
Assignment I

1. Suppose NSPACE(f(n))⊆ DTIME(fk(n)) for some constant k > 0 for all constructible f , can we
conclude that NP=co-NP or NP 6= co-NP? Justify.

2. Show that

• If NP 6= co-NP, then P 6= NP.

• If any co-NP complete problem is in NP then NP=co-NP.

• If any problem in NP∩ co-NP is NP-complete then NP=co-NP.

3. Suppose we define a language L ∈ polyL to be polyL-complete if for all L′ ∈ polyL, L′ �log
m L.

Show that there is no complete problem in the class polyL.

4. Let L be an NEXP complete problem. Let c be a constant such that L ∈ NTime(2nc
). Show that the

language L′ = {(x, 12|x|) : x ∈ L} is in NP. (L′ consists of strings in L suffixed by an exponentially
large number of 1s). Suppose L′ ∈ P, show that L is in EXP. From this, conclude that if P=NP, then
NEXP=EXP. The technique used in this proof is called padding argument.

5. Show that for any language L, L ∈ Dtime(nk) if and only if the language L′ = {(x, 1|x|k) : x ∈ L}
is in Dtime(n). (for each string x in L, we add L padded with |x|k 1s to L′). Using this, conclude
that P 6= Dspace(n).

6. Show that the problem of determining whether a graph is bipartite is in NL. (You need to use some
characterization for bipartite graphs).

7. Show that the problem of determining whether a graph is strongly connected (that is does there exists
a (directed) path from each vertex to the other) is NL complete. (Reduce from s− t REACH).

8. If P=NP, show that every language in P except two languages are NP complete. Which are these two
languages?

9. Recall that we defined polyL=
⋃

i DSPACE(logi n). The Steve’s class SC (named after Stefan Cook) is

defined as SC={L : L is accepted by some (off-line) Turing machine M that runs in time O(nc) steps

using at most O(logk n) space for some constants k and c}. Why is SC not the same as polyL∩ P?

10. Given graph (G1, G2), Show that the problem of deciding whether a graph G1 contains G2 as an
induced subgraph is NP-complete.

11. Recall that in the class we characterized NP as NP={L : there exists a polynomial time verifying
algorithm A such that x ∈ L if and only if there exists a polynomially (length) bounded y such that
A(x, y) = 1}. Show that co-NP={L : there exists a polynomial time verifying algorithm A such that
x ∈ L if and only if for all polynomially bounded y, A(x, y) = 1}.

12. Suppose we define the complexity class extending NP as follows: Σ2 = {L : there exists a polynomial
time verifying algorithm A(x, y, z)on three inputs and constants k1 and k2 such that x ∈ L if and

only if there exists y such that for all z satisfying |y| ≤ |x|k1 and |z| ≤ |x|k2 , A(x, y, z) = 1}. We

define the class Π2 = {L : L ∈ Σ2}. Derive a characterization as in the above problem for Π2. Show
that NP∪ co-NP ⊆ Σ2 and NP∪ co-NP ⊆ Π2

13. Suppose we try to give the following characterization for NL: We say that a language L is log-space
verifiable if there exists an off-line Turing machine M that runs using O(log n) work tape space having
a read only input tape supplied with two inputs – the first one being the string x whose membership
in L is to be determined and the second, a certificate y whose length is polynomially bounded by the
length of x such that (x, y) is accepted by M if and only if x ∈ L. Show that the class of log-space
verifiable languages is precisely NP. (It turns out that the ability to read y multiple times is causing the
problem. If M is allowed to read each bit of y only once, then we get NL.)

