Department of Computer Science and Engineering, NIT Calicut
 Lecture 3: Partially Ordered Sets and Lattices

K. Murali Krishnan

A relation R defined on a non-empty set S is antisymmetric if for all $x, y \in S, x=y$ holds whenever $x R y, y R x$ holds. A set S together with a relation R defines a partial order (written as a pair (S, R)) if R is reflexive, antisymmetric and transitive. (S, R) is a chain or a linear order or a total order if additionally R satisfies the property that for all $x, y \in S$, either $x R y$ or $y R x$. We will use $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$ and \mathbf{R} to denote the set of natural numbers (zero included), integers, rational numbers and real numbers.

Example 1. The following are examples for partial orders.

1. Let $S \in\{\mathbf{N}, \mathbf{Q}, \mathbf{R}, \mathbf{Z}\}$ and $R=\{(a, b): a \leq b\}$, where \leq denotes the standard ordering of numbers.
2. Let $S=\mathbf{N}$. Define $(a, b) \in R$ if $\exists k \in \mathbf{Z}$ such that $b=a k$, the divisibility relation.
3. Let T be any set. Let $S=2^{T}$. Define $R=\{(A, B): A, B \in S, A \subseteq B\}$.
4. Let $S=\{0,1\}^{n}$, the set of n bit binary vectors. Define $\left(x_{1}, x_{2}, \ldots, x_{n}\right) R\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if $x_{i} \leq y_{i}$ for each i.
5. Let $S=\mathbf{R} \times \mathbf{R}$. Define $(x, y) R\left(x^{\prime}, y^{\prime}\right)$ if $x \leq x^{\prime}$ and $y \leq y^{\prime}$.
6. Let S be the set of all functions from \mathbf{R} to \mathbf{R}. For $f, g \in S$, define $(f, g) \in R$ if $f(x) \leq g(x)$ for each $x \in \mathbf{R}$.

Exercise 1. Which among the preceding examples are chains?
We use the notation $\leq($ instead of $R)$ to denote an arbitrary partial order defined over a non-empty set S. Let (S, \leq) be a partial order. Let $\emptyset \neq A \subseteq S$. The upper bound of A is defined by $\mathrm{UB}(A)=\{x \in S: a \leq x$ for all $a \in A\}$. Similarly, the lower bound of A is defined by $\operatorname{LB}(A)=\{x \in S: x \leq a$ for all $a \in A\}$. An element $a_{0} \in A$ is a minimal element in A if for all $a \in A-\left\{a_{0}\right\}, a \nless a_{0}$. Thus there is no other element in A ordered strictly below a_{0}. Similarly, a_{0} is a maximal element of A if for all $a \in A-\left\{a_{0}\right\}, a_{0} \notin a$. A set A may fail to have minimal or maximal elements. $a_{0} \in A$ is a least element (or minimum element) in A if $a_{0} \leq a$ for all $a \in A . a_{0} \in A$ is the greatest element (or maximum element) in A if for all $a \in A, a \leq a_{0}$. The next exercise shows that if a set has a minimum (maximum)element, it must be unique.

Exercise 2. Let (S, \leq) be a partial order let A be a non-empty subset.

1. If a, a^{\prime} are two minimum (or maximum) elements in A then $a=a^{\prime}$. (Hence, we say a is the minimum (or maximum) element in A.
2. If a is the minimum element in A, then a is the unique minimal element in A.
3. If A has a maximum element a, then a is also the minimum element of $U B(A)$.

Let (S, \leq) be a partial order. Let $\emptyset \neq A \subseteq S . s \in S$ is the least upper bound (or supremum) of A (written $s=\sup (A))$ if s is the minimum element in $\mathrm{UB}(A) \cdot \sup (A)$ is undefined if $\mathrm{UB}(A)$ is empty or has no minimum element. Similarly, when $\mathrm{LB}(A)$ is non-empty and has a maximum element, then the element is called the greatest lower bound (or infimum) of A, (written $\inf (A))$.

Before discussing the next example, we note the following property of real numbers.
Fact 1. Let $a, b \in \mathbf{R}$ such that $a<b$. Then there exists a rational number q such that $a<q<b$.

Example 2. The set $A=\left\{x: x^{2} \leq 2\right\}$ in (\mathbf{R}, \leq) has a unique maximal element $\sqrt{2}$ (which therefore is the maximum element) and unique minimal element $-\sqrt{2}$ (which is the minimum element). Further $\inf (A)=-\sqrt{2}$ and $\sup (A)=\sqrt{2}$.

Exercise 3. Show that in (\mathbf{Q}, \leq), the set $A=\left\{x: x^{2} \leq 2\right\}$ has no supremum, infimum, maximum or minimum. (Hint: Use the fact stated earlier.)

Exercise 4. In the partial order (S, \leq), let $\emptyset \neq A \subseteq S$ be given. In each of cases below, find $U B(A), L B(A), \sup (A), \inf (A)$, and all minimal and maximal elements of A, whenever they exist.

1. $S=\mathbf{R} \times \mathbf{R}$. Let \leq be defined as earlier. Let $A=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
2. In the same partial order as above, $A=\{(x, y:|x|+|y|=1\}$
3. In $(\mathbf{N}, \mid), \mid$ is the divisibility relation, let a, b be positive integers. $A=\{x \in \mathbf{N}: x=$ $a i+b j$ for some $i, j \in \mathbf{Z}\}$.
4. In $\left(\{0,1\}^{n}, \leq\right), A=\left\{e_{i}:\right.$ where e_{i} is the vector with 1 in the $i^{\text {th }}$ position and 0 everywhere else, $1 \leq i \leq n\}$

A partial order (S, \leq) is a lattice if for every finite non empty subset A of $S, \sup (A)$ and $\inf (A)$ exists. A lattice is a complete lattice if for every non-empty subset A of S (finite or infinite) $\sup (A)$ and $\inf (A)$ exists.

Let (S, \leq) be a lattice. Let $\emptyset \neq A \subseteq S$. A is a bounded lattice if both $\mathrm{UB}(A)$ and $\mathrm{LB}(A)$ are non-empty. The lattice (S, \leq) is bounded if S is bounded. It is not hard to see that a lattice is bounded if and only if $\sup (S)$ and $\inf (S)$ exists (prove!). In a bounded lattice, the symbols \top and \perp are sometimes used to denote $\sup (S)$ and $\inf (S)$. In a bounded lattice \top must be the maximum element and \perp must be the minimum element (why?). It is also clear that any complete lattice must be bounded (why?).

Exercise 5. Show that the lattices $(\mathbf{R}, \leq),(\mathbf{Q}, \leq)$ and (\mathbf{N}, \leq) and (\mathbf{N}, \mid) are not complete lattices

Sometimes the reason for the "incompleteness" of a lattice is that \top and \perp does not exist. In such cases by artificially adding \top, \perp, we may be able to make the lattice complete.

Definition 1. The extended real number, rational number and natural number system are defined by $\overline{\mathbf{R}}=\mathbf{R} \cup\{ \pm \infty\}, \overline{\mathbf{Q}}=\mathbf{Q} \cup\{ \pm \infty\}$ and $\overline{\mathbf{N}}=\mathbf{N} \cup\{\infty\}$, where $\pm \infty$ satisfies $-\infty \leq x$ for all x and $+\infty$ satisfies $x \leq+\infty$ for all x in the respective sets. (we may write ∞ for $+\infty$ hereafter.)

Fact 2. Let A be any bounded subset of (\mathbf{R}, \leq). Then $\sup (A)$ and $\inf (A)$ exists.
Exercise 6. Which among the lattices $(\overline{\mathbf{R}}, \leq),(\overline{\mathbf{Q}}, \leq),(\overline{\mathbf{N}}, \leq),(\overline{\mathbf{N}}, \mid)$ are complete? (Assume the Fact above to reason about $\overline{\mathbf{R}})$.

Let (S, \leq) be a lattice. Let $a, b \in S$. The notation $a \vee b$ and $a \wedge b$ will be used to denote $\sup \{a, b\}$ and $\inf \{a, b\}$ respectively. The following exercises develop some properties of \vee and \wedge.

Observation 1. The following properties are immediate from the definition:

1. $a \leq b$ if only if $a \wedge b=a$ if and only if $a \vee b=b$.
2. i) $a \wedge b \leq a$. ii) $a \leq a \vee b$

Exercise 7. Let (S, \leq) be a lattice (not necessarily complete). Let $a, b, c \in S$. Prove the following. (The observations above will prove handy).

1. i) $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ ii) $(a \vee b) \vee c=a \vee(b \vee c)$

Proof. Here is a proof for (i). Let $x=a \wedge b$ and $y=b \wedge c$. Required to prove that $x \wedge c=a \wedge y$. Let $t=x \wedge c$. Then $t \leq c$ and $t \leq x$ (by definition of \wedge). By the previous observation, from $t \leq x$ we can conclude that $t \leq a$ and $t \leq b$. From $t \leq b$ and $t \leq c$ we conclude $t \leq y$ (by the definition of \wedge.) Now, from $t \leq a$ and $t \leq y$ we conclude $t \leq a \wedge y$. This proves $x \wedge c \leq a \wedge y$. The other direction is proved Similarly.
2. i). $a \wedge b=b \wedge a$ ii). $a \vee b=b \vee a$.
3. i) $a \wedge(a \vee b)=a$ ii). $a \vee(a \wedge b)=a$.
4. Give examples for lattices where i) $a \vee(b \wedge c) \neq(a \vee b) \wedge(a \vee c)$ and ii) $a \wedge(b \vee c) \neq$ $(a \wedge b) \vee(a \wedge c)$. (Hint: Look for small lattices where this fails to hold. Lattices were the above equalities fail to hold are called non-distributive lattices.

