
Mid Sem II Topics in Algorithms Max:30 Marks

Name and Roll No.:

1. 3x3Given sets S1, S2, .., Sn that are subsets of a set S of m elements, and weights c1, c2, .., cn for the sets,

the SET COVER problem (SC) asks you to pick a subcollection of {S1, S2, ..., Sn} of as small total
weight as possible so that every element in S appears in at least one of the sets in the subcollection that
you have picked. You are also told that an element can appear in at most t sets.

• Formulate the problem as a 0− 1 LP and Write down the dual.
Soln: Let s1, s2, ..., sm be the elements of S. To objective is to:
Minimize

∑n
i=1 cjxj subject to

∑
si∈Sj

xj ≥ 1 for each 1 ≤ i ≤ m, xj ∈ {0, 1}.
The dual is to: Maximize

∑n
i=1 yi subject to

∑
si∈Sj

yi ≤ cj , yi ∈ {0, 1}.
• Suppose you solve the LP relaxiation optimally, What must be the rounding criteria to set a variable

to value 1 for getting a t factor approximation? Justify.
Soln: Each constraint of the primal has at most t primal variables. Hence, in any feasible solution
to the primal, at least one of the variables must have value greater than or equal to 1

t
(why?). If we

pick the sets corresponding to all variables with value 1
t

or more in the optimal solution to the LP
relaxiation, we will have a feasible solution (why?). Moreover, since every variable gets multiplied
by atmost t, this must lead to a t factor approximation (why?).

• What is the factor of approximation achieved by the following primal dual algorithm? Justify.

– Repeat: Increase the value of a dual variable corresponding to any unsatisfied primal constraint
till some dual constraint becomes tight and set all primal variables corresponding to tight dual
constraints to 1

– Until: There are no more unsatisfied primal constrains.

Soln: Here, since each primal constraint has at most t variables, in any feasible solution, the sum of
the variables in a primal constraint can be at most t. The dual constraints are tight by design (of the
algorithm). Thus, the primal constraints are relaxed by a factor of at most t while dual constraints
remain tight. We have seen in the class that when this is the case, the solution that results must be a
factor t approximation.

2. 3+3The CONSTRAINT SATISFACTION PROBLEM (CSP) takes as input a set of equations over n boolean

variables with only ⊕ operation permitted. (Ex: {x1 ⊕ x2 = 1, x2 ⊕ x3 = 0, x3 ⊕ x1 = 0} -
essentially a set of linear constraints over GF (2)). The problem is to find a truth assignment to the
boolean variables that maximizes the number of satified constraints.

• What is the expected number of constraints satisfied by a random truth assignment to the variables?
Justify.
Soln: Given a formula of the form y1⊕ y2⊕ ...⊕ yn in n boolean variables, it is not hard to see
that exactly half of the 2n truth assignments to the variables make the evaluate to 1. (To see this in
a more structured way, suppose we fix the values of the first n− 1 variables. Then the probability
of that a random truth assignment to the last variable satisfies the formula is the probability that
the truth value to this variable differs from the XOR of all the fixed variables and is 1

2
(why?)).

Since each constraint is satisfied with probability 1
2
, the expected number of satisfied constraints

must be half the total number.

• How can you de-randomize the random truth assignment? What is the expected number of satisfied
constrains under your derandomization strategy?
Soln: Set the first variable x1 to zero and we get a new constraint system. If we set x1 to one,
we get another constriant system. In both cases, we know that random truth assignment to the
remaining variables satisfy half the number of constraints in expectation. Since the expectation of
the orginal CSP instance is the average of these two values, at least one of them must be greater
than or equal to half the total number of constrains in the orignal CSP. The value of x1 can be
fixed to get the larger expectation and we continue this way to get a de-randomized factor two
approximation.
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3. 3+3Consider an LP of the form Max: < c, x > subject to: Ax ≤ b, x ≥ 0, where c, x ∈ Rn, A ∈ Rm×n,

b ∈ Rm.

• Show that if the LP has more than one optimal solutions, then it has infinitely many optimal
solutions.
Soln: If x1, x2 are feasible solutions with cTx1 = cTx2 = t, then cT (λx1 + (1 − λ)x2) = t
as well for any value of λ. Since, the feasible region is convex, for values of λ in 0 ≤ λ ≤ 1,
x = λx1 + (1− λ)x2 must be feasible. If x1, x2 are optimal, so are all these points.

• Suppose there exists a y ∈ Rm such that ATy = 0n and y ≥ 0m, then the LP does not have
any feasible solution. (Prove from first principles, do not use the theorem of alternatives).

Soln: The question has an error. bTy ≥ (Ax)Ty = xTATy = xT (ATy) = xT0n = 0n. A

Contradiction would have arisen only if the condition bTy < 0 was also given in the question!

4. 3x3For the Max2Sat instance (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2),
• Write down the quadratic program.
Soln: Using the QP variables y0, y1, y2 taking values in {1,−1}, we can encode each clause using
a quadratic formula. Consider (x1∨¬x2) = ¬(¬x1∧x2). we use the encoding f1(y0, y1, y2) =

1− (1−y0y1)
2

(1+y0y2)
2

for the first clause. Similarly, the encoding f2(y0, y1, y2) = 1− (1+y0y1)
2

(1−y0y2)
2

captures the second clause. For j ∈ {1, 2} xj evaluates to 0 if y0 = yj and xj evaluates to 1 if

y0 6= yj . With this, it is easy to see that the optimal solution to (y0, y1, y2) in {−1, 1}3 maxi-
mizing f1+ f2 also maximizes the number of clauses satisfied in the orignal formula and hence the

quadratic program captures the original problem. Note that f1 + f2 simplifies to
(3+y1y2)

2
. Also

note that maximizing this objective function is equivalent to maximizing y1y2.

• Write down the vector program. Find an optimal solution which does not contain any of the
standard basis vectors (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T .
Soln: The vector program optimizes the above quadratic optimization problem by allowing the
relaxed constraints y0, y1, y2 ∈ R3, and with multiplication replaced by dot product of vectors.
The additional norm constraint that ||yi|| = 1 is also imposed. Thus, to maximize y1y2, any

feasible solution that sets y1 = y2 suffices. In particular y0 = y1 = y2 = (1,1,1)√
3

is a solution.

(This choice makes answering the next question easiest!)

• Suppose the random vector 1√
3
(1, 1, 1) is chosen for random hyperplane approximation, What is

the solution obtained to the quadratic program for the Max2Sat Instance?
Soln: Clearly rTy0 = rTy1 = rTy2 = 1. As all dot products are positive, we set y0 = y1 =
y2 = 1 as the solution for the vector program and correspondingly, we get x1 = x2 = 1 for the
Max2Sat instance. Note that the objective function achieves the maximum (satisfying all clauses)
with this assignment.
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