Name and Roll No.:

1. Recall that $L_{u}=\{(M, x): M$ is a Turing machine, x is a string and M accepts $x\}$. Suppose L is a language such that $L_{u} \leq_{m} L$. Can we say that \bar{L} (complement of L) is not recursively enumerable? Justify your answer.
Soln: $L_{u} \leq_{m} L \Longrightarrow \overline{L_{u}} \leq_{m} \bar{L}$ (why?). Since $\overline{L_{u}}$ is not recursively enumerable, it follows that \bar{L} is not recursively enumerable.
2. Let $L_{H}=\{M: M$ is a Turing machine that halts on all inputs $\}$. Suppose A is a reduction algorithm from L_{u} to L_{H}. Suppose a machine string pair (M, x) is given as input to A, what is the property expected of $A(M, x)$, the output of A on the input (M, x) ?
Soln: On input (M, x), the reduction algorithm should produce a machine $M^{\prime}(=A(M, x))$ as output such that M accepts x if and only if M^{\prime} halts on every input.
3. Does the fact that L_{H} is undecidable follow from Rice Theorem? If yes explain how. If not explain why not.
Soln: L_{H} is not a property of Turing acceptable languages, but is a property of machines. (A machine may not accept all strings on which it halts - so the property that a machine halts on all inputs does not give any clue on what is the language accepted by it, except that the language is decidable. However, a decidable language can be accepted by infinitely many machines that do not halt.) Hence, Rice theorem gives no conclusion about the decidability of L_{H}.
4. Show that L_{H} is not recursively enumerable.

Soln: Consider the reduction algorithm A that in input (M, x) outputs a machine M^{\prime} which on its input y, behaves as below:

```
$M'(y) {
    Using UTM, simulate the machine $M$ on input $x$ for $ly|$ steps.
    If $M$ rejects $x$ within $ly|$ steps, then accept $y$.
    If $M$ does not halt in $ly|$ steps then accept $y$.
    If $M$ accepts $x$ within $ly|$ steps, then loop for ever.
}
```

Now, if M accepts x, then M must accept x in some k steps and M^{\prime} will go into an infinite loop on all inputs y whose length exceeds k. Thus M^{\prime} does not halt on all inputs. Otherwise, if M does not accept x, then M^{\prime} always accepts y, irrespective of what y is. Thus, if $(M, x) \notin L_{u}$, then $M^{\prime} \in L_{H}$ and if $(M, x) \in L_{u}$, then $M^{\prime} \notin L_{H}$. That is, $\overline{L_{u}} \leq_{m} L_{H}$. Since $\overline{L_{u}}$ is not recursively enumerable, so is L_{H}.

