Department of Computer Science and Engineering, NIT Calicut

Lecture 4: Countable and Uncountable Sets

K. Murali Krishnan

If S is a finite set, the cardinality of S denoted by $|S|$ denotes the number of elements in S. In this lecture we extend the notion of cardinality to infinite sets. \mathbf{N}, \mathbf{Q} and \mathbf{R} will be used to denote the set of natural numbers, rational numbers and real numbers.

Definition 1. Let S and T be arbitrary sets. S and T are said to have the same cardinality (written $|S|=|T|$) if there exists a bijection from S to T. We say $|S| \leq|T|$ if there exists an injective map from S to T.

The following are some trivial consequences of the definition.
Exercise 1. Let S, T, U be arbitrary sets.

1. If $|S|=|T|$, then both $|S| \leq|T|$ and $|T| \leq|S|$ holds.
2. If $|S|=|T|$ and $|T|=|U|$ then $|S|=|U|$.
3. If $|S| \leq|T|$ and $|T| \leq|U|$ then $|S| \leq|U|$.

Given two arbitrary sets S and T, it is unclear whether if $|S| \leq|T|$ and $|T| \leq|S|$ holds true then $|S|=|T|$ is true or not. This, in fact, is non-trivial to prove. It is also non-trivial to prove that one among the relations $|S| \leq|T|$ or $|T| \leq|S|$ must be true.

Intuitively, two sets of the same cardinality have the "same number of elements". The following examples demonstrate some counter-intuitive properties of infinite sets.

Exercise 2. Prove the following:

1. The set $2 \mathbf{N}=\{0,2,4, \ldots\}$ satisfies $|2 \mathbf{N}|=|\mathbf{N}|$.
2. There is an injective map from any set S to its power set 2^{S}. Hence $|S| \leq\left|2^{S}\right|$.
3. The map $f: \mathbf{N} \times \mathbf{N} \mapsto \mathbf{N}$ defined by $f(x, y)=2^{x}(2 y+1)-1$ is a bijection. Hence, $|\mathbf{N} \times \mathbf{N}|=|\mathbf{N}|$. Try to find a different bijection.
4. Let $[a, b]$ and $[c, d]$ be distinct intervals on the real number for some $a<b$ and $c<d$. Show that $|[a, b]|=|[c, d]|$. Show that the map $f(x)=c+\left(\frac{d-c}{b-a}\right) x$ is a bijection between the two intervals. Try to find a different bijection.
5. $|\mathbf{Q}| \leq|\mathbf{N} \times \mathbf{N}|$. Use this to conclude that both $|\mathbf{Q}| \leq|\mathbf{N}|$ and $|\mathbf{N}| \leq|\mathbf{Q}|$ holds.

Definition 2. A set S is countably infinite if $|\mathbf{N}|=|S|$; that is, if there exists a bijection from S to the set of natural numbers. A set is countable if it is either finite or countably infinite. A set is uncountably infinite or uncountable if it is not countable.

Exercise 3. Show that if S, T are two disjoint countable sets then $S \cup T$ is countably infinite.

Theorem 1. Let S_{0}, S_{1}, \ldots are disjoint countably infinite sets, then their union is countably infinite.
Proof. Without loss of generality, we may write $S_{0}=\left\{s_{0}(0), s_{0}(1), s_{0}(2), \ldots\right\}$,
$S_{1}=\left\{s_{1}(0), s_{1}(1), s_{1}(2) \ldots\right\}, S_{2}=\left\{s_{2}(0), s_{2}(1), s_{2}(2) \ldots\right\}$ etc. (why?) Define the following function $f: \mathbf{N} \mapsto \bigcup_{i \in \mathbf{N}} S_{i}$ as follows:
$f(0)=s_{0}(0), f(1)=s_{0}(1), f(2)=s_{1}(0), f(3)=s_{0}(2), f(4)=s_{1}(1), f(5)=s_{2}(0), f(6)=$ $s_{0}(3), f(7)=s_{1}(2), f(8)=s_{2}(1), f(9)=s_{3}(0) \ldots$. It is clear that for each $s_{i}(j)$ there exists a unique $n \in \mathbf{N}$ such that $f(n)=s_{i}(j)$. Conversely, for each $n \in \mathbf{N}$, there exists unique i, j such that $f(n)=s_{i}(j)$.

Exercise 4. In the above proof, find an explicit closed form formula for the function $f^{-1}\left(s_{i}(j)\right)$
Exercise 5. Show that the collection of all finite subsets of \mathbf{N} is countably infinite.
The next theorem shows that uncountable sets exist. The proof technique used is called Diagonal argument

Theorem 2. Let S be any non-empty set. There is no bijection from S to its power set, 2^{S}.

Proof. Assume that there exists a bijection from S to 2^{S}. Then, for each $x \in S, f(x)$ is a subset of S. Consider the subset T of S defined as: $T=\{x: x \notin f(x)\}$. As f is surjective, there must be some $x \in S$ such that $T=f(x)$. But this leads to the following contradiction: $x \in f(x)$ if and only if $x \in T$ if and only if $x \notin f(x)$ (the first equivalence follows by the assumption that $f(x)=T$, the second by the definition of T).

A consequence of the above theorem is that $2^{\mathbf{N}}$ is not countable.
Exercise 6. Show that the collection of all infinite subsets of \mathbf{N} is uncountable. (Hint: Use the previous exercise)
Exercise 7. Let $S_{0}, S_{1}, S_{2} \ldots$ be a sequence of subsets of N. Define a set T such that $T \neq S_{i}$ for any $i \in \mathbf{N}$. Use this observation to give a direct proof that $2^{\mathbf{N}}$ is uncountable.

Exercise 8. Consider any collection $F=\left\{f_{0}, f_{1}, f_{2}, \ldots\right\}$ of functions from \mathbf{N} to \mathbf{N}. Construct a function $g: \mathbf{N} \mapsto \mathbf{N}$ such that $g \neq f_{i}$ for every $i \in \mathbf{N}$. The existence of such g shows that any countable collection of functions from \mathbf{N} to \mathbf{N} is incomplete (in the sense we can find a function from \mathbf{N} to \mathbf{N} that is not present in the list). Hence argue that the set of all function from \mathbf{N} to \mathbf{N} is uncountable.

It is easy to see that the set of all functions from \mathbf{N} to $\{0,1\}$ is uncountable. This gives another proof that 2^{N} is uncountable (why?).

Our next objective is to show that the number of points in the real line $(0,1]$ is uncountably infinite. Consider the interval on the real line $(0,1]$. Each real number x greater than 0 and less than 1 has a unique infinite binary expansion of the form $x=0 . x_{0} x_{1} x_{2} x_{3} \ldots$.. (Rational numbers will have two expansions - one terminating and one non-terminating. Here we take the infinite one. For example, if $x=\frac{1}{2}, x=0.1=0.011111 \ldots$ and the latter expansion is taken).

Exercise 9. Let $x^{0}=0 . x_{1}^{0} x_{2}^{0} x_{3}^{0} \ldots, x^{1}=0 . x_{0}^{1} x_{1}^{1} x_{2}^{1} \ldots, x^{3}=0 . x_{0}^{3} x_{1}^{3} x_{2}^{3} \ldots$ be a any collection of infinite binary expansion sequences. Construct a new expansion sequence $y=0 . y_{0} y_{1} y_{2} \ldots$ such that $y_{i} \neq x_{i}^{i}$ for any $i \in \mathbf{N}$. Use this to conclude that the set of all non-terminating binary expansions is uncountably infinite.

Exercise 10. Let S be any infinite subset of natural numbers. We can associate an nonterminating binary expansion x^{S} associated with S as follows: $x^{S}=x_{0}^{S}, x_{1}^{S}, x_{2}^{S}, \ldots$ where $x_{i}^{S}=1$ if $i \in S$ and $x_{i}^{S}=0$ if $i \notin S$. Show that this association is a one one mapping from the set of all infinite subsets of \mathbf{N} to the set of all non-terminating binary expansions. Argue that the set of all non-terminating binary expansions have the same cardinality as the collection of all infinite subsets of \mathbf{N}.

Exercise 11. Show that the set of all finite subsets of subsets of \mathbf{N} has the same cardinality as the set of all finite binary expansions. Hence argue that the set of all binary expansions have the same cardinality as $2 \mathbf{N}$.

Exercise 12. Let S, T be disjoint sets with S countable and T uncountable. Show that $S \cup T$ is uncountable.

The following property assumed about sets, is called the axiom of choice.
Fact 1 (Axiom of Choice). Let I be any non-empty set. Let $\left\{A_{i}\right\}_{I}$ be an arbitrary collection of non-empty sets. Then $\prod_{i \in I} A_{i} \neq \emptyset$. Another way of stating the axiom is to say that we can assume that there exists a function that for each $i \in I$ gives a value in A_{i}, i.e., $\exists a: I \mapsto \bigcup_{i \in I} A_{i}$ such that $a(i) \in A_{i}$.

Theorem 3. Let S, T be arbitrary non-empty sets. There exists an injective function from S to T if and only if there exists a surjective function from T to S.

Proof. Let $f: S \mapsto T$ be injective. Let $s \in S$ be chosen arbitrarily. Define $g: T \mapsto S$ as $g(t)=f^{-1}(t)$ if $t \in f(S)$ and $g(t)=s$ if $t \in T-f(S)$ is a surjective map from T to S. The converse uses axiom of choice. Let g be a surjective map from T to S. The collection of inverse images g for each point in $S,\left\{g^{-1}(s)\right\}_{s \in S}$ is a partition of T. By axiom of choice, there exists a function $f: S \mapsto T$ with $f(s) \in g^{-1}(s)$ for each $s \in S$. This function is injective (why?).

