3

1+4

Your Name and Roll No:

Instruction: Only answers written in the space provided will be evaluated.

1. On the set \mathbf{Z}_{30} , define the equivalence relation R by aRb if and only if GCD(a,30) = GCD(b,30). What is the index (number of equivalent classes) of R? Write down all the equivalence classes under R. Ans:

Soln: The partitioning induced by the relation is $\{\{1,7,11,13,17,19,23,29\},\{2,4,8,14,16,22,26,28\},\{3,9,21,27\},\{5,25\},\{6,12,18,24\},\{10,20\},\{15\},\{0\}\}$. As there are eight classes, the index is 8.

2. Give an example for a monotone function from \mathbf{Q} to \mathbf{Q} that has no fix point in \mathbf{Q} . You must argue correctness. (Hint: The example done in class for the interval $[1,2] \cap \mathbf{Q}$ can be extended to a monotone function on the whole of \mathbf{Q} with a bit of thought!)

Soln: The simplest way to do this is to extend the function which we saw in the class to the whole of **Q** without losing monotonicity and continuity. Here is one possible way: define $f(x) = x + \frac{1}{4}(2 - x^2)$ for $x \le 2$ and $f(x) = \frac{3}{2}$ for $x \ge 2$.

- 3. Let **S** be the collection all boolean functions on integers. That is $S = \{f : \mathbf{N} \mapsto \{0, 1\}\}$ Let f_0, f_1, f_2, \ldots be a collection of functions from S.
 - 1. Define a function $g: \mathbf{N} \mapsto \{0, 1\}$ such that $g \neq f_n$ for any $n \in \mathbf{N}$. (with a proof that $g \neq f_n$ for all $n \in \mathbf{N}$).

Soln: Define $g(n) = 1 - f_n(n)$. If $g = f_k$ for some k, then we have $g(k) = f_k(k)$ (as $g = f_k$). However, by the definition of g we also have $g(k) = 1 - f_k(k)$. Combining the two conditions we get $f_k(k) = 1 - f_k(k)$, which is a contradiction since f_k can take only values 0 or 1.

- 2. What conclusion can you draw from the existence of such a function? Ans:
 Soln: The argument shows that there is no bijection from N to S. In other words, S is not countably infinite.
- 4. Let (S, \leq) be a complete lattice. Assume \top and \bot and the maximum and minimum elements in S. Let $f: S \mapsto S$ be a monotone function on S. Let $A = \{x: f(x) \leq x\}$.
 - 1. Is it always true that $LB(A) \neq \emptyset$? Justify **Ans:** Soln: First A is non-empty because $f(\top) \leq \top$. Clearly $\bot \in LB(A)$ by definition of \bot . Hence LB(A) cannot be empty.
 - 2. Is it true that $\inf(A)$ a fix point of f? If so give a proof. Otherwise give an example for a lattice where this statement fails. (Answer on the reverse sheet)

Soln: Let $a_0 = \inf(A)$. Such A must exist because A is non-empty (see argument above) and S is a complete lattice. For each $a \in A$, $a_0 \le a$. By monotonicity of f, we conclude that $f(a_0) \le f(a) \le a$. for each $a \in A$ (the latter inequality is a defining property of any $a \in A$). From this, we conclude that $f(a_0) \in LB(A)$. Since a_0 is the greatest lower bound of A, we have $f(a_0) \le a_0$. Now, to prove that $a_0 \le f(a_0)$, it suffices to prove that $f(a_0) \in A$. This is proved as follows. We have shown above that $f(a_0) \le a_0$. By monotonicity of f, $f(f(a_0)) \le f(a_0)$. This inequality suffices to prove that $f(a_0) \in A$ by the definition of A.