
Theorem 5.1.6 (Parallel Repitition). ∀s ∈ (0, 1), ∃cs ∈ (0, s), PCPΣ
1,s[r, 2] ⊆ PCPΣt

1,cts
[rt, 2].

Corollary 5.1.7. ∀ε > 0, ∃ an alphabet Σ such that

NP ⊆ PCPΣ
1,ε[O(log n · log(1/ε)), 2]

where such that |Σ| = poly(1/ε).

5.1.1 LABEL-COVER

We saw that there are PCP proof systems for languages in NP, in which the verifier makes
only 2 queries. Furthermore, observe that the check made by the verifier is in the form of a
projection from the first answer to the second. It will be more convenient to abstract these
2-query PCPs in terms of a graph problem, which we call Label-Cover.

Definition 5.1.8 (Label-Cover). An instance I of the Label-Cover problem is specified
by a quadruple (G,Σ1,Σ2, F ) where G = (L,R,E) is a bipartite graph, Σ1 and Σ2 are
two finite sized alphabets and Π = {πe : Σ1 → Σ2|e ∈ E}, is a set of functions (also called
projections), one for each edge (u, v) ∈ E.

A labeling A : L → Σ1, B : R → Σ2, is said to satisfy an edge (u, v) iff π(u,v)(A(u)) =
B(v). The value of an instance is the maximal fraction of edges satisfied by any such
labeling.

For any δ ∈ (0, 1), the gap problem gapε-LC is the promise problem of deciding if a
given instance has value 1 or at most ε. More precisely, the YES and NO of gapε-LC are
given as follows.

YES =
�
I : ∃ (A : L → Σ1, B : R → Σ2) such that ∀(u, v) ∈ E, π(u,v)(A(u)) = B(v)

�

NO =
�
I : ∀ (A : L → Σ1, B : R → Σ2) ,

��{(u, v) ∈ E : π(u,v)(A(u)) =, B(v)}
�� ≤ ε|E|

�

Thus, an equivalent formulation of Corollary 5.1.7 is the following.

Corollary 5.1.9. ∀ε > 0, there exist alphabets Σ1,Σ2 with |Σ1|, |Σ2| = poly(1/ε) such that
gapε-LC is NP-hard.

5.2 Linearity Testing

We will now see a randomized test for checking whether a function between two groups is
linear (ie a homomorphism).

Definition 5.2.1 (Linear function). Gven two Abelian groups G,H, the function f : G → H
is said to be linear iff

∀x, y ∈ G, f(x+ y) = f(x) + f(y).

(Observe that the first + is performed according to group G while the second is performed
according to H.
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A naive test for checking for linearity is to randomly pick x, y ∈ G and check if f(x+y) =
f(x)+f(y). Blum, Luby and Rubinfield [BLR93] showed that this check is actually a “good”
one.

BLR-Testf : “ 1. Choose y, z ∈R G independently

2. Query f(y), f(z), and f(y + z)

3. Accept if f(y) + f(z) = f(y + z). ��

We will prove that this test is “good”. Before stating the result we need some definitions.

Definition 5.2.2 (Local consistency). Local consistency of f ∈ HG denoted by ε(f) is
defined as

ε(f) = Pr
x,y

[f(x) + f(y) �= f(x+ y)]

It is clear that, if f is linear then the naive check is true with probability 1 (ie. ε(f) = 0).

Definition 5.2.3 (Hamming distance). For f, g ∈ HG, the Hamming distance δ(f, g) is
defined as

δ(f, g) = Pr
x∈G

[f(x) �= g(x)]

For f ∈ HG and S ⊆ HG,
δ(f, S) = min

g∈S
δ(f, g)

Definition 5.2.4 (Global Consistency). Let L ⊂ HG be the set of all linear functions
(homomorphisms) from G to H. Then the global consistency of f ∈ HG denoted by δ(f)
is defined as

δ(f) = δ(f, L)

It is clear that δ(f) = 0 ⇒ ε(f) = 0. To show that the test is “good” is equivalent to
proving a result of the following type: δ(f) is “large” implies ε(f) is “large”. We will first
show that a general result of this nature is impossible if ε(f) is not too small.

Consider the function f : Z/3nZ → Z/3nZ defined as follows:

f(x) =





0 if x ≡ 0 (mod 3)

1 if x ≡ 1 (mod 3)

3n− 1 if x ≡ −1 (mod 3)

It can be shown that though for this f , ε(f) = 2/9, δ(f) = 2/3. Thus, even though δ(f)
is very large, ε(f) is not all that large. This counterexample was given by Coppersmith.
We will now give an analysis of the test (also due to Coppersmith) which shows that this
is basically the worst example. and also showed the following

Claim 5.2.5. Suppose ε(f) < 2/9 then δ(f) ≤ 2ε(f).
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Proof. Let ϕ : G → H be defined as

ϕ(x) = pluralityy{f(x+ y)− f(y)},

with ties being broken arbibtrarily. We will show that ϕ has the following properties, which
clearly implies the claim.

1. δ(f,ϕ) ≤ 2ε(f)

2. ∀x,Pry[ϕ(x) = f(x + y) − f(y)] ≥ 2/3. Thus, even though ϕ(x) was defined as the
plurality, it is actually a 2/3-majority.

3. ϕ is linear

1. Proof of “δ(f,ϕ) ≤ 2ε(f)”

Let BAD = {x ∈ G : Pry[f(x) �= f(x + y) − f(y)] ≥ 1/2}. If x /∈ BAD, then
f(x) = ϕ(x). Hence, δ(f,ϕ) ≤ |BAD|/|G|. Now

ε(f) = Pr
x,y

[f(x) �= f(x+ y)− f(y)]

≥ Pr [x ∈ BAD] · Pr [f(x) �= f(x+ y)− f(y)|x ∈ BAD]

≥ |BAD|
2|G|

2. Proof of “∀x, Pry[ϕ(x) = f(x+ y)− f(y)] ≥ 2/3”

Fix any x, consider the following the collision probability

Pr
y1,y2

[f(x+ y1)− f(y1) = f(x+ y2)− f(y2)]

= Pr
y1,y2

[f(x+ y1) + f(y2) = f(x+ y2) + f(y1)]

≥ Pr
y1,y2

[f(x+ y1) + f(y2) = f(x+ y1 + y2) = f(x+ y2) + f(y1)]

≥ 1− 2ε(f) > 5/9

For h ∈ H, let ph = Pry[f(x + y) − f(y) = h]. Clearly, pmax = max ph = Pry[ϕ(x) =
f(x+ y)− f(y)]. Since the ph’s are a probability distribution, we have

�
h∈H ph = 1.

From the above argument wrt. to the collision probability we have
�

h∈H p2h > 5/9.
Then the following is true

pmax = pmax ·
�

ph ≥
�

h∈H
p2h > 5/9

p2max + (1− pmax)
2 ≥

�

h∈H
p2h > 5/9

2p2max − 2pmax + 4/9 > 0

pmax > 2/3

So for at least 2/3 fraction of the y’s f(x+ y)− f(y) is the same and hence equal to
ϕ(x).
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3. ϕ is linear.
From 2, we have that

ϕ(x) = f(y)− f(y − x) for all but < 1/3 fraction of y’s

ϕ(z) = f(y + z)− f(y) for all but < 1/3 fraction of y’s

ϕ(x+ z) = f(y + z)− f(y − x) for all but < 1/3 fraction of y’s

Therefore ∃y such that all the above 3 equations are satisfied. Hence

∀x, z ∈ H, ϕ(x) + ϕ(z) = ϕ(x+ z)
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