Department of Computer Science and Engineering, NIT Calicut
 Lecture 3: First Order Logic for Graphs
 Prepared by: K. Murali Krishnan

In this lecture, we will study first order logic for graphs (with equality) denoted by $F O L G(=)$. A graph $G=(V, E)$ consists of a finite or countably infinite set of vertices and a collection of (directed) edges $E \subseteq V \times V$. Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic (written $G_{1} \cong G_{2}$) if there is a bijective map $f: V_{1} \longrightarrow V_{2}$ such that $\left(v, v^{\prime}\right) \in E_{1}$ if and only if $\left(f(v), f\left(v^{\prime}\right)\right) \in E_{2}$. For instance, $G_{1}=(\{1,2\},\{(1,2),(2,2)\})$ and $G_{2}=(\{a, b\},\{(a, b),(b, b)\})$ are isomorphic via the map $f(1)=a, f(2)=b$ from V_{1} to V_{2}. Isomorphic graphs are essentially copies of the same graph with a different labelling of the vertices. We do not distinguish between isomorphic graphs and treat them as the same graph.

Syntax of $F O L G(=)$

The vocabulary of $F O L G(=)$ consists of variables $X=\left\{x, y, z, x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots\right\}$, logical operators $\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow\}$, the quantifiers $\{\forall, \exists\}$ and the two binary relations relations $\{R,=\}$. The set \mathcal{F} of formulas in $\operatorname{FOLG}(=)$ are defined as follows:

- $R(x, y)$ and $(x=y)$ are in \mathcal{F} whenever $x, y \in X$.
- If $\phi, \psi \in V$, then $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi),(\phi \leftrightarrow \psi),(\neg \phi),(\neg \psi)$ are in \mathcal{F}.
- If $x \in X$ and $\phi \in \mathcal{F}$, then $(\forall x \phi),(\forall x \psi),(\exists x \phi),(\exists x \psi)$ are in \mathcal{F}.

Example 1. $\forall x(R(x, y) \rightarrow \neg R(y, x)), \exists x(\forall y(R(x, y) \rightarrow(x=y)) \wedge(\exists y \neg R(x, y)))$ etc. are syntactically correct formulas. In the second formula, note that the whole formula is within the scope of the existential quantifier $\exists x$ whereas each of the two subformulas contain the variable y which is under the scope of different quantifiers. Normal rules of parenthesizing and scope resolution applies and we do not formally illustrate the scope rules here. The variable y appearing in the first formula is not under the scope of any quantifier and is called a free variable. A formula is said to be closed if it does not contain any free variable. .

Semantics of $F O L G(=)$

Formulas come to life and gets true or false values when variables in X and the relation R are interpreted over a graph. Let $G=(V, E)$ be a graph. Define an assignment $\tau: X \longrightarrow V$ to be any function that maps each variable in X to a vertex in G. Denote by \mathcal{T}_{G} (written simply \mathcal{T} when the underlying graph is clear from the context) the set of all assignments to X to $V(G)$. The notation $V(G)$ and $E(G)$ will be used to represent the vertex and edge sets of G. We will simply write V and E when the underlying graph is clear.

Let $v \in V$ and $x \in X$ and $\tau \in \mathcal{T}$. We define the new assignment $\tau_{x=v}(y)$, (substitution of x with v in τ) by the rule: $\tau_{x=v}(y)=\tau(y)$ for all $y \in X \backslash\{x\}$ and $\tau_{x=v}(y)=v$ if $y=x$. The function $\tau_{x=v}$ essentially is identical to τ for each variable in X except for the variable x which is re-assigned the new value v. If x, y are distinct variables, it is not hard to see that order in which substitutions are done to x and y does not matter, and hence we write $\tau_{x=u, y=v}$ for the composition of the substitutions $\tau_{x=u}$ and $\tau_{y=v}$.

Let $\phi \in \mathcal{F}$. The notation $(G, \tau) \models \phi$ will mean that the formula ϕ is true in the graph G when the variables in X are assigned values according to τ (read as G with assignment τ satisfies ϕ). Here is the formal definition:

Then for any $x, y, z \in X$, Define:

- $(G, \tau) \vDash R(x, y)$ if $(\tau(x), \tau(y)) \in E,(G, \tau) \not \models R(x, y)$ otherwise.
- $(G, \tau) \neq(x=y)$ if $\tau(x)=\tau(y),(G, \tau) \not \models(x=y)$ otherwise.
- $(G, \tau) \models(\phi \vee \psi)$ if $(G, \tau) \models \phi$ or $(G, \tau) \models \psi,(G, \tau) \not \models(\phi \vee \psi)$ otherwise.
- $(G, \tau) \models \neg \phi$ if $(G, \tau) \not \models \phi,(G, \tau) \not \models \neg \phi$ otherwise.
- $(G, \tau) \models(\forall x \phi)$ if for each $v \in V,\left(G, \tau_{x=v}\right) \models \phi,(G, \tau) \not \models(\forall x \phi)$ otherwise.
- $(G, \tau) \models(\exists x \phi)$ if for at least one $v \in V,\left(G, \tau_{x=v}\right) \models \phi,(G, \tau) \not \models(\forall x \phi)$ otherwise.

The remaining connectives $(\wedge$ and \rightarrow) can be derived from the above.
Exercise 1. Let $\phi \in \mathcal{F}$. Show that:

- $(G, \tau) \models \forall x \phi$ if and only if $(G, \tau) \models \neg \exists x \neg \phi$.
- $(G, \tau) \vDash \exists x \phi$ if and only if $(G, \tau) \vDash \neg \forall x \neg \phi$.

A careful reflexion on the definition of satisfiability leads to the observation that the truth of a formula involving only quantified variables does not depend any particular assignment of values to the variables:

Lemma 1. Let $\phi \in \mathcal{F}$ is closed and let $G=(V, E)$ be a graph, then $(G, \tau) \models \phi$ for some $\tau: X \longrightarrow V$ if and only if $(G, \tau) \models \phi$ for every $\tau: X \longrightarrow V$. Hence when ϕ is closed, we simply write $G \models \phi$ or $G \not \models \phi$ without referring to any assignment (and use descriptions like G satisfies/models ϕ or G does not satisfy/model ϕ).

The notions of of satisfiability, consistency, categoricalness, model, logical consequence etc. in first order logic mirror the equivalent concepts in propositional logic.

Definition 1. For a given graph G, the notation τ, τ^{\prime} etc. will be used to denote various assignments to variables in X with values in $V(G) . \phi, \psi$ etc. will denote formulas in \mathcal{F}. We will assume here that all formulas are closed

- Define $\mathcal{M}_{\phi}=\{G: G \models \phi\}$. This is the collection of models for ϕ. A closed formula ϕ is said to be satisfiable or consistent if $\mathcal{M}_{\phi} \neq \emptyset$. Thus ϕ is satisfiable if it has at least one model.
- For $\mathcal{A} \subseteq \mathcal{F}_{V}, \mathcal{M}(\mathcal{A})=\bigcap_{\phi \in \mathcal{A}} \mathcal{M}_{\phi}$. This is the collection of all graphs that are satisfies every formula in \mathcal{A}. \mathcal{A} is said to be satisfiable or consistent if $\mathcal{M}(\mathcal{A}) \neq \emptyset$. The notation $G \models \mathcal{A}$ will be sometimes used for denoting $G \in \mathcal{M}(\mathcal{A})$.
- $\mathcal{A} \subseteq \mathcal{F}$ is said to be categorical if whenever $G, G^{\prime} \in \mathcal{M}(\mathcal{A}), G$ is isomorphic to G^{\prime}. That is, either \mathcal{A} is inconsistent or there is a unique graph G (upto isomorphism) that satisfies \mathcal{A}.
- $\phi \in \mathcal{F}$ is said to be independent of $\mathcal{A} \subseteq \mathcal{F}$ if both $\mathcal{A} \cup\{\phi\}$ and $\mathcal{A} \cup\{\neg \phi\}$ are consistent. That is, there exists graphs G_{1}, G_{2} such that $G_{1} \models \mathcal{A} \cup\{\phi\}$ and $G_{2} \models \mathcal{A} \cup\{\neg \phi\}$
- $\psi \in \mathcal{F}$ is said to be a logical consequence of ϕ if every $G \in \mathcal{M}_{\phi}$ also satisfies $G \models \psi$. In this case we write $\phi \Rightarrow \psi$.
- $\psi \in \mathcal{F}$ is said to be logically equivalent to $\phi \in \mathcal{F}$ if for every $G \in \mathcal{G}, G \models \phi$ if and only if $G \models \psi$. That is, $\mathcal{M}_{\phi}=\mathcal{M}_{\psi}$. In this case, we write $\phi \Leftrightarrow \psi$.
- $\phi \in \mathcal{F}$ is said to be a logical consequence of $\mathcal{A} \subseteq \mathcal{F}$ if every $G \in \mathcal{M}(\mathcal{A})$ satisfies $G \models \psi$. In this case we write $\mathcal{A} \models \psi$.
- $\mathcal{A}, \mathcal{A}^{\prime} \subseteq \mathcal{F}$ are said to be logically equivalent if $\mathcal{M}(\mathcal{A})=\mathcal{M}\left(\mathcal{A}^{\prime}\right)$. That is, the set of models for \mathcal{A} and \mathcal{A}^{\prime} are precisely the same.
- $\phi \in \mathcal{F}$ is a tautology if \mathcal{M}_{ϕ} contains every graph.
- ϕ is contradictory if $\mathcal{M}_{\phi}=\emptyset$. That is ϕ is always false. Note that ϕ is a tautology if and only if $\neg \phi$ is contradictory.

Note that the sets \mathcal{A} and \mathcal{A}^{\prime} in these definitions could contain infinitely many formulas from \mathcal{F}.

Example 2. Let $\mathcal{A}=\{\forall x R(x, x), \forall x \forall y[R(x, y) \rightarrow R(y, x)], \forall x \forall y \forall z[R(x, y) \wedge R(y, z) \rightarrow$ $R(y, z)]\} . \mathcal{M}(\mathcal{A})$ consists of the graphs corresponding to equivalence relations. If the second formula is replaced with $\forall x \forall y(R(x, y) \wedge R(y, x) \rightarrow(x=y))$, the models are the collection of all graphs of partially ordered sets. Note that these axioms are consistent and non-categorical (why?).

Exercise 2. Write down an axiom set \mathcal{A} whose models are lattices.
Exercise 3. Let $\mathcal{A}=\{\forall x \forall y R(x, y), \exists x \exists y \forall z((z=x) \vee(z=y))\}$. Find all non-isomorphic graphs that satisfy \mathcal{A}. Is \mathcal{A} categorical?

Exercise 4. Write down an axiom set \mathcal{A} such that $G \in \mathcal{M}(\mathcal{A})$ if and only if G has infinitely many vertices.

Exercise 5. Write down an axiom set \mathcal{A} that describe all graphs that are unions of infinite two sided chains. (A two sided chain is a graph isomorphic to the following graph G with $V=\mathbf{Z}$ and $E=\{(i, i+1): i \in \mathbf{Z}\}$. (Hint: You will need all axioms of the previous exercise).

