
Assignment I

Submit only answers to questions marked [S]

Q 1.a) Let G be a k×n generator matrix for an (n, k) linear code C. Show that
by elementary row transformations on the matrix G we can get an equivalent
matrix of the form G′ = [IkA] (the row reduced canonical form or Echelon
form) where Ik is the k×k identity matrix and A a k× (n−k) matrix. (The
matrix G′ is obtained by writing the matrices Ik and A together through row
wise concatenation into a single k × n matrix).
Q 1.b) Consider the (n − k) × n matrix H ′ = [AT In−k]. (Note that AT is
an (n − k) × k matrix and this concatenated with the identify matrix In−k

yields an (n− k)× n matrix.) What can you say about the matrix product
GHT . From this exercise, how can you provide a procedure for producing a
parity check matrix for a code, given its generator matrix?
Q 1.c)[S] Construct G′ corresponding to the matrix G below and find the

corresponding parity check matrix H ′. G =

[
1 0 1 0 1
1 1 1. .1 1

]
Q 1.d) This exercise takes up an “exceptional” case that can happen when
we reduce a matrix to the Echelon form. It might happen that one of the first
k columns in the Echelon form G′ is an all zero column. In that case show
that by column permutation, we can get an “equivalent” code (which has
bits of the codewords in the original code permuted) for which the exception
condition can be avoided. Hence, we may assume that the “exceptional” case
can be ignored in general.
Q 1.e) From G′, deduce that the minimum distance d(C) ≤ n− k + 1. This
bound is called the Singleton bound. In the example above, does the code
satisfy the Singleton bound with equality? (A code which satisfies equality
condition of the Singleton bound is called a maximum distance separable code
or MDS code).

Q 2.a) Consider the output space {0, 1, α}n of an n bit erasure channel
BECn(ε). Note that this space is not a vector space as no useful vector ad-
dition can be defined on this space. Nevertheless, we can define the distance
between vectors d(x, y) in the space {0, 1, α}n as the number of positions in
which x and y differ. Show that d satisfies all the axioms of a metric.
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Q 2.b) Suppose C be any (n, k) (not necessary linear) code. Upon trans-
mission of a codeword x from C using a BECn(ε), a vector r ∈ {0, 1, α}n

is received. What is the probability of receiving r conditioned on the event
that x was transmitted? (Express your answer in terms of d(x, r), n and ε).
Q 2.c) Using the above exercise, argue that Maximum Likelihood decoding
on BECn(ε) is equivalent to minimum distance decoding.
Q 2.d) Show that if the minimum distance d(C) = d, x ∈ C is transmitted
across a BECn(ε) and at most e < d bits are erased by the channel, then
minimum distance decoding will correctly recover the transmitted codeword.
Thus, if d(C) = d, then C can correct upto d− 1 erasures.
Q 2.e) Suppose there are e < d erasures. Suppose we treat the erasures as
unknowns on the received vector, then using the parity check matrix, show
that reduce computation of the erased bits into a problem solving e unknowns
from a set of n− k equations (note that by Singleton bound, n− k ≥ d− 1
and hence the number of equations are sufficient to solve the number of un-
knowns).
Q 2.f)[S] For the code in Q 1.c), suppose [0, α, 0, 1, 0]T is received upon trans-
mission across a BECn(ε)}, solve the parity check equations to solve the
erased bit. What happens if the received vector is [0, α, 0, α, 0]T ?
Q 2.g) In the last case of the example above, there are two unknowns and
three equations, yet the solution is not unique. Why is this not a contradic-
tion?
Q 2.h) What is the difficulty in trying to solve the decoding problem on the
BSCn(ε) channel using the same method of linear system of equations that
worked in the case of the BSCn(ε) channel?

Q 3.a)[S] Suppose x ∈ C e errors and f erasures to yield a vector r ∈
{0, 1, α}n. Prove that if 2e + f < d, then for any x′ ∈ C with x′ 6= x,
d(r, x) < d(r, x′). This shows that C is capable of recovering e transmission
errors and f erasures provided 2e + f < d.

Q 4) Consider an (n, k, d) linear code C with parity check matrix H. Let
H = [h1, h2, ..., hn] where the hi denotes column i of H. Suppose x ∈ C in
transmitted across a BSCn(ε) and r = x + e is received where e ∈ {0, 1}n is
the error introduced by the channel. The syndrome s(r) is defined by the
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equation s(r) = Hr.
Q 4.a) Show that s(x + e) = H(y + e) = s(e) for every x, y ∈ C. That
is, the syndrome depends only on the error pattern added and not on the
transmitted codeword. In particular show that s(x) = 0 if any only if x is a
codeword, ie., x ∈ C.
Q 4.b) Suppose e = [e1, e2, ..., en] where ei ∈ {0, 1} is bit i of the error pattern,
show that s(x + e) = s(e) = h1e1 + h2e2 + ... + hnen.
Q 4.c) Show that the Hamming weight of the minimum weight codeword
corresponds to the size of the smallest set of columns of H that adds up to
0. Hence conclude that d(C) is the minimum number of columns of H that
adds to zero. (This gives a method for finding the minimum distance from
the parity check matrix, but not an efficient one).
Q 4.d) If e, e′ ∈ {0, 1}n are error patterns with Hamming weight less than
d
2
, then show that s(e) 6= s(e′). This means that the syndrome uniquely

identifies any error less than d
2

bits. This allows us to have a lookup table
for each error pattern of weight less than d

2
and the corresponding syndrome.

Note that Hr = He is easy to compute and a table lookup will give the error
for any error e of weight less than d

2
. This procedure is called syndrome

decoding for linear codes.
Q 4.e) Show that the size of the lookup table can be as large as 2n−k. (look
at rank(H).). Hence, this method is not an efficient procedure.

Q 5.a)[S] Consider the following parity check matrix H3 =

1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1


(Note that the columns of this matrix are all non-zero patterns in {0, 1}3

hence the notation H3.) Find the generator matrix for the above parity
check matrix. (Use Q.1)
Q 5.b)[S] Find the rate k and the minimum distance d (Use Q.4) of the code.
Q 5.c)[S] Construct the syndrome lookup table (Q.4) for this code. Show
that syndrome decoding corrects any one bit error in transmission. Write
down the syndromes corresponding to each one bit error pattern.
Q 5.d)[S] Suppose a one bit error resulted in receiving [1, 1, 0, 1, 0, 0, 1]T , Find
the syndrome and the transmitted pattern. Can you give another error pat-
tern (of multiple bits) that give the same syndrome?
Q 5.e)[S] Suppose you receive [0, α, 0, α, 0, 0, 0]T on a erasure channel, what
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was the transmitted codeword (use Q.2)?
Q 5.f)[S] Define Hk as the parity check matrix whose columns comprises of
all non-zero binary strings of length k. (the above case had k = 3). The
resultant code family (one code for each k) is called the family of Hamming
Codes Hk. Find the rate and minimum distance of Hk. How large will be
the syndrome decoding lookup table for these codes?

Q 6.a)[S] This question develops the theory of Extended Hamming Codes,
Hk. The parity check matrix Hk is the (k+1)×n matrix obtained by adding

a row of all 1s to to H. For instance, H3 =


1 1 0 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1
1 1 1 1 1 1 1


Show that the minimum distance of Hk = 4. What is the rate?
Q 6.b)[S] Show that any two bit error pattern will give non-zero syndrome
for these codes. Hence show that these codes can detect (but not correct-
why?) two bit errors and correct one bit errors.
Q 6.c)[S] How will you modify the syndrome decoding procedure of Hamming
codes to suit the extended Hamming codes so that we can detect two bit
errors and correct one bit errors?
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