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1. 3Suppose there exists a language A∈NP that is not NP complete, but satisfy the property that for all

B∈NP, B∈PA, then can we conclude that P 6=NP? Justify.

Soln: If P=NP, then any two non-trivial problems in NP are reducible to each other (under any notion
of polynomial time reduction).

2. 3If the graph isomorphism problem GI is NP complete and AM⊆NP, then can we conclude that NP=coNP?
Justify your answer.

Soln: GI is NP complete⇒ GNI is co-NP complete. AM⊆NP⇒ coNP⊆NP⇒ NP=coNP.

3. 3Let L ∈ BPP. Let A(x, r) be a polynomial time BPP verifier for L that uses m = poly(n) random

bits on input x of length n, such that Prr(A(x, r) 6= (x ∈ L)) ≤ 1
2n

. Suppose x ∈ L, |x| = n.

Let z1, z2, .., zm be randomly chosen from {0, 1}m. Show that the probability that there exists an
r ∈ {0, 1}m such that A(x, r ⊕ zi) = 0 for all 1 ≤ i ≤ m is strictly less than 1.

Soln: Fix any r. Pr(A(x, z1 ⊕ r) = 0 < 1
2n

for each i. Thus, Pr(∀iA(x, zi ⊕ r)) == ( 1
2n

)m =
1

2mn . Now, this is for any particular r. Probability that at least for one r(among 2m possibilities of r),∧
i A(x, r⊕zi) = 0 is an event of probability at most 2m( 1

2mn ) < 1. (Additonal Note: A consequence

of this observation is that if x ∈ L, there exists z1, z2, ..zm such that
∨

i A(x, r ⊕ zi) = 1 for all

r ∈ {0, 1}m).

4. 3If we are designing an MA protocol for a language L∈BPP with algorithm A(x, r) specified in the
previous question, then what must be the proof sent by Merlin to Arthur? What is the verification step
done by Arthur?

Soln: Assume that Pr(A(x, r) 6= (x ∈ L)) = 1
2n

. Merlin can choose z1, z2, ..zm specified in the
Additional note in the solution to the previous question to Arthur. Aruther choses a random r and
tests

∨
i A(x, r ⊕ zi) = 1. If x ∈ L, proper choice of z1, ..zm by Merlin ensures that Arthur will

accept. If x /∈ L, since r is randomly chosen, A(x, zi ⊕ r) = 1 with probability at most 1
2n

for each

i. Hence the probability that for some i A(x, zi ⊕ r) = 0 is bounded by (the union bound) m
2n

< 1
as m = poly(n) for n large enough.

5. 3If MA⊆ P/POLY, can we conclude that PH collapses? If so, to which level?

Soln: Since NP⊆MA (the verifier can get the certificate from Merlin and do the verification without even
doing coin tosses, achieving zero error), if MA⊆P/POLY, we have PH=Σp

2 by Karp Lipton Theorem.

6. 3Suppose we have an MA proof system for a language L where, given input string x, Merlin sends Arthur
a proof y for membership for x in L and Arthur guesses an m bit random string r and runs a verifier

A(x, y, r) which accepts with probability 1 when x ∈ L and accepts with probability less than 1
2m+1

when x /∈ L. Design an AM protocol for accepting L and prove the soundness and completeness of
your protocol.

Soln: Arthur picks r ∈ {0, 1}m and sends to Merlin. Merlin sends the proof y and Arthur runs

A(x, y, r). A randomly chosen r has probability at most 1
2m+1 to be “bad” for any fixed y (in that

A(x, y1, r) gives the wrong answer). Thus, the probability that r is bad for at least one y is at most
2k

2m+1 , where k is the length of each proof y. If this quantity is less than 1, we have an AM protocol.

We can set (through probability amplification) the value of m to meet the requirment m = k.

7. 3Show that AM⊆ Πp
2.

Soln: L ∈AM if there exists a polynomially balanced A(x, y, r) such that: a) x ∈ L⇒ ∀r∃yA(x, y, z) =
1. (This is a Πp

2 condition). b) if x /∈ L, Prr(∃yA(x, y, z) = 1) < 1
2
. Since the probability for

a particular r to satisfy ∀yA(x, y, r) = 0 is greater than 0, we conclude that ∃r∀yA(x, y, r) = 0,

which is a Πp
2 condition.



Computational Complexity Final Exam (contd.)

8. 3A symbolic n×n matrix A = (xij) has its (i, j)th entry set to either the indeterminate (variable) xij

or zero. The symbolic determinant problem (SYMDET) takes as input a symbolic n×n matrix A and
decides whether Det(A)=0. Show that the problem of testing whether an (n, n) bipartite graph has a
perfect matching is log-space reducible to SYMDET.

Soln: Consider the matrix A with A(i, j) = xij if (i, j) is an edge in G, 0 otherwise. It is easy to
see that the graph has determinant zero if and only if there is no perfect matching in G.

9. 3Let MB be a deterministic Turing machine that queries an oracle for a language B and runs for at most

nk steps on any input of length n. For any language B, define LB = {1n : B contains at least one

string of length n}. Design a language B such that L(MB) 6= LB .

Soln: Choose n0 such that 2n0 > nk. Define B as follows: B is either empty or contains at most one
string, and that too of length exactly n0. Consider the string 1n0 of length n0. We will define B in such
a way that MB(1n0) = 1 if and only if B is empty, thereby ensuring that L(MB) 6= LB . Suppose

M on input 1n0 querires strings x1, x2, ..., xt (t ≤ nk
0) to its oracle B, we will define B not to contain

any of the strings x1, x2, ..xt so that the answer supplied by the oracle is always 0. Finally, if MB(1n0)
accepts, we set B = ∅ and hence 1n0 /∈ LB . Otherwise, let x be any string in {0, 1}n0 different from

x1, x2, ..xt (such x must exist because 2n0 > nk). Let B = {x}. Now LB = {1n0} 6= L(MB).

10. 3Let R ⊆ Σ∗×Σ∗ be a polynomially balanced binary relation. Define the decision problem LR = {x :
∃yR(x, y) = 1} and #R(x) = |{y : R(x, y) = 1}|. Suppose it is true that for all polynomially

balanced R, #R ∈ PLR (that is, the certificate counting problem is Turing reducible to the certificate
existence problem for all languages in NP). Then show that P=NP.

Soln: for any R, #R�p
m#PM, where #PM is the problem of counting the number of perfect matchings

in a bipartite graph (Valiant’s theorem). However, the decision problem PM of checking whether a graph

contains a perfect matching is indeed in P. Hence, under the assumption in the question, #PM∈ P PM =
P . As #PM is #P complete, this would mean #P⊆ P, which in turn would imply P=NP.

11. 3Show that there exists a directed graph G and vertices s, t ∈ V (G) such that s− t path exists in G,
but a random walk in G starting s may fail to reach t with positive probability. (This shows that the
RL algorithm for s− t REACH on undirected graph will not work with directed graphs).

Soln: In the graph G(V,E) with V = {1, 2, 3} and E = {(1, 2)(1, 3)}, it is easy to see that a

random walk starting at 1 will visit only one of 2 and 3, each case happening with probability 1
2
.

12. 3A (cryptographic) one way function is a polynomial time computable f : Σ∗ −→ Σ∗ such that the

problem of computing f−1 is hard. That is, given any y ∈ Σ∗, the problem of finding an x such that
f(x) = y is not polynomial time computable. Show that if one way functions exist, then P6=NP.

Soln: Given y, a non-deterministic Turing machine can guess x and hence f−1 is in NP. Thus, if P=NP,
inversion will not be hard.

13. 3Show that Sp
2 ⊆ Σp

2 ∩ Πp
2.

Soln: By definition of Sp
2 , x ∈ L ⇒ ∃y∀z, P (x, y, z) = 1 This is a Σp

2 condition. Further,

x /∈ L ⇒ ∃z∀y, P (x, y, z) = 0, which implies the Σp
2 requirement ∀y∃zP (x, y, z) = 0, and

consequently Sp
2 ⊆ Σp

2. The proof for Sp
2 ⊆ Πp

2 is similar.
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