
Problem Set I

• Construct a Turing machine that takes as input a binary number n as input and prints n−1 in binary.
(if 0 is given as input, output may be 0).

• Show that every finite language is Turing decidable.

• Suppose L,L′ are both Turing decidable, is it always true that L ≤m L′.

• Suppose L is Turing decidable, show that L∗ is Turing acceptable.

• Suppose L is Turing decidable, show that L2 = {xy : x, y ∈ L} is Turing decidable. Argue similarly
that Lk is Turing decidable for each positive integer k.

• Show that given a machine M deciding L, you can design an algorithm A that produces on input
positive integer k, an output machine Mk such that Mk decides Lk.

• Using the above observations (you can use the algorithm A as a subroutine) show that L∗ is decidable
if L is decidable. (Hint: You need to design an algorithm B that on input x decides whether x is
accepted by Mk for some k. The favourable observation is that maximum value of k can be bounded
once x is given).

• A non-deterministic Turing machine is for which δ : Q × Σ 7→ 2Q×Σ×{L,R,−}. That given a state and
tape position, the machine may have multiple transitions possible and the machine is free to choose any
possibility. The definition of acceptance is not changed. That is, if M is a non-deterministic Turing
machine, M accepts x ∈ Σ∗ if and only if (#

q0
x#) `∗

M
(#
qA

#). However, from a given configuration, the
machine may move into different configurations and hence there are several possible runs for M on the
same input x. Hence, the definition of acceptance above stipulates that M accepts x if at least one
of the possible runs reach the accepting configuration. (This is similar in spirit to the definition
of acceptance for finite automata.) The machine is said to be a decider if all possible runs on all
possible inputs always end up either an accepting configuration or a rejecting configuration. That is,
the whatever be the non-deterministic choices made by the machine, M never runs in an infinite loop
on any input. (Note: A non deterministic machine may have one just run on some input x that is
accepting and all other runs rejecting. In such case, the definition of acceptance says x is still accepted
by M).

1. Argue that any language accepted by a non deterministic Turing machine can also be accepted
by a deterministic Turing machine. (Read any text book for details.) Thus just as in the case of
finite state machines, non-determinism does not add more computing power.

2. Given a machine M that decides a language L, show that it is easy to design a non-deterministic
decider for L∗.

3. Show that L is Turing decidable (in the standard sense) if and only if L has a non-deterministic
decider.

• An enumerating Turing machine M with some particularities: 1. M starts with the blank tape (that
is it is assumed that M does not take any inputs). 2. From the state qA, the machine may have other
outgoing transitions (so the machine doesn’t halt upon reaching qA). However, the machine does halt
on reaching qR. 3. The machine is assumed to be designed in such way that the head points to a
blank symbol whenever it reaches qA. 4. Suppose M reaches state qA first time, we look at what is
the string written to the right of the blank symbol (till the next blank on the right). We say this
string is an output string generated by the machine. 5. The machine may continue to run from there
(because of condition 2) and after some time reach state qA again. In that case, the string found to the
right of the blank this time too is a string generated by the machine. 6. The machine go on this way
and may visit qA infinitely many times and each string that is found to the right of the head at any
time the machine reaches qA is added to the set of strings generated by the machine. Formally stated,
the language enumerated by the machine M (with the above programming conventions) is defined as

LE(M) = {x : # #
q0

`∗
M

#
q
A

x#}. Intuitively, an enumerating Turing machine is the mathematical

abstraction for a program that takes no inputs, but prints a set of strings (possibly running in an
infinite loop). The language enumerated by such a program is defined as the set of all output strings
generated by the program.

1. Argue that a program L is Turing acceptable if and only if there is a Turing machine that
enumerates all strings of the language. (Of course, no other strings must be enumerated).

2. Argue that a language L is Turing decidable if and only if there is a Turing machine that enu-
merates all strings of the language in the following order: a) String of length i+ 1 are generated
only after all strings of length i are generated. b) Among strings of the same length, dictionary
order is followed.

• Given two Turing machines M1 and M2, show that the problem of deciding whether L(M1)∩L(M2) = ∅
is undecidable.

• Given two Turing machinesM1 andM2, show that the problem of determining whether L(M1) ⊆ L(M2)
is undecidable.

Page 2

