E=(x=y)if7(z) =7(y), (G,7) ¥ (r = y) otherwise.

7)) E(@VY)if (G,7) | dor (G,7) E, (G,7) F (¢ V) otherwise.

G
G,7) = ¢ if (G, 1) ¥ ¢, (G, T) # ~¢ otherwise.
G
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,7) = (Vzo) if for each v € V, (G, 73=y) | ¢, (G, T) ¥ (Yx¢) otherwise.

(G,7) = (Fzg) if for at least one v € V, (G, Tp=y) E ¢, (G,T) ¥ (Vx¢@) otherwise.
The remaining connectives (A and —) can be derived from the above.

Exercise 1. Let ¢ € F. Show that:
o (G,7) =Vz¢ if and only if (G,7) = ~Jx—¢.
e (G,7) |=3x¢ if and only if (G, 1) | ~Vz—¢.

A careful reflexion on the definition of satisfiability leads to the observation that the
truth of a formula involving only quantified variables does not depend any particular as-
signment of values to the variables:

Lemma 1. Let ¢ € F is closed and let G = (V, E) be a graph, then (G,7) = ¢ for some
7: X — V if and only if (G,7) = ¢ for every 7 : X — V. Hence when ¢ is closed, we
simply write G = ¢ or G ¥ ¢ without referring to any assignment (and use descriptions

like G satisfies/models ¢ or G does not satisfy/model ¢ ).

The notions of of satisfiability, consistency, categoricalness, model, logical consequence
etc. in first order logic mirror the equivalent concepts in propositional logic.

Definition 1. For a given graph G, the notation 7,7 etc. will be used to denote various
assignments to variables in X with values in V(G). ¢, etc. will denote formulas in F.
We will assume here that all formulas are closed

e Define My ={G : G |= ¢}. This is the collection of models for ¢. A closed formula
¢ is said to be satisfiable or consistent if My # 0. Thus ¢ is satisfiable if it has
at least one model.



o For AC Fy, M(A) = NgeaMg. This is the collection of all graphs that are satisfies
every formula in A. A is said to be satisfiable or consistent if M(A) # 0. The
notation G = A will be sometimes used for denoting G € M(A).

o A C F is said to be categorical if whenever G,G' € M(A), G is isomorphic to G'.
That is, either A is inconsistent or there is a unique graph G (upto isomorphism) that

satisfies A.

e ¢ € F is said to be independent of A C F if both AU{¢} and AU{—~¢} are consistent.
That is, there exists graphs G1,Ga such that G1 = AU {¢} and Gy = AU {—¢}

e ¢ € F is said to be a logical consequence of ¢ if every G € My also satisfies
G = 4. In this case we write ¢ = ).

e ) € F is said to be logically equivalent to ¢ € F if for every G € G, G |= ¢ if and
only if G |= 1. That is, Mg = My, In this case, we write ¢ < .

e ¢ € F is said to be a logical consequence of A C F if every G € M(A) satisfies
G = 4. In this case we write A = 1.

o A, A" C F are said to be logically equivalent if M(A) = M(A'). That is, the set of
models for A and A" are precisely the same.

e ¢ € F is a tautology if My contains every graph.

e ¢ is contradictory if My = 0. That is ¢ is always false. Note that ¢ is a tautology
if and only if —¢ is contradictory.

Note that the sets A and A’ in these definitions could contain infinitely many formulas
from F.

Example 2. Let A = {VzR(x,x),VaVy[R(x,y) — R(y,z)|,YaVyVz[R(x,y) A R(y,z) —
R(y, 2)]}. M(A) consists of the graphs corresponding to equivalence relations. If the second
formula is replaced with Va¥Vy(R(x,y) A R(y,x) — (x = y)), the models are the collection of
all graphs of partially ordered sets. Note that these axioms are consistent and non-categorical

(why?).
Exercise 2. Write down an aziom set A whose models are lattices.

Exercise 3. Let A = {VaVyR(z,y),3xIyVz((z = z) V (2 = y))}. Find all non-isomorphic
graphs that satisfy A. Is A categorical?

Exercise 4. Write down an aziom set A such that G € M(A) if and only if G has infinitely
many vertices.

Exercise 5. Write down an axiom set A that describe all graphs that are unions of infinite
two sided chains. (A two sided chain is a graph isomorphic to the following graph G with
V=Zand E={(,i+1):i¢€Z}. (Hnt: You will need all axioms of the previous
exercise).



