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Lecturer: J. van Leeuwen Scribe: E. Maes

5.1 Overview

This lecture is about designing ‘algorithmic models’ using (versions of) Linear Programming.
Until now, networks were used tot model problems. It would be great to have a generic frame-
work in which problems can be ‘programmed’ and solved by standard means. The formalism
of Linear Programming comes close. We will emphasize Integer Linear Programming (ILP)
and show how some common problems like the dominating set problem and the vertex cover
problem can be seen as ILPs.

5.2 Linear Programs

A Linear Program (LP) is about maximizing or minimizing a linear goal function under a set
of linear constraints.

minimize z = cx (linear goal function)

subject to

Ax ≥ b (linear constraints)

x ≥ 0

where x, c and b are vectors, and A is a matrix with

x = (x1, · · · , xn)
c = (c1, · · · , cn)
A = m× n matrix
b = (b1, · · · , bm) (constraint vector)

In coordinate form this can also be written as:

z = cx ⇔ z =
n∑

i=1

cixi

Ax ≥ b ⇔
n∑

j=1

aijxj ≥ bi (for all 1 ≤ i ≤ m)

5-1
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Definition 5.1 Any x that satisfies the constraints (Ax ≥ b, x ≥ 0) is called a feasible
solution.

Proposition 5.2 The feasible solutions of a Linear Program form a convex set ⊆ Rn, the
so-called LP-polytope. The LP-polytope has finitely many facets and extreme points.

The ‘polytope’ of a given LP is not always finitely bounded, and may be ‘open’ to infinity.

Solving an LP leads to finding a point of the LP-polytope where the goal function achieves
its minimum (or maximum): if the minimum is finite, this will happen in (at least one of) the
extreme points. In higher dimensions the number of extreme points can become exponential
(in m). In the figure below a preview of a (2-dimensional) linear program is shown.

min z = x1 + x2

subject to

−2x1 ≥ −3
−2x2 ≥ −6
2x1 + x2 ≥ 1
x1, x2 ≥ 0

-2
x

1 ≥
-3

-2x2 ≥ -6

Figure 1: A preview of a Linear Program

The circles indicate the extreme points of the face: (0, 3), (3
2 , 3), (3

2 , 0), (1
2 , 0), (0, 1). The face

bounded by these points contains the feasible solutions. The minimum of the goal function
is the point (1

2 , 0).

We will especially consider Linear Programs with further constraints:
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• Integer Linear Programs (ILP)
x ≥ 0 replaced by: x ≥ 0 and xi integer (for all 1 ≤ i ≤ n).

• Binary or 0-1 Linear Programs (0-1 LP)
x ≥ 0 replaced by: xi ∈ {0, 1} (for all 1 ≤ i ≤ n).

These types of constraints normally arise when the ‘xi’ are interpreted as ‘quantities’ or
‘decisions (yes/no)’.

LPs are routinely solved using standard software packages that implement the simplex method
(viz. CPLEX) or any of the newer interiorpoint methods. Solving ILPs or 0-1 LPs is not done
in the same way as solving LPs, because the extreme points of the underlying LP-polytope
might not be integral.

Replacing the constraint ‘x ≥ 0, xi integer’ by x ≥ 0 in an ILP or the constraint ‘xi ∈ {0, 1}’
by ‘0 ≤ x ≤ 1’ in a 0-1 LP is called relaxing the problem.

Exercise. Let OPT be the optimum of an ILP or 0-1 LP (minimization version), let z(x∗)
be the optimum of the relaxed problem, and let z(y) be the value of the goal function after
rounding the solution x∗ of the relaxed problem to a feasible integer or 0-1 solution y of the
original problem. Then z(x∗) ≤ OPT ≤ z(y).

5.3 Modeling problems as ILPs

Many problems that were encountered in previous lectures can be modeled as an ILP or 0-1
LP. This is shown for: Set Cover, Dominating Set, Vertex Cover, and their extensions to
‘weighted’ networks.

5.3.1 The Set Cover problem

The (Minimum Cost) Set Cover problem is defined as follows:

• given a universe U = {1, · · · , n},
• a collection of subsets S = {S1, · · · , Sm} with Si ⊆ U , and

• a cost function c : S → Q+ where c(Si) = ci,

• determine a minimum cost subcollection (‘cover’) Sj1, · · · , Sjk
of S such that

k⋃
i=1

Sji = U.

For example: U is a collection of tasks, Si is the set of tasks which contractor i is able to carry
out, and ci is the cost that contractor i charges for it. The goal in this case is to determine a
set of k contractors that can do all tasks for the least total cost

∑k
i=1 cji = |U |.



Lecture 5: September 16 5-4

Note that some tasks may be ‘covered’ by more than one contractor. In the Set Packing
problem it is required that every element is covered only once.

We now design a model for the Set Cover problem. There is a decision to be made for every
subset Si, namely whether to include it in the cover or not. Therefore decision variables (or
‘indicator variables’) will be used:

xi: decision variable indicating whether Si is in the solution or not.

This lead to the following 0-1 LP:

(SCP)

min z =
n∑

i=1

cixi

subject to
m∑

j=1

aijxj ≥ 1 (for all 1 ≤ i ≤ n)

xi ∈ {0, 1} (for all 1 ≤ i ≤ m).

where

aij =
{

1 if i ∈ Sj ;
0 otherwise.

We will always assume that
⋃k

i=1 Si = U , otherwise the problem has no feasible solution.

The Set Cover problem has been well-studied since the mid-1960’s. There are various al-
gorithms for solving it exactly, although none of these algorithms is polynomial in n and
m.

Exercise. Consider the relaxation of SCP in which the constraint xi ∈ {0, 1} is replaced by:
xi ≥ 0 and integer. Show that the relaxed version has the same optimum solution as SCP.
(Hint: consider what would happen when xi > 1 for some i in the optimum solution.)

5.3.2 The Dominating Set problem in weighted networks

Let G =< V,E > be a network. We first repeat the definition of a dominating set: a set S of
vertices in a network is a dominating set if every vertex not in S is adjacent to a vertex in S.

Now consider the case that weights are attached to the nodes. Say weight wi is attached to
node i. The (Minimum Weight) Dominating Set problem asks for a dominating set in G of
least total weight.

The Dominating Set problem can be modeled by a 0-1 LP. Use:
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xi: decision variable expressing whether node i is in the dominating set or not .

Then design the following model:

(DSP)

min z =
n∑

i=1

wixi

subject to
n∑

j=1

aijxj ≥ 1 (for all 1 ≤ i ≤ n).

xi ∈ {0, 1} (for all 1 ≤ i ≤ n).

where

aij =




1 if i = j;
1 if i and j are connected by an edge;
0 otherwise.

Theorem 5.3 The Minimum Weight Dominating Set problem is ‘equivalent’ to the Minimum
Cost Set Cover problem.

Proof: We show that every instance of one problem can be easily transformed into an
equivalent instance of the other problem.

(⇒) Consider the Minimum Weight Dominating Set problem DG for network G =< V,E >
and assume w.l.o.g. that V = {1, · · · , n}. Create a Minimum Cost Set Cover problem SG

with universe V = {1, · · · , n} and subsets Si such that Si = ‘i together with all its neighbors
in G’. Let c(Si) = wi, the weight of node i.

The minimum set cover solutions are related in a 1-1 fashion to the minimum weight domi-
nating set solutions.

(⇐) Consider an instance SU of the Minimum Cost Set Cover problem with U = {1, · · · , n},
S = {S1, · · · , Sm} and c(Si) = ci. Assume w.l.o.g. that ci > 0 for all i and ∪m

i=1Si = U .

Create a network G as shown in Figure 2. There is a special top-node u0 with weight 0. It is
connected to nodes u1, . . . , um where ui has weight ci and ‘corresponds’ to subset Si. Finally
there are nodes v1, . . . , vn corresponding to the elements of U and an edge (ui, vj) if and only
if Si contains j. The nodes vj are given very large weights so they cannot possibly be chosen

in a minimum weight dominating set of G: a weight of 2
m∑

i=1

ci will do.

Consider a feasible solution (Sj1, . . . , Sjk
) to SU of cost C. Then the nodes u0, uj1 , . . . , ujk

form a solution of cost C to the dominating set problem in G. (Node u0 is needed to dominate
the nodes uj for which Sj is not in the set cover.)
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Figure 2: Minimum Cost Set Cover versus Minimum Weight Dominating Set

Conversely, consider a minimum weight solution to the Dominating Set problem in G. This
solution will have weight ≤ ∑m

i=1 ci, as the set u1, . . . , um is a feasible solution of this weight.
Thus no v-node can belong to the dominating set. The solution to the Dominating Set
problem thus consists entirely of u-nodes. The ui-nodes in it with i > 0 easily correspond to
a feasible set cover of S of the same cost.

5.3.3 The Vertex Cover problem on weighted networks

Let G =< V,E > be a network, with |V | = n. A vertex cover C is a subset of V , such that
for each edge (u, v) ∈ E, at least one of u and v is in C.

Again we consider the case that weights are attached to the nodes. Say weight wi is attached
to node i. The (Minimum Weight) Vertex Cover problem asks for a vertex cover in G of least
total weight.

The Vertex Cover problem can be modeled by a 0-1 LP. Use:

xi: decision variable expressing whether node i is in the vertex cover or not.

Then design the following model:

min z =
n∑

i=1

wixi

subject to

xi + xj ≥ 1 for all edges (i, j) ∈ E.

xi ∈ {0, 1} (1 ≤ i ≤ n).
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Theorem 5.4 The Minimum Weight Vertex Cover problem ‘reduces’ to the Minimum Cost
Set Cover problem.

Proof: We show that instances of the Minimum Weight Vertex Cover problem can easily be
transformed into equivalent instances of the Minimum Cost Set Cover problem.

Consider the Minimum Weight Vertex Cover problem on G = (V,E). Make a set cover
problem where U = { the set of edges of G} and subsets Si = ‘all edges incident to node i’.
Let c(Si) = wi.

One easily sees that the a weight-w solution to the Vertex Cover problem on G corresponds
to a cost-w solution to constructed set cover problem and vice versa.

5.3.4 The Vertex Cover polytope

Look at the constraints of the Vertex Cover problem. Consider the LP-polytope defined by
the relaxed constraints:

xi + xj ≥ 1 for every (i, j) ∈ E

0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n.

Definition 5.5 A feasible solution x is called half-integral if its coordinates are ∈ {0, 1
2 , 1}

Lemma 5.6 (Nemhauser and Trotter, 1973) All extreme points of the Vertex Cover poly-
tope are half-integral.

Proof: Take any feasible solution x that is not half-integral. We show it is not an extreme
point.

Relate the solution x = (x1, . . . , xn) to the nodes of the network. For some nodes i we will
have xi ∈ {0, 1

2 , 1} but not for all. Define:

V+ = {i | 1
2 < xi < 1},

V− = {i | 0 < xi < 1
2}.

Thus V+ ∪ V− is not empty. Now consider two proposed new solutions to the relaxed Vertex
Cover problem:

yi =




xi + ε if xi ∈ V+;
xi − ε if xi ∈ V−;
xi otherwise

zi =




xi − ε if xi ∈ V+;
xi + ε if xi ∈ V−;
xi otherwise
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For ε small enough but > 0, we can guarantee that 0 ≤ y, z ≤ 1. Clearly y, z 6= x.

Note that 1
2y + 1

2z = x, thus x cannot be an extreme point provided y, z are elements of the
polytope, i.e. are feasible.

Claim 5.7 For ε small enough > 0 we can achieve that y and z are feasible.

Proof: Verify the covering constraints: xi + xj ≥ 1. For small enough ε this remains true for y and z as
well, by the following argument. There are two cases.

Case 1. xi +xj > 1. The values yi + yj and zi +xj are at most by 2 · ε smaller than xi +xj so for small
enough ε they remain .1.

Case 2. xi + xj = 1. This leads to the following subcases:

Case 2.1. xi = 0, xj = 1 so identical for y, z.

Case 2.2. xi = 1, xj = 0 so identical for y, z.

Case 2.3. xi = 1
2
, xj = 1

2
so identical for y, z.

Case 2.4. xi ∈ V−, xj ∈ V+ or xi ∈ V+, xj ∈ V−. Then (xi − ε) + (xj + ε) = 1 thus the constraint
is identically satisfied for y and likewise for z in this case as well.

So for small enough ε, both constraints are satisfied.

This completes the proof.

The lemma leads to an intriguing approximation algorithm for the weighted vertex cover
problem.

Theorem 5.8 The Minimum Weight Vertex Cover problem can be solved by an efficient
algorithm with performance ratio 2.

Proof: The algorithm simply is: find any extreme point x of the Vertex Cover polytope. (This
can be done e.g. by using the Simplex algorithm to solve the relaxed Minimum Weight Vertex
Cover problem, i.e. the problem with xi ∈ {0, 1} replaced by 0 ≤ xi ≤ 1.)

Let x be a solution: by the Nemhauser-Trotter Lemma, x is half-integral. Now round x to a
solution y as follows:

- if xi ∈ {1
2 , 1} then set yi = 1.

- if xi ∈ {0}, then set yi = 0 otherwise.

Now y is feasible. For any edge (i, j) ∈ E we have xi + xj ≥ 1 and thus at least one of xi, xj

is ∈ {1
2 , 1}. Hence at least one of yi, yj is 1 and we have yi + yj ≥ 1. Feasibility of y follows.

But as a 0-1 solution, y is a feasible solution to the original Vertex Cover problem.

Let the relaxed problem have optimum z∗ =
n∑

i=1

wixi. Let the Minimum Weight Vertex Cover

problem have optimum OPT. Then
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z∗ ≤ OPT ≤ z(y) ≤ 2 · z∗ ≤ 2 ·OPT .

Whereas the Nemhauser-Trotter Lemma shows how the combinatorial understanding of the
LP-polytope of a problem can help, a different rounding trick can circumvent it in the present
case. Relax the problem by replacing xi ∈ {0, 1} by: x ≥ 0. Consider any optimum solution
x of the relaxed problem. (One easily argues that 0 ≤ xi ≤ 1 for every 1 ≤ i ≤ n but we do
not even need this observation). Now round x to a 0-1 solution y as follows:

- if xi ≥ 1
2 then set yi = 1.

- if xi < 1
2 then set yi = 0.

Exercise. Show that y is a feasible solution to the Vertex Cover problem and that z(y) is
within a factor of 2 from optimum. (Hint: by the same argument as in Lemma 5.6.)

5.4 Other ILP models

Many other problems can be modeled as ILP problems. This includes e.g. the (many variants
of the) Vehicle Routing Problem.
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