
Assignment III

1. Solve problems 4,5,6,7 from Assignment II.

2. As discussed earlier in class, a Tanner graph corresponding to a parity check matrix H is a bipartite graph
G = (L,R,E) with one left vertex per variable, one right vertex per parity check and an edge connecting
each variable to the parity checks in which the variable is involved. ∅ 6= S ⊆ L is called a stopping set in G
if there is no parity check that is connected to exactly one variable in the set S. The stopping distance of a
Tanner graph is the size of the smallest stopping set. Show that the stopping distance of a Tanner graph is
at most the minimum distance of the code.

3. Show that Stopping distance is not an intrinsic property of the code. i.e., Two Tanner graphs for the
same code may have different stopping distances.

4. Suppose G = (L,R,E) is the Tanner graph corresponding to the parity check matrix H for a code C.
Suppose the code is used for transmission across BEC(ε) and the number of erasures in a received codeword
is non-zero, but less than the stopping distance of G, then, there is at least one parity check which has
exactly one unknown. Hence, we can solve this unknown and repeat the process. This decoding strategy is
called iterative decoding. Argue that iterative decoding can correct erasures up to the stopping distance of
G.

5. Consider an Tanner graph G = (L,R,E), where |L| = n > |R| = m with ever vertex on the left having
degree c and every vertex on the right having degree d. Show that the code has rate at least 1− c

d . Suppose,
we use a (d, r, δ) code for each parity check, show that the rate is at least (1− c(1− r)).

6. Suppose instead of binary alphabet, we construct code over the alphabet Σ = {0, 1, 2, 3} (as in QPSK
signaling), show that a code (even a non-linear one) C of length n with M codewords and minimum distance
at least d must satisfy M ≤ 4n−d+1.

7. In this question, we will prove an asymptotic version of Gilbert Varshamov bound for linear codes.
Suppose we pick a random k × n generator matrix G over F2. We will denote by Bδn the number of points
in a Hamming ball of radius δn in {0, 1}n. Let S denote the set of all vectors of Hamming weight at most
δn in {0, 1}n. Clearly S contain Bδn vectors.

1. Let m0 ∈ {0, 1}k y0 ∈ {0, 1}n be any two vectors. argue that Pr(mG = y) = 1
2n .

2. Argue that Pr(mG ∈ S) ≤ Bδn
2n

3. Argue that Pr(∃m ∈ {0, 1}k : mG ∈ S) ≤ 2k Bδn2n .

4. Argue that if k = n(1−h(δ)−ε) for any ε > 0, the probability above is strictly less than 1 for sufficiently
large n.

5. Hence prove that if k < n(1 − h(δ)) for any ε > 0, there exists a linear (n, k, δn) code for sufficiently
large n.

8. Consider the (4, 2, 3) Reed Solomon code over Z5 obtained by evaluating the degree 2 polynomial a0 +a1x
at the values 0, 1, 2, 3 (where addition and multiplication are modulo 5). Suppose the codeword is transmitted
across a binary symmetric channel and the vector (1, 3, 3, 4) is received. Set up the equations for the
Berlekamp Welch decoder and find out the polynomials q(x) and e(x) to recover the transmitted polynomial.


