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. Suppose there exists a language AENP that is not NP complete, but satisfy the property that for all
BENP, BEPA7 then can we conclude that P#£NP? Justify.

Soln: 1f P=NP, then any two non-trivial problems in NP are reducible to each other (under any notion
of polynomial time reduction).

. If the graph isomorphism problem GI is NP complete and AMCNP, then can we conclude that NP=coNP?
Justify your answer.

Soln: GI is NP complete = GNI is co-NP complete. AMCNP = coNPCNP = NP=coNP.

. Let L € BPP. Let A(JJ, 7‘) be a polynomial time BPP verifier for L that uses m = pOly(n) random
bits on input = of length n, such that Pr.(A(z,r) # (x € L)) < 2% Suppose © € L, |x| = n.

Let z1, 29, .., Zm be randomly chosen from {0, l}m. Show that the probability that there exists an
r € {0,1}"™ such that A(z,7 @ z;) = 0 for all 1 < ¢ < m is strictly less than 1.

Soln: Fix any r. Pr(A(z,z ®r) =0 < 3 for each i. Thus, Pr(ViA(z,z ® 1)) == (5:)™ =
27%”. Now, this is for any particular 7. Probability that at least for one 7(among 2" possibilities of 1),

/\i A(z, 7@ z;) = 0is an event of probability at most Qm(L) < 1. (Additonal Note: A consequence

2mn
of this observation is that if £ € L, there exists 21, 22, ..2y, such that \/z A(:r, r P ZZ) =1 for all
re{0,1}™).

. If we are designing an MA protocol for a language LEBPP with algorithm A(:L‘, T) specified in the
previous question, then what must be the proof sent by Merlin to Arthur? What is the verification step
done by Arthur?

Soln: Assume that P?”(A(:U,T) =+ (:L' € L)) = 2% Merlin can choose 21, 29, ..2p, specified in the

Additional note in the solution to the previous question to Arthur. Aruther choses a random 7 and

tests \/Z A(m, r D z,) = 1. If x € L, proper choice of 21, ..2,, by Merlin ensures that Arthur will
accept. If « ¢ L, since 7 is randomly chosen, A(J}, 2 D T) = 1 with probability at most 2%
i. Hence the probability that for some ¢ A(x, z; @ r) = 0 is bounded by (the union bound) o <1

as m = poly(n) for n large enough.

for each

. If MAC P/POLY, can we conclude that PH collapses? If so, to which level?

Soln: Since NPCMA (the verifier can get the certificate from Merlin and do the verification without even
doing coin tosses, achieving zero error), if MACP/POLY, we have PH:Eg by Karp Lipton Theorem.

. Suppose we have an MA proof system for a language L where, given input string 2, Merlin sends Arthur
a proof Y for membership for  in L and Arthur guesses an m bit random string 7 and runs a verifier
A(:r;, Y, 7“) which accepts with probability 1 when x € L and accepts with probability less than zm%
when x §§ L. Design an AM protocol for accepting L and prove the soundness and completeness of
your protocol.

Soln: Arthur picks 7 € {0,1}"™ and sends to Merlin. Merlin sends the proof y and Arthur runs
A(SL’, Y, 7“). A randomly chosen 7 has probability at most Zm% to be “bad” for any fixed y (in that
A(x, U1, 7“) gives the wrong answer). Thus, the probability that 7 is bad for at least one ¥ is at most

k

Qiﬁ, where k is the length of each proof 9. If this quantity is less than 1, we have an AM protocol.
We can set (through probability amplification) the value of m to meet the requirment m = k.

. Show that AMC TI5.

Soln: L €AM if there exists a polynomially balanced A(a:, Y, 7’) such that: a) x € L = VTHQA(IE, 1Y, Z) =

1. (This is a [T§ condition). b) if x & L, Pr,(IyA(x,y,2) = 1) < % Since the probability for
a particular 7 to satisfy VyA(z,y,r) = 0 is greater than 0, we conclude that IrvVyA(z,y,r) = 0,
which is a TT5 condition.
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A symbolic 7 X n matrix A = (l’w) has its (i, j)th entry set to either the indeterminate (variable) x;;

or zero. The symbolic determinant problem (SYMDET) takes as input a symbolic 7 X 1 matrix A and
decides whether Det(A)=0. Show that the problem of testing whether an (n, n) bipartite graph has a
perfect matching is log-space reducible to SYMDET.

Soln: Consider the matrix A with A(4, j) = x;; if (4, j) is an edge in G, 0 otherwise. It is easy to
see that the graph has determinant zero if and only if there is no perfect matching in G.

Let M P be a deterministic Turing machine that queries an oracle for a language B and runs for at most
nk steps on any input of length 7. For any language B, define Lg = {1" : B contains at least one
string of length n}. Design a language B such that L(MP) # Lp.

Soln: Choose ng such that 20 > n*. Define B as follows: B is either empty or contains at most one
string, and that too of length exactly ng. Consider the string 1™ of length ng. We will define B in such
a way that MB(lno) = 1 if and only if B is empty, thereby ensuring that L(MB) # Lp. Suppose
M on input 1™ querires strings 1, Ta, ..., Ty (T < nlg) to its oracle B, we will define B not to contain

any of the strings 21, T, ..7; so that the answer supplied by the oracle is always 0. Finally, if M P (1m0)
accepts, we set B = () and hence 1" ¢ Lp. Otherwise, let - be any string in {0, 1}" different from

1, To,..Ty (such & must exist because 2"0 > nk) Let B = {x}. Now L = {1™} # L(MB).

Let R C ¥* X 3* be a polynomially balanced binary relation. Define the decision problem L = {z :
JyR(x,y) = 1} and #R(x) = |[{y : R(x,y) = 1}|. Suppose it is true that for all polynomially
balanced R, #R € P Lr (that is, the certificate counting problem is Turing reducible to the certificate
existence problem for all languages in NP). Then show that P=NP.

Soln: for any R, # R=P #PM, where #PM is the problem of counting the number of perfect matchings
in a bipartite graph (Valiant’s theorem). However, the decision problem PM of checking whether a graph

contains a perfect matching is indeed in P. Hence, under the assumption in the question, #PMé& P PM —
P. As #PM is #P complete, this would mean #PC P, which in turn would imply P=NP.

Show that there exists a directed graph (G and vertices 5,1 € V(G) such that § — ¢ path exists in G,
but a random walk in (G starting $ may fail to reach ¢ with positive probability. (This shows that the
RL algorithm for s — ¢ REACH on undirected graph will not work with directed graphs).

Soln: In the graph G(V, E) with V' = {1,2,3} and £ = {(1,2)(1,3)}, it is easy to see that a

random walk starting at 1 will visit only one of 2 and 3, each case happening with probability %

A (cryptographic) one way function is a polynomial time computable f : 3* — »* such that the

problem of computing f ~!is hard. That is, given any ¢y € ¥, the problem of finding an  such that
f(fl}) = 9 is not polynomial time computable. Show that if one way functions exist, then P;ANP.

Soln: Given 1Y, a non-deterministic Turing machine can guess  and hence f_l is in NP. Thus, if P=NP,
inversion will not be hard.

Show that Sg C Eg N Hg.

Soln: By definition of S5, x € L = dyVvz, P(:z:,y, Z) = 1 This is a Eg condition. Further,
x ¢ L = 3zVy, P(x,y,2) = 0, which implies the 35 requirement Vy3zP(z,y,2) = 0, and
consequently S5 C Y5 The proof for S5 C T is similar.
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