
Slides based on Kevin Wayne / Pearson-Addison Wesley 

Interval Scheduling: Greedy Algorithms 
and 

Dynamic Programming 
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Overview of Interval Scheduling 

The Basic Interval Scheduling Problem 
  Schedule as many non-overlapping tasks as possible in given timeframe 
  (Representative problem #1 from day #1) 

 
Total Interval Scheduling  
  Must schedule all tasks 
  Identify the fewest number of processors needed to schedule within given 

timeframe 

Weighted Interval Scheduling 
  Schedule non-overlapping tasks of maximum weight in given timeframe 
  (Representative problem #2 from day #1) 

 
We’ll look for greedy solutions when possible, and use dynamic programming 
when greedy algorithms don’t appear to work out. 
 



Slides based on Kevin Wayne / Pearson-Addison Wesley 3 

Interval Scheduling 

Interval scheduling. 
  Job j starts at sj and finishes at fj. 
  Two jobs compatible if they don't overlap. 
  Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 

 
  [Earliest start time]  Consider jobs in ascending order of start time 

sj. 

  [Earliest finish time]  Consider jobs in ascending order of finish 
time fj. 

  [Shortest interval]  Consider jobs in ascending order of interval 
length  fj - sj. 

  [Fewest conflicts]  For each job, count the number of conflicting 
jobs cj. Schedule in ascending order of conflicts cj. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 

 

breaks earliest start time 

breaks shortest interval 

breaks fewest conflicts 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the ones already taken. 

 
 
 
 
 
 
 
 
 
 
 
 
Implementation.  O(n2). 
  While loop is O(n).   
  Inside of loop is O(n).  (Argmin is O(n).  Updating Remain is O(n).) 

 

Interval Scheduling:  Greedy Algorithm 

INTERVAL-SCHEDULING( s1, f1, …, sn, fn ) 
1.   Remain = {1,…,n} 
2.   Selected = {} 
3.   while ( |Remain| > 0 ) { 
4.      k = argmin i ∈ Remain fi 
5.      Selected = Selected ∪ {k} 
6.      Remain = Remain – {k} 
7.      for every i in Remain { 
8.         if (si < fk) then Remain = Remain – {i} 
9.      } 
10.   } 
11.   RETURN Selected 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the ones already taken. 

 
 
 
 
 
 
 
 
 
 
 
Implementation.  O(n log n). 
  Remember job j* that was added last to A. 
  Job j is compatible with A if sj ≥ fj*. 

 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
 
A ← φ 
for j = 1 to n { 
   if (job j compatible with A) 
      A ← A ∪ {j} 
} 
return A   

jobs selected  

Interval Scheduling:  Greedy Algorithm 
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 
 
Pf.  (by contradiction) 
  Assume greedy is not optimal, and let's see what happens. 
  Let i1, i2, ... ik denote set of jobs selected by greedy. 
  Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i1 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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j1 j2 jr 

i1 i1 ir ir+1 

Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 
 
Pf.  (by contradiction) 
  Assume greedy is not optimal, and let's see what happens. 
  Let i1, i2, ... ik denote set of jobs selected by greedy. 
  Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

. . . 

Greedy: 

OPT: 

solution still feasible and optimal 

ir+1 

job ir+1 finishes before jr+1 

Could be added to Greedy.  
Contradicts greedy construction. 



Slides based on Kevin Wayne / Pearson-Addison Wesley 10 

Interval Scheduling:  Analysis 

Interval Scheduling by Dynamic Programming 
 
Could this problem also be solved by dynamic programming? 
  Yes.  Sort by finish time. 
  Let S[k] = max(S[k-1], 1 + S[j]) 

–  Where k is the items (intervals) ordered by finish time 
–  Where j < k is the largest index such that the finish time of item 

j does not overlap the start time of item k 
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Interval Partitioning:  Scheduling All 
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Interval Partitioning 

Interval partitioning. 
  Lecture j starts at sj and finishes at fj. 
  Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 
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Interval Partitioning 

Interval partitioning. 
  Lecture j starts at sj and finishes at fj. 
  Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

Ex:  This schedule uses only 3. 
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Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 
contain any given time. 

 
Key observation.  Number of classrooms needed  ≥  depth. 
 
Ex:  Depth of schedule below = 3  ⇒  schedule below is optimal. 
 
 
Q.  Does there always exist a schedule equal to depth of intervals? 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  
assign lecture to any compatible classroom. 

 
 
 
 
 
 
 
 
 
 
 
Implementation.  O(n log n). 
  For each classroom k, maintain the finish time of the last job added. 
  Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn. 
d ← 0 
 
for j = 1 to n { 
   if (lecture j is compatible with some classroom k) 
      schedule lecture j in classroom k 
   else 
      allocate a new classroom d + 1 
      schedule lecture j in classroom d + 1 
      d ← d + 1  
}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Observation.  Greedy algorithm never schedules two incompatible 
lectures in the same classroom. 

 
Theorem.  Greedy algorithm is optimal. 
Pf.   
  Let d = number of classrooms that the greedy algorithm allocates. 
  Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms. 
  Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj. 
  Thus, we have d lectures overlapping at time sj + ε. 
  Key observation  ⇒  all schedules use ≥ d classrooms.  ▪ 
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Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 
  Job j starts at sj, finishes at fj, and has weight/cost/value vj .  
  Two jobs compatible if they don't overlap. 
  Goal:  find maximum weight subset of mutually compatible jobs. 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time. 
  Add job to subset if it is compatible with previously chosen jobs. 

 
 
 
Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming:  Binary Choice 

Notation.  S[j] = value of optimal solution to the problem consisting of 
job requests 1, 2, ..., j. 

 
  Case 1:  j is selected. 

–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  j is not selected. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

S[ j]=
0 if  j= 0

max vj + S[p( j)], S[ j −1]{ } otherwise

"
#
$

%$

optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Brute force algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  

 
Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence. 
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Improved Complexity 

Top-down dynamic programming:  Memoization. 
 
Bottom-up dynamic programming.  Unwind recursion. 
 
Running Time.  O(n log n) to sort.  O(n2) for straight forward 

computation of all p(i).  (Can be done in O(n log n) by also sorting 
jobs by start time.)  O(n) for iterative loop. 

 
Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Iterative-Compute-Opt { 
   S[0] = 0 
   for j = 1 to n 
      S[j] = max(vj + S[p(j)], S[j-1]) 
} 


