Lovasz’s Perfect Graph Theorem

Let Ry = {z € R: z > 0}. We view an elements of RY as vectors, but use function notation,
so if z € RY and v € V we write (v) instead of z,. For S C V we define z(S) = Y, s z(v).

Independent set polytopes: For every graph G = (V, E') we define the polytopes

P(G)={z e R : x(K) <1 for every clique K}

Pi(G)=A{z € RK : x is a convex combination of characteristic vectors of independent sets}.
Integral: A polytope is integral if every vertex has all coordinates integers.
Observation 1 P(G) is integral if and only if P(G) = P;(G).

Proof: This follows from the observation that the integral points in P(G) are precisely the

characteristic vectors of independent sets. (Thus P;(G) C P(G), and P(G) = P;(G) if and
only if every vertex of P(G) is a vertex of P;(G).) O

Observation 2 If P(G) is integral and X C V(G), then P(G \ X) is integral.

Proof: 1t suffices to show that P(G \ v) is integral for an arbitrary vertex v € V(G).
To see this, note that P(G \ v) is precisely the intersection of P(G) with the hyperplane
{x € RV : z(v) = 0}. Since z(v) > 0 is a constraint of P(G), it follows that P(G \ v) is a
face of P(G). It is an immediate consequence of this that P(G \ v) is integral. O

Perfect Graphs: We say that a graph G is perfect if w(G'\ X) = x(G \ X) for every
X C V(G). Note that if G is perfect, then G'\ Y is perfect for every Y C V(G).

Replication: Let G be a graph and let v € V(G). To replicate v, we add a new vertex v’
to the graph add an edge between v" and every neighbor of v and then add an edge between

v and v.

Lovasz Weightings: If w € ZK, we let G, be the graph obtained from G by deleting every
vertex v with w(v) = 0 and replicating each vertex v with w(v) > 0 exactly w(v) — 1 times

(note that the resulting graph does not depend on the order of operations).



Lemma 3 If G is perfect and w € ZK, then G, is perfect.

Proof: Since G, is obtained from a sequence of vertex deletions and replications, it suffices
to show that if the graph G’ is obtained from G by replicating the vertex v, then G’ is
perfect. To prove this, it is enough to show that y(G’') = w(G’) since for any induced
subgraph of G’ a similar argument works. In fact, x(G’) > w(G’) trivially, so we need
only prove that x(G') < w(G’). If v is contained in a maximum clique of G, then we have
w(G@) =w(G@)+1=x(G)+1> x(G"). Thus, we may now assume that v is not contained
in a maximum clique of G. Next, let w = w(G), choose a colouring of G with colour classes
Ay, Ay, ..., Ay, and assume that v € A,,. Since the graph G\ (A4, \ {v}) is a perfect graph
which has no clique of size w (why!), we may choose a colouring of this graph with colour
classes By, B, ..., B, 1. Now, By, By, ..., B, 1, A, is a list of independent sets in G which
use v twice, and every other vertex once. By replacing one occurence of v with v/, we get a

colouring of G’ with w colours. Thus x(G’) < w = w(G") and we are finished. O

Theorem 4 (Lovasz’s Perfect Graph Theorem) For every graph G = (V, E), the fol-

lowing are equivalent.
(i) G is perfect.

(ii) P(G) is integral.

(iii) G is perfect.

Proof: Tt suffices to show (i) = (i) = (iii), since G = G then yields (iii) = (i).

(i) = (ii): To prove (ii), we shall show that P(G) = P;(G). Let x € P(G) N QY. Now
it suffices to show x € P;. Choose a positive integer N so that w = Nz € Z", and consider
the graph G,. For every i € V', let Y; be the set of vertices in G,, which are equal to 7 or
obtained by replicating i and let 7 : V(G,,) — V be given by the rule that 7(u) =i if u € ;.
Let K be a maximum size clique in G, and let K = 7(K). Then, K is a clique of G' and
further,

W(G) = K] < 3 Vil = (k) = Na(K) < N
€K
(here the last inequality follows from z € P(G)). Since G, is perfect, we may choose a

colouring of it with colour classes Ay, Ay, ..., Ay. Now, consider 7(A4;),7(As), ..., m(An).
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This is a list of independent sets in G which use every vertex ¢ € V exactly w(i) times.
It follows from this that x = %w = % Zévzl 1rca,) where 1, is the characteristic vector of
A CV. Thus z € P; as desired.

(ii) = (iii): It follows from Observation 2 that property (ii) holds for any subgraph
obtained from G by deleting vertices. In light of this, it suffices to prove x(G) = w(G). We
shall prove this by induction on |V|. As a base, observe that the result holds for the trivial
graph. Let a = «(G) be the size of the largest independent set in G. Since P(G) is integral
(i.e. P(G) = Pi(Q)), every vertex of P(G) is the characteristic vector of an independent
set. It follows from this that ' = P(G) N {z € RY : 271 = a} is a face of P(G). Consider
a generic point x in the face F. There must be a constraint of the form x(K) < 1 which is
tight for o (otherwise, the only tight constraints are nonnegativity constraints, and we could
freely increase any positive coordinate of x while staying in P(G) - which is contradictory).
Now the constraint z(K) < 1 must be tight for every point in F', and it follows that the
clique K has nonempty intersection with every independent set of G of size a.. This gives us
a(G\ K) = a(G) — 1 or equivalently, w(G \ K) = w(G) — 1. By induction, we may choose
a colouring of G'\ K using w(G) — 1 colours. Adding the set K (which is independent in G)

to this, gives us a colouring of G using w(G) colours, thus completing the proof. U



