# Interval Scheduling: Greedy Algorithms and Dynamic Programming



# Overview of Interval Scheduling

#### The Basic Interval Scheduling Problem

- Schedule as many non-overlapping tasks as possible in given timeframe
- (Representative problem #1 from day #1)

#### Total Interval Scheduling

- Must schedule all tasks
- Identify the fewest number of processors needed to schedule within given timeframe

#### Weighted Interval Scheduling

- Schedule non-overlapping tasks of maximum weight in given timeframe
- (Representative problem #2 from day #1)

We'll look for greedy solutions when possible, and use dynamic programming when greedy algorithms don't appear to work out.

# Interval Scheduling

#### Interval scheduling.

- Job j starts at  $s_j$  and finishes at  $f_j$ .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



Slides based on Kevin Wayne / Pearson-Addison Wesley

# Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- $\blacksquare$  [Earliest start time] Consider jobs in ascending order of start time  $s_{j}$ .
- ullet [Earliest finish time] Consider jobs in ascending order of finish time  $f_j$ .
- [Shortest interval] Consider jobs in ascending order of interval length  $f_j$   $s_j$ .
- [Fewest conflicts] For each job, count the number of conflicting jobs  $c_j$ . Schedule in ascending order of conflicts  $c_j$ .

# Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.



# Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

```
INTERVAL-SCHEDULING(s_1, f_1, ..., s_n, f_n)

1. Remain = \{1, ..., n\}

2. Selected = \{\}

3. while (|Remain| > 0) {

4.         k = argmin _{i \in Remain} f_i

5.         Selected = Selected \cup {k}

6.         Remain = Remain - {k}

7.         for every i in Remain {

8.             if (s_i < f_k) then Remain = Remain - {i}

9.         }

10. }
```

Implementation.  $O(n^2)$ .

- While loop is O(n).
- Inside of loop is O(n). (Argmin is O(n). Updating Remain is O(n).)

# Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n. 

 \begin{array}{l} \text{jobs selected} \\ A \leftarrow \varphi \\ \text{for j = 1 to n } \{ \\ \text{ if (job j compatible with A)} \\ \text{ } A \leftarrow A \cup \{j\} \\ \} \\ \text{return A} \end{array}
```

## Implementation. O(n log n).

- Remember job j\* that was added last to A.
- Job j is compatible with A if  $s_j \ge f_{j*}$ .

# Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

#### Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let  $i_1$ ,  $i_2$ , ...  $i_k$  denote set of jobs selected by greedy.
- Let  $j_1$ ,  $j_2$ , ...  $j_m$  denote set of jobs in the optimal solution with  $i_1 = j_1$ ,  $i_2 = j_2$ , ...,  $i_r = j_r$  for the largest possible value of r.



# Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

#### Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let  $i_1$ ,  $i_2$ , ...  $i_k$  denote set of jobs selected by greedy.
- Let  $j_1$ ,  $j_2$ , ...  $j_m$  denote set of jobs in the optimal solution with  $i_1 = j_1$ ,  $i_2 = j_2$ , ...,  $i_r = j_r$  for the largest possible value of r.



## Interval Scheduling: Analysis

#### Interval Scheduling by Dynamic Programming

Could this problem also be solved by dynamic programming?

- Yes. Sort by finish time.
- Let S[k] = max(S[k-1], 1 + S[j])
  - Where k is the items (intervals) ordered by finish time
  - Where j < k is the largest index such that the finish time of item j does not overlap the start time of item k

# Interval Partitioning: Scheduling All

# Interval Partitioning

#### Interval partitioning.

- Lecture j starts at  $s_j$  and finishes at  $f_j$ .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.



# Interval Partitioning

#### Interval partitioning.

- Lecture j starts at  $s_j$  and finishes at  $f_j$ .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.



# Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below =  $3 \Rightarrow$  schedule below is optimal.

a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?



# Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n. d \leftarrow 0 \leftarrow \text{number of allocated classrooms}

for j = 1 to n \in \{1 \text{ if (lecture } j \text{ is compatible with some classroom } k) \}
\text{schedule lecture } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ in classroom } k \in \{1 \text{ else } j \text{ else } k \in \{1 \text{ else } j \text{ else } k \in \{1 \text{ else }
```

#### Implementation. O(n log n).

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.

# Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal. Pf.

- Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than  $s_i$ .
- Thus, we have d lectures overlapping at time  $s_j + \epsilon$ .
- Key observation  $\Rightarrow$  all schedules use  $\ge$  d classrooms.  $\blacksquare$

# Weighted Interval Scheduling

# Weighted Interval Scheduling

#### Weighted interval scheduling problem.

- $\blacksquare$  Job j starts at  $s_j$ , finishes at  $f_j$ , and has weight/cost/value  $v_j$  .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.



Slides based on Kevin Wayne / Pearson-Addison Wesley

# Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.



# Weighted Interval Scheduling

Notation. Label jobs by finishing time:  $f_1 \le f_2 \le ... \le f_n$ . Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.



Slides based on Kevin Wayne / Pearson-Addison Wesley

# Dynamic Programming: Binary Choice

Notation. S[j] = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: j is selected.
  - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
  - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

    optimal substructure

Case 2: j is not selected.

- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$S[j] = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + S[p(j)], S[j-1] \right\} & \text{otherwise} \end{cases}$$

# Weighted Interval Scheduling: Brute Force

#### Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

# Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems  $\Rightarrow$  exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.



# Improved Complexity

Top-down dynamic programming: Memoization.

Bottom-up dynamic programming. Unwind recursion.

Running Time.  $O(n \log n)$  to sort.  $O(n^2)$  for straight forward computation of all p(i). (Can be done in  $O(n \log n)$  by also sorting jobs by start time.) O(n) for iterative loop.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
    S[0] = 0
    for j = 1 to n
    S[j] = max(v_j + S[p(j)], S[j-1])
}
```