Department of Computer Science and Engineering, NIT Calicut

Lecture 3: First Order Logic for Graphs

Prepared by: K. Murali Krishnan

In this lecture, we will study first order logic for graphs (with equality) denoted by FOLG(=). A graph G = (V, E) consists of a finite or countably infinite set of vertices and a collection of (directed) edges $E \subseteq V \times V$. Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** (written $G_1 \cong G_2$) if there is a bijective map $f : V_1 \longrightarrow V_2$ such that $(v, v') \in E_1$ if and only if $(f(v), f(v')) \in E_2$. For instance, $G_1 = (\{1, 2\}, \{(1, 2), (2, 2)\})$ and $G_2 = (\{a, b\}, \{(a, b), (b, b)\})$ are isomorphic via the map f(1) = a, f(2) = b from V_1 to V_2 . Isomorphic graphs are essentially copies of the same graph with a different labelling of the vertices. We do not distinguish between isomorphic graphs and treat them as the same graph.

Syntax of FOLG(=)

The vocabulary of FOLG(=) consists of **variables** $X = \{x, y, z, x_1, y_1, z_1, x_2, y_2, z_2, ...\}$, **logical operators** $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$, the **quantifiers** $\{\forall, \exists\}$ and the two binary relations relations $\{R, =\}$. The set \mathcal{F} of **formulas** in FOLG(=) are defined as follows:

- R(x, y) and (x = y) are in \mathcal{F} whenever $x, y \in X$.
- If $\phi, \psi \in V$, then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$, $(\neg \phi)$, $(\neg \psi)$ are in \mathcal{F} .
- If $x \in X$ and $\phi \in \mathcal{F}$, then $(\forall x\phi)$, $(\forall x\psi)$, $(\exists x\phi)$, $(\exists x\psi)$ are in \mathcal{F} .

Example 1. $\forall x(R(x,y) \to \neg R(y,x)), \exists x(\forall y(R(x,y) \to (x=y)) \land (\exists y \neg R(x,y)))$ etc. are syntactically correct formulas. In the second formula, note that the whole formula is within the **scope** of the existential quantifier $\exists x$ whereas each of the two subformulas contain the variable y which is under the scope of different quantifiers. Normal rules of parenthesizing and scope resolution applies and we do not formally illustrate the scope rules here. The variable y appearing in the first formula is not under the scope of any quantifier and is called a **free variable**. A formula is said to be **closed** if it does not contain any free variable.

Semantics of FOLG(=)

Formulas come to life and gets true or false values when variables in X and the relation R are interpreted over a graph. Let G = (V, E) be a graph. Define an **assignment** $\tau : X \longrightarrow V$ to be any function that maps each variable in X to a vertex in G. Denote by \mathcal{T}_G (written simply \mathcal{T} when the underlying graph is clear from the context) the set of all assignments to X to V(G). The notation V(G) and E(G) will be used to represent the vertex and edge sets of G. We will simply write V and E when the underlying graph is clear. Let $v \in V$ and $x \in X$ and $\tau \in \mathcal{T}$. We define the new assignment $\tau_{x=v}(y)$, (substitution of x with v in τ) by the rule: $\tau_{x=v}(y) = \tau(y)$ for all $y \in X \setminus \{x\}$ and $\tau_{x=v}(y) = v$ if y = x. The function $\tau_{x=v}$ essentially is identical to τ for each variable in X except for the variable x which is re-assigned the new value v. If x, y are distinct variables, it is not hard to see that order in which substitutions are done to x and y does not matter, and hence we write $\tau_{x=u,y=v}$ for the composition of the substitutions $\tau_{x=u}$ and $\tau_{y=v}$.

Let $\phi \in \mathcal{F}$. The notation $(G, \tau) \models \phi$ will mean that the formula ϕ is true in the graph G when the variables in X are assigned values according to τ (read as G with assignment τ satisfies ϕ). Here is the formal definition:

Then for any $x, y, z \in X$, Define:

- $(G,\tau) \models R(x,y)$ if $(\tau(x),\tau(y)) \in E, (G,\tau) \nvDash R(x,y)$ otherwise.
- $(G, \tau) \models (x = y)$ if $\tau(x) = \tau(y), (G, \tau) \nvDash (x = y)$ otherwise.
- $(G,\tau) \models (\phi \lor \psi)$ if $(G,\tau) \models \phi$ or $(G,\tau) \models \psi, (G,\tau) \nvDash (\phi \lor \psi)$ otherwise.
- $(G,\tau) \models \neg \phi$ if $(G,\tau) \nvDash \phi$, $(G,\tau) \nvDash \neg \phi$ otherwise.
- $(G,\tau) \models (\forall x\phi)$ if for each $v \in V$, $(G,\tau_{x=v}) \models \phi$, $(G,\tau) \nvDash (\forall x\phi)$ otherwise.
- $(G,\tau) \models (\exists x\phi)$ if for at least one $v \in V$, $(G,\tau_{x=v}) \models \phi$, $(G,\tau) \nvDash (\forall x\phi)$ otherwise.

The remaining connectives (\land and \rightarrow) can be derived from the above.

Exercise 1. Let $\phi \in \mathcal{F}$. Show that:

- $(G, \tau) \models \forall x \phi \text{ if and only if } (G, \tau) \models \neg \exists x \neg \phi.$
- $(G,\tau) \models \exists x \phi \text{ if and only if } (G,\tau) \models \neg \forall x \neg \phi.$

A careful reflexion on the definition of satisfiability leads to the observation that the truth of a formula involving only quantified variables does not depend any particular assignment of values to the variables:

Lemma 1. Let $\phi \in \mathcal{F}$ is closed and let G = (V, E) be a graph, then $(G, \tau) \models \phi$ for some $\tau : X \longrightarrow V$ if and only if $(G, \tau) \models \phi$ for every $\tau : X \longrightarrow V$. Hence when ϕ is closed, we simply write $G \models \phi$ or $G \nvDash \phi$ without referring to any assignment (and use descriptions like G satisfies/models ϕ or G does not satisfy/model ϕ).

The notions of of satisfiability, consistency, categoricalness, model, logical consequence etc. in first order logic mirror the equivalent concepts in propositional logic.

Definition 1. For a given graph G, the notation τ, τ' etc. will be used to denote various assignments to variables in X with values in V(G). ϕ, ψ etc. will denote formulas in \mathcal{F} . We will assume here that all formulas are closed

• Define $\mathcal{M}_{\phi} = \{G : G \models \phi\}$. This is the collection of models for ϕ . A closed formula ϕ is said to be satisfiable or consistent if $\mathcal{M}_{\phi} \neq \emptyset$. Thus ϕ is satisfiable if it has at least one model.

- For $\mathcal{A} \subseteq \mathcal{F}_V$, $\mathcal{M}(\mathcal{A}) = \bigcap_{\phi \in \mathcal{A}} \mathcal{M}_{\phi}$. This is the collection of all graphs that are satisfies every formula in \mathcal{A} . \mathcal{A} is said to be satisfiable or consistent if $\mathcal{M}(\mathcal{A}) \neq \emptyset$. The notation $G \models \mathcal{A}$ will be sometimes used for denoting $G \in \mathcal{M}(\mathcal{A})$.
- $\mathcal{A} \subseteq \mathcal{F}$ is said to be **categorical** if whenever $G, G' \in \mathcal{M}(\mathcal{A})$, G is isomorphic to G'. That is, either \mathcal{A} is inconsistent or there is a unique graph G (upto isomorphism) that satisfies \mathcal{A} .
- $\phi \in \mathcal{F}$ is said to be independent of $\mathcal{A} \subseteq \mathcal{F}$ if both $\mathcal{A} \cup \{\phi\}$ and $\mathcal{A} \cup \{\neg\phi\}$ are consistent. That is, there exists graphs G_1, G_2 such that $G_1 \models \mathcal{A} \cup \{\phi\}$ and $G_2 \models \mathcal{A} \cup \{\neg\phi\}$
- $\psi \in \mathcal{F}$ is said to be a logical consequence of ϕ if every $G \in \mathcal{M}_{\phi}$ also satisfies $G \models \psi$. In this case we write $\phi \Rightarrow \psi$.
- $\psi \in \mathcal{F}$ is said to be logically equivalent to $\phi \in \mathcal{F}$ if for every $G \in \mathcal{G}$, $G \models \phi$ if and only if $G \models \psi$. That is, $\mathcal{M}_{\phi} = \mathcal{M}_{\psi}$. In this case, we write $\phi \Leftrightarrow \psi$.
- $\phi \in \mathcal{F}$ is said to be a logical consequence of $\mathcal{A} \subseteq \mathcal{F}$ if every $G \in \mathcal{M}(\mathcal{A})$ satisfies $G \models \psi$. In this case we write $\mathcal{A} \models \psi$.
- A, A' ⊆ F are said to be logically equivalent if M(A) = M(A'). That is, the set of models for A and A' are precisely the same.
- $\phi \in \mathcal{F}$ is a **tautology** if \mathcal{M}_{ϕ} contains every graph.
- ϕ is contradictory if $\mathcal{M}_{\phi} = \emptyset$. That is ϕ is always false. Note that ϕ is a tautology if and only if $\neg \phi$ is contradictory.

Note that the sets \mathcal{A} and \mathcal{A}' in these definitions could contain infinitely many formulas from \mathcal{F} .

Example 2. Let $\mathcal{A} = \{\forall x R(x, x), \forall x \forall y [R(x, y) \rightarrow R(y, x)], \forall x \forall y \forall z [R(x, y) \land R(y, z) \rightarrow R(y, z)]\}$. $\mathcal{M}(\mathcal{A})$ consists of the graphs corresponding to equivalence relations. If the second formula is replaced with $\forall x \forall y (R(x, y) \land R(y, x) \rightarrow (x = y))$, the models are the collection of all graphs of partially ordered sets. Note that these axioms are consistent and non-categorical (why?).

Exercise 2. Write down an axiom set \mathcal{A} whose models are lattices.

Exercise 3. Let $\mathcal{A} = \{ \forall x \forall y R(x, y), \exists x \exists y \forall z ((z = x) \lor (z = y)) \}$. Find all non-isomorphic graphs that satisfy \mathcal{A} . Is \mathcal{A} categorical?

Exercise 4. Write down an axiom set \mathcal{A} such that $G \in \mathcal{M}(\mathcal{A})$ if and only if G has infinitely many vertices.

Exercise 5. Write down an axiom set \mathcal{A} that describe all graphs that are unions of infinite two sided chains. (A two sided chain is a graph isomorphic to the following graph G with $V = \mathbf{Z}$ and $E = \{(i, i + 1) : i \in \mathbf{Z}\}$. (Hint: You will need all axioms of the previous exercise).

3 - 3