
Slides based on Kevin Wayne / Pearson-Addison Wesley

Interval Scheduling: Greedy Algorithms
and

Dynamic Programming

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Slides based on Kevin Wayne / Pearson-Addison Wesley 2

Overview of Interval Scheduling

The Basic Interval Scheduling Problem
  Schedule as many non-overlapping tasks as possible in given timeframe
  (Representative problem #1 from day #1)

Total Interval Scheduling
  Must schedule all tasks
  Identify the fewest number of processors needed to schedule within given

timeframe

Weighted Interval Scheduling
  Schedule non-overlapping tasks of maximum weight in given timeframe
  (Representative problem #2 from day #1)

We’ll look for greedy solutions when possible, and use dynamic programming
when greedy algorithms don’t appear to work out.

Slides based on Kevin Wayne / Pearson-Addison Wesley 3

Interval Scheduling

Interval scheduling.
  Job j starts at sj and finishes at fj.
  Two jobs compatible if they don't overlap.
  Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Slides based on Kevin Wayne / Pearson-Addison Wesley 4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

  [Earliest start time] Consider jobs in ascending order of start time

sj.

  [Earliest finish time] Consider jobs in ascending order of finish
time fj.

  [Shortest interval] Consider jobs in ascending order of interval
length fj - sj.

  [Fewest conflicts] For each job, count the number of conflicting
jobs cj. Schedule in ascending order of conflicts cj.

Slides based on Kevin Wayne / Pearson-Addison Wesley 5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Slides based on Kevin Wayne / Pearson-Addison Wesley 6

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n2).
  While loop is O(n).
  Inside of loop is O(n). (Argmin is O(n). Updating Remain is O(n).)

Interval Scheduling: Greedy Algorithm

INTERVAL-SCHEDULING(s1, f1, …, sn, fn)
1.   Remain = {1,…,n}
2.   Selected = {}
3.   while (|Remain| > 0) {
4.   k = argmin i ∈ Remain fi
5.   Selected = Selected ∪ {k}
6.   Remain = Remain – {k}
7.   for every i in Remain {
8.   if (si < fk) then Remain = Remain – {i}
9.   }
10.   }
11.   RETURN Selected

Slides based on Kevin Wayne / Pearson-Addison Wesley 7

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).
  Remember job j* that was added last to A.
  Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

Slides based on Kevin Wayne / Pearson-Addison Wesley 8

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
  Assume greedy is not optimal, and let's see what happens.
  Let i1, i2, ... ik denote set of jobs selected by greedy.
  Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

Slides based on Kevin Wayne / Pearson-Addison Wesley 9

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
  Assume greedy is not optimal, and let's see what happens.
  Let i1, i2, ... ik denote set of jobs selected by greedy.
  Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal

ir+1

job ir+1 finishes before jr+1

Could be added to Greedy.
Contradicts greedy construction.

Slides based on Kevin Wayne / Pearson-Addison Wesley 10

Interval Scheduling: Analysis

Interval Scheduling by Dynamic Programming

Could this problem also be solved by dynamic programming?
  Yes. Sort by finish time.
  Let S[k] = max(S[k-1], 1 + S[j])

–  Where k is the items (intervals) ordered by finish time
–  Where j < k is the largest index such that the finish time of item

j does not overlap the start time of item k

Slides based on Kevin Wayne / Pearson-Addison Wesley

Interval Partitioning: Scheduling All

Slides based on Kevin Wayne / Pearson-Addison Wesley 12

Interval Partitioning

Interval partitioning.
  Lecture j starts at sj and finishes at fj.
  Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Slides based on Kevin Wayne / Pearson-Addison Wesley 13

Interval Partitioning

Interval partitioning.
  Lecture j starts at sj and finishes at fj.
  Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Slides based on Kevin Wayne / Pearson-Addison Wesley 14

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

Slides based on Kevin Wayne / Pearson-Addison Wesley 15

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).
  For each classroom k, maintain the finish time of the last job added.
  Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d ← 0

for j = 1 to n {
 if (lecture j is compatible with some classroom k)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ← d + 1
}

number of allocated classrooms

Slides based on Kevin Wayne / Pearson-Addison Wesley 16

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
  Let d = number of classrooms that the greedy algorithm allocates.
  Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.
  Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.
  Thus, we have d lectures overlapping at time sj + ε.
  Key observation ⇒ all schedules use ≥ d classrooms. ▪

Slides based on Kevin Wayne / Pearson-Addison Wesley

Weighted Interval Scheduling

Slides based on Kevin Wayne / Pearson-Addison Wesley 18

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight/cost/value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Slides based on Kevin Wayne / Pearson-Addison Wesley 19

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

Slides based on Kevin Wayne / Pearson-Addison Wesley 20

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Slides based on Kevin Wayne / Pearson-Addison Wesley 21

Dynamic Programming: Binary Choice

Notation. S[j] = value of optimal solution to the problem consisting of
job requests 1, 2, ..., j.

  Case 1: j is selected.

–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

  Case 2: j is not selected.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

S[j]=
0 if j= 0

max vj + S[p(j)], S[j −1]{ } otherwise

"
#
$

%$

optimal substructure

Slides based on Kevin Wayne / Pearson-Addison Wesley 22

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Slides based on Kevin Wayne / Pearson-Addison Wesley 23

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4
5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Slides based on Kevin Wayne / Pearson-Addison Wesley 24

Improved Complexity

Top-down dynamic programming: Memoization.

Bottom-up dynamic programming. Unwind recursion.

Running Time. O(n log n) to sort. O(n2) for straight forward

computation of all p(i). (Can be done in O(n log n) by also sorting
jobs by start time.) O(n) for iterative loop.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 S[0] = 0
 for j = 1 to n
 S[j] = max(vj + S[p(j)], S[j-1])
}

