
Computational Number Theory and Algebra April 30, 2012

Lecture 4
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

Our topic of discussion today is Discrete Fourier Transform (DFT). In general, Fourier transform is
a highly important tool used in mathematics, computer science, electrical engineering and many other
subjects. At a high level, Fourier transform is a method to express vectors by choosing a ‘nice’ basis so that
the coordinates of a vector expressed in this basis carry ‘important information’ about the vector. Today,
we will discuss the following topics:

• Discrete Fourier Transform (DFT),

• Fast Fourier Transform (FFT),

• Polynomial multiplication (assuming that the underlying ring supports FFT).

1 Discrete Fourier Transform

This tool is used extensively to design asymptotically fast algorithms for polynomial and integer multipli-
cations. In this lecture and the next, we will see polynomial and integer multiplication algorithms based on
DFT. But, at first we need to refresh a few concepts about roots of unity in a ring. The following exposition
to DFT and FFT is taken from the book [GG03].

Let R be a commutative ring. An element a ∈ R is a zero-divisor if there is a nonzero b ∈ R such that
a · b = 0. An element a ∈ R is called a unit if there is a b ∈ R such that a · b = 1.

Definition 1 (Principal root of unity) An element ω is an nth root of unity in R if ωn = 1, where n ∈ Z+.
Further, ω is a principal nth root of unity if ωn/t − 1 is not a zero-divisor in R for every prime divisor t of
n, and n is a unit in R.

(In order to understand this discussion, you can assume for the moment that R is a field, in which case, ω
(in the above definition) is simply a primitive root of unity. But, it is advisable that you familiarize yourself
with the notion of principal roots over rings, as we would need this concept while discussing an integer
multiplication algorithm in the next class.)

Lemma 2 If ω is a principal nth root of unity in R then for every 1 ≤ ` < n, ω` − 1 is not a zero-divisor
in R and

∑n−1
i=0 ω`i = 0.

We leave the proof of this lemma as an exercise. Let f = (f0, f1, . . . , fn−1) ∈ Rn. Define polynomial
f(x) =

∑n−1
i=0 fix

i ∈ R[x]. Suppose that R contains a principal nth root of unity ω. The Discrete Fourier
Transform is a map from Rn → Rn defined as:

DFTω : f 7→ (f(1), f(ω), . . . , f(ωn−1)).

Note that the map DFTω is defined with respect to a particular ω. Let D(ω) be the following matrix:

D(ω) =


1 1 1 ... 1
1 ω ω2 ... ωn−1

...
...

...
...

1 ωn−1 ω2(n−1) ... ω(n−1)2


n×n

4-1



Then, (f(1), f(ω), . . . , f(ωn−1)) = f ·D(ω). Further, observe that since ω is a principal root of unity, D(ω) ·
D(ω−1) = n·I, where I is the n×n identity matrix (by Lemma 2). Therefore, n·f = (f(1), f(ω), . . . , f(ωn−1))·
D(ω−1). Here, ω−1 = ωn−1 is also a principal nth root of unity in R (why?). This means that the map
DFTω−1 (Discrete Fourier Transform with respect to ω−1) is such that

DFTω−1 : (f(1), f(ω), . . . , f(ωn−1)) 7→ n · f (1)

Assuming
√

n to be a unit in R, do you see that the map DFTω is actually a change of basis? The map
DFTω−1 will also be referred to as the inverse-DFT map.

We will identity the vector f with the polynomial f . Computing the DFT of f (using ω as the root of
unity) is the task of finding the vector (f(1), f(ω), . . . , f(ωn−1)). Computing inverse-DFT is like interpolating
the polynomial f from its values (f(1), f(ω), . . . , f(ωn−1)) (except that we get n · f instead of f). This task
of computing a DFT can be performed efficiently using an algorithm called the Fast Fourier Transform.

2 Fast Fourier Transform

The Fast Fourier Transform (FFT) was found by Gauss in 1805 and later (re)discovered by Cooley and Tukey
[CT65]. The algorithm uses a recursive technique to compute DFT of a polynomial f =

∑n−1
i=0 fix

i ∈ R[x],
using O(n log n) addition and multiplication operations in R. Assume that n is a power of 2. We wish to
compute DFT of f using ω ∈ R as the nth root of unity.

Algorithm 1 Fast Fourier Transform
1. If n = 1 return f(0).
2. Define g0 as g0 =

∑n/2−1
i=0 (fi + fn

2 +i)xi.

3. Define g1 as g1 =
∑n/2−1

i=0 (fi − fn
2 +i)ωixi.

4. Recursively, compute DFT of g0 using ω2 as the n/2-th root of unity.
5. Recursively, compute DFT of g1 using ω2 as the n/2-th root of unity.
6. Return (g0(1), g1(1), g0(ω2), g1(ω2), . . . , g0(ωn−2), g1(ωn−2)).

Correctness of the algorithm - The correctness follows from the next two equations, for 0 ≤ j ≤ n
2 − 1.

f(ω2j) =
n−1∑
i=0

fiω
2ij =

n
2−1∑
i=0

(fi + fn/2+i) · (ω2)ij and

f(ω2j+1) =
n−1∑
i=0

fiω
i(2j+1) =

n
2−1∑
i=0

(fi − fn/2+i)ωi · (ω2)ij

The negative sign in the second equation comes from the fact that ωn/2 = −1. Observe that ω2 is a principal
n/2-th root of unity in R (why?). Thus, the problem of computing DFT of a polynomial f of degree bounded
by n − 1 reduces to computing the DFT of two polynomials g0 and g1 (as defined in the algorithm) with
degree bounded by n/2− 1.

Time complexity - Computing the coefficients of g0 takes n/2 additions in R, while computing the coeffi-
cients of g1 takes n/2 additions in R and n/2 multiplications by powers of ω. Each of step 4 and 5 computes
a DFT of a polynomial whose degree is bounded by n/2− 1. By solving the recurrence, we get the following
lemma.

Lemma 3 (FFT complexity) Fast Fourier Transform computes the DFT of a polynomial f with degree
bounded by n− 1 using O(n log n) additions in R and O(n log n) multiplications by powers of ω.

4-2



Let us now see an application of FFT in designing a polynomial multiplication algorithm over a ring that
‘supports’ FFT. We say that a ring R supports FFT for a choice of n, if R contains a principal nth root of
unity.

3 Polynomial multiplication over a ring that supports FFT

Suppose f, g ∈ R[x] be two polynomials of degree less than n/2, where R contains a principal nth root of
unity ω (once again assume that n is a power of 2). The product polynomial h = fg has degree less than
n and hence it makes sense to talk about DFT of h using a principal nth root of unity. Let h =

∑n−1
i=0 hix

i

and h = (h0, h1, . . . , hn−1). Recall from Equation (1) that the inverse-DFT is a map DFTω−1 that sends,

DFTω−1 : (h(1), h(ω), . . . , h(ωn−1)) 7→ n · h

Basically, DFTω−1 is a DFT using ωn−1 as the root of unity. This observation suggests the following
polynomial multiplication algorithm. Let h̃ =

∑n−1
i=0 h(ωi)xi, where h(ωi) = f(ωi)g(ωi).

Algorithm 2 Polynomial multiplication using FFT
1. Compute DFT of f to find the vector (f(1), f(ω), . . . , f(ωn−1)).
2. Compute DFT of g to find the vector (g(1), g(ω), . . . , g(ωn−1)).
3. Multiply the two vectors component-wise and obtain (h(1), h(ω), . . . , h(ωn−1)).
4. Compute DFT of h̃ using ωn−1 as the root of unity to get the vector n · h.
5. Multiply n · h by the inverse of n in R to get h.

Time complexity - In steps 1, 2 and 4 the algorithm computes three DFTs, each using a principal nth

root of unity. The component-wise multiplications in step 3 takes n multiplications in R, and step 5 takes
n multiplications by the inverse of n in R (assume that we know the inverse of n a priori). Therefore,
the overall time complexity of the algorithm is O(n log n) additions and mulitplications in R. (The trivial
polynomial multiplication algorithm would have taken O(n2) additions and multiplications over R.) We
summarize this in the following lemma.

Lemma 4 Multiplication of two polynomials of degree less than n/2 (n is a power of 2) in R[x], where R
contains a principal nth root of unity ω, takes O(n log n) additions in R, O(n log n) multiplications by powers
of ω, n multiplications by the inverse of n in R, and n multiplications in R.

The last n multiplications in R comes from the component-wise multiplications in step 3 of the above
algorithm. The assumption we made for the above algorithm to work is that the underlying ring R contains
a principal nth root of unity, where n is a power of 2. What if it doesn’t? This is handled by an algorithm
due to Schönhage and Strassen [SS71]. The basic idea behind their algorithm is to attach a “virtual” root
of unity to the ring R, if R doesn’t contain a suitable root of unity to begin with. We will see a glimpse
of this idea at work when we discuss an integer multiplication algorithm in the next class. However, in the
process of attaching a “virtual” root, the complexity of the polynomial multiplication algorithm becomes
slightly worse.

Theorem 5 [Schönhage and Strassen (1971)] Over any commutative ring R, two polynomials of degree less
than n can be multiplied using O(n log n log log n) additions and multiplications in R.

Exercises:
1. Prove Lemma 2.
2. Show that if ω is a principal nth root of unity in R then ωn−1 is also a principal nth root of unity in R.
3. Show that if ω is a principal nth root of unity in R and t divides n, then ωn/t is a principal tth root of
unity in R.

4-3



References

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2003.

[SS71] A Schönhage and V Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971.

4-4


