Department of Computer Science and Engineering, NIT Calicut

Lecture 4: Countable and Uncountable Sets

K. Murali Krishnan

If S is a finite set, the **cardinality** of S denoted by |S| denotes the number of elements in S. In this lecture we extend the notion of cardinality to infinite sets. **N**, **Q** and **R** will be used to denote the set of natural numbers, rational numbers and real numbers.

Definition 1. Let S and T be arbitrary sets. S and T are said to have the same cardinality (written |S| = |T|) if there exists a bijection from S to T. We say $|S| \le |T|$ if there exists an injective map from S to T.

The following are some trivial consequences of the definition.

Exercise 1. Let S, T, U be arbitrary sets.

- 1. If |S| = |T|, then both $|S| \le |T|$ and $|T| \le |S|$ holds.
- 2. If |S| = |T| and |T| = |U| then |S| = |U|.
- 3. If $|S| \le |T|$ and $|T| \le |U|$ then $|S| \le |U|$.

Given two arbitrary sets S and T, it is unclear whether if $|S| \leq |T|$ and $|T| \leq |S|$ holds true then |S| = |T| is true or not. This, in fact, is non-trivial to prove. It is also non-trivial to prove that one among the relations $|S| \leq |T|$ or $|T| \leq |S|$ must be true.

Intuitively, two sets of the same cardinality have the "same number of elements". The following examples demonstrate some counter-intuitive properties of infinite sets.

Exercise 2. Prove the following:

- 1. The set $2\mathbf{N} = \{0, 2, 4, \ldots\}$ satisfies $|2\mathbf{N}| = |\mathbf{N}|$.
- 2. There is an injective map from any set S to its power set 2^S . Hence $|S| \leq |2^S|$.
- 3. The map $f : \mathbf{N} \times \mathbf{N} \mapsto \mathbf{N}$ defined by $f(x, y) = 2^x(2y + 1) 1$ is a bijection. Hence, $|\mathbf{N} \times \mathbf{N}| = |\mathbf{N}|$. Try to find a different bijection.
- 4. Let [a, b] and [c, d] be distinct intervals on the real number for some a < b and c < d. Show that |[a, b]| = |[c, d]|. Show that the map $f(x) = c + (\frac{d-c}{b-a})x$ is a bijection between the two intervals. Try to find a different bijection.
- 5. $|\mathbf{Q}| \leq |\mathbf{N} \times \mathbf{N}|$. Use this to conclude that both $|\mathbf{Q}| \leq |\mathbf{N}|$ and $|\mathbf{N}| \leq |\mathbf{Q}|$ holds.

Definition 2. A set S is countably infinite if $|\mathbf{N}| = |S|$; that is, if there exists a bijection from S to the set of natural numbers. A set is countable if it is either finite or countably infinite. A set is uncountably infinite or uncountable if it is not countable.

Exercise 3. Show that if S, T are two disjoint countable sets then $S \cup T$ is countably infinite.

Theorem 1. Let S_0, S_1, \ldots are disjoint countably infinite sets, then their union is countably infinite.

Proof. Without loss of generality, we may write $S_0 = \{s_0(0), s_0(1), s_0(2), \ldots\},\$

 $S_1 = \{s_1(0), s_1(1), s_1(2) \dots\}, S_2 = \{s_2(0), s_2(1), s_2(2) \dots\}$ etc. (why?) Define the following function $f : \mathbf{N} \mapsto \bigcup_{i \in \mathbf{N}} S_i$ as follows:

 $f(0) = s_0(0), f(1) = s_0(1), f(2) = s_1(0), f(3) = s_0(2), f(4) = s_1(1), f(5) = s_2(0), f(6) = s_0(3), f(7) = s_1(2), f(8) = s_2(1), f(9) = s_3(0) \dots$ It is clear that for each $s_i(j)$ there exists a unique $n \in \mathbb{N}$ such that $f(n) = s_i(j)$. Conversely, for each $n \in \mathbb{N}$, there exists unique i, j such that $f(n) = s_i(j)$.

Exercise 4. In the above proof, find an explicit closed form formula for the function $f^{-1}(s_i(j))$

Exercise 5. Show that the collection of all finite subsets of N is countably infinite.

The next theorem shows that uncountable sets exist. The proof technique used is called *Diagonal argument*

Theorem 2. Let S be any non-empty set. There is no bijection from S to its power set, 2^S .

Proof. Assume that there exists a bijection from S to 2^S . Then, for each $x \in S$, f(x) is a subset of S. Consider the subset T of S defined as: $T = \{x : x \notin f(x)\}$. As f is surjective, there must be some $x \in S$ such that T = f(x). But this leads to the following contradiction: $x \in f(x)$ if and only if $x \in T$ if and only if $x \notin f(x)$ (the first equivalence follows by the assumption that f(x) = T, the second by the definition of T).

A consequence of the above theorem is that $2^{\mathbf{N}}$ is not countable.

Exercise 6. Show that the collection of all infinite subsets of \mathbf{N} is uncountable. (Hint: Use the previous exercise)

Exercise 7. Let $S_0, S_1, S_2 \dots$ be a sequence of subsets of **N**. Define a set T such that $T \neq S_i$ for any $i \in \mathbf{N}$. Use this observation to give a direct proof that $2^{\mathbf{N}}$ is uncountable.

Exercise 8. Consider any collection $F = \{f_0, f_1, f_2, ...\}$ of functions from N to N. Construct a function $g : \mathbf{N} \mapsto \mathbf{N}$ such that $g \neq f_i$ for every $i \in \mathbf{N}$. The existence of such g shows that any countable collection of functions from N to N is incomplete (in the sense we can find a function from N to N that is not present in the list). Hence argue that the set of all function from N to N is uncountable.

It is easy to see that the set of all functions from \mathbf{N} to $\{0,1\}$ is uncountable. This gives another proof that $2^{\mathbf{N}}$ is uncountable (why?).

Our next objective is to show that the number of points in the real line (0, 1] is uncountably infinite. Consider the interval on the real line (0, 1]. Each real number x greater than 0 and less than 1 has a unique infinite **binary** expansion of the form $x = 0.x_0x_1x_2x_3...$ (Rational numbers will have two expansions - one terminating and one non-terminating. Here we take the infinite one. For example, if $x = \frac{1}{2}$, x = 0.1 = 0.011111... and the latter expansion is taken). **Exercise 9.** Let $x^0 = 0.x_1^0 x_2^0 x_3^0 \dots$, $x^1 = 0.x_0^1 x_1^1 x_2^1 \dots$, $x^3 = 0.x_0^3 x_1^3 x_2^3 \dots$ be a any collection of infinite binary expansion sequences. Construct a new expansion sequence $y = 0.y_0 y_1 y_2 \dots$ such that $y_i \neq x_i^i$ for any $i \in \mathbf{N}$. Use this to conclude that the set of all non-terminating binary expansions is uncountably infinite.

Exercise 10. Let S be any infinite subset of natural numbers. We can associate an **non-terminating** binary expansion x^S associated with S as follows: $x^S = x_0^S, x_1^S, x_2^S, \ldots$ where $x_i^S = 1$ if $i \in S$ and $x_i^S = 0$ if $i \notin S$. Show that this association is a one one mapping from the set of all infinite subsets of **N** to the set of all non-terminating binary expansions. Argue that the set of all non-terminating binary expansions have the same cardinality as the collection of all infinite subsets of **N**.

Exercise 11. Show that the set of all finite subsets of subsets of \mathbf{N} has the same cardinality as the set of all finite binary expansions. Hence argue that the set of all binary expansions have the same cardinality as $2^{\mathbf{N}}$.

Exercise 12. Let S, T be disjoint sets with S countable and T uncountable. Show that $S \cup T$ is uncountable.

The following property assumed about sets, is called the **axiom of choice**.

Fact 1 (Axiom of Choice). Let I be any non-empty set. Let $\{A_i\}_I$ be an arbitrary collection of non-empty sets. Then $\prod_{i\in I} A_i \neq \emptyset$. Another way of stating the axiom is to say that we can assume that there exists a function that for each $i \in I$ gives a value in A_i , i.e., $\exists a: I \mapsto \bigcup_{i\in I} A_i$ such that $a(i) \in A_i$.

Theorem 3. Let S, T be arbitrary non-empty sets. There exists an injective function from S to T if and only if there exists a surjective function from T to S.

Proof. Let $f: S \mapsto T$ be injective. Let $s \in S$ be chosen arbitrarily. Define $g: T \mapsto S$ as $g(t) = f^{-1}(t)$ if $t \in f(S)$ and g(t) = s if $t \in T - f(S)$ is a surjective map from T to S. The converse uses axiom of choice. Let g be a surjective map from T to S. The collection of inverse images g for each point in S, $\{g^{-1}(s)\}_{s \in S}$ is a partition of T. By axiom of choice, there exists a function $f: S \mapsto T$ with $f(s) \in g^{-1}(s)$ for each $s \in S$. This function is injective (why?).