Lecture 36 Luby’s Algorithm

In this lecture and the next we develop a probabilistic NC' algorithm of Luby
for finding a maximal independent set in an undirected graph. Recall that
a set of vertices of a graph is independent if the induced subgraph on those
vertices has no edges. A maximal independent set is one contained in no
larger independent set. A maximal independent set need not be of maximum
cardinality among all independent sets in the graph.

There is a simple deterministic polynomial-time algorithm for finding a
maximal independent set in a graph: just start with an arbitrary vertex and
keep adding vertices until all remaining vertices are connected to at least one
vertex already taken. Luby [76] and independently Alon, Babai, and Itai [6]
showed that the problem is in random NC (RNC'), which means that there
is a parallel algorithm using polynomially many processors that can make
calls on a random number generator such that the expected running time is
polylogarithmic in the size of the input.

The problem is also in (deterministic) NC. This was first shown by Karp
and Wigderson [59]. Luby [76] also gives a deterministic NC' algorithm, but
his approach has a decidedly different flavor: he gives a probabilistic algorithm
first, then develops a general technique for converting probabilistic algorithms
to deterministic ones under certain conditions. We will see how to do this in
the next lecture.

Luby’s algorithm is a good vehicle for discussing probabilistic algorithms,
since it illustrates several of the most common concepts used in the analysis
of such algorithms:

191

192 LECTURE 36 LuUBY’S ALGORITHM

Law of Sum. The law of sum says that if A is a collection of pairwise
disjoint events, i.e. if ANB = () for all A, B € A, A # B, then the probability
that at least one of the events in A occurs is the sum of the probabilities:

rJA4) = X Pr(4)

AeA

Expectation. The ezpected value £X of a discrete random variable X is the
weighted sum of its possible values, each weighted by the probability that X
takes on that value:

> n-Pr(X =n).
For example, consider the toss of a coin. Let

Y - { 1, if the coin turns up heads (57)

0, otherwise.

Then £X = % if the coin is unbiased. This is the expected number of heads
in one flip. Any function f(X) of a discrete random variable X is a random
variable with expectation

Ef(X) = Zn'Pr(f(X)Zn)
= Zf -Pr(X =m) .

It follows immediately from the definition that the expectation function &£
is linear. For example, if X; are the random variables (57) associated with n
coin flips, then

EXi+Xo+--+X,) = EX1+EXe+---+EX,,

and this gives the expected number of heads in n flips. The X; need not be
independent; in fact, they might all be the same flip.

Conditional Probability and Conditional Expectation. The condi-
tional probability Pr(A | B) is the probability that event A occurs given that
event B occurs. Formally,

Pr(AN B)
Pr(B)
The conditional probability is undefined if Pr(B) = 0.

The conditional expectation E(X | B) is the expected value of the random
variable X given that event B occurs. Formally,

Pr(A|B) =

E(X | B) Zn Pr(X=n|B).

LECTURE 36 LUBY’S ALGORITHM 193

If the event B is that another random variable Y takes on a particular
value m, then we get a real-valued function £(X | Y = m) of m. Composing
this function with the random variable Y itself, we get a new random variable,
denoted £(X | Y), which is a function of the random variable Y. The random
variable £(X | Y) takes on value n with probability

> Pr(Y=m),

E(X|Y=m)=n

where the sum is over all m such that £(X | Y = m) = n. The expected value
of E(X |Y) is just £EX:

EEXIY)) = LEX Y =m)-Pr(y =m)
= S S n-Pr(X =n|Y =m)-Pr(Y =m)
= g:nn-ZPr(X:n/\Y:m) (58)
- énﬁ(xzn)
= £X

(see [33, p. 223)).

Independence and Pairwise Independence. A set of events A are in-
dependent if for any subset B C A,

Pr((B) =]J Pr(4).

AeB
They are pairwise independent if for every A, B € A, A # B,
Pr(ANnB) = Pr(A)- -Pr(B).

For example, the probability that two successive flips of a fair coin both come
up heads is i. Pairwise independent events need not be independent: consider
the three events

e the first flip gives heads
e the second flip gives heads
e of the two flips, one is heads and one is tails.

The probability of each pair is i, but the three cannot happen simultaneously.
If A and B are independent, then Pr(A | B) = Pr(A).

194 LECTURE 36 LuUBY’S ALGORITHM

Inclusion-Exclusion Principle. It follows from the law of sum that for
any events A and B, disjoint or not,

Pr(AUB) = Pr(A)+Pr(B)—-Pr(ANB).
More generally, for any collection A of events,

Pr(UJA)
= > Pr(A) - > Pr(\B)+ > Pr(\B)—---£Pr([A) .

AcA BC A BCA
|B] =2 |B] =3
This equation is often used to estimate the probability of a join of several
events. The first term alone gives an upper bound and the first two terms give
a lower bound:

Pr(JA) < ¥ Pr(A)

AeA
Pr(lJA) > AE%P?"(A) —) ; APr(A N B) .

A+B

36.1 Luby’s Maximal Independent Set Algorithm

Luby’s algorithm is executed in stages. Each stage finds an independent set
I in parallel, using calls on a random number generator. The set I, the set
N(I) of neighbors of I, and all edges incident to I UN(I) are deleted from the
graph. The process is repeated until the graph is empty. The final maximal
independent set is the union of all the independent sets I found in each stage.
We will show that the expected number of edges deleted in each stage is at least
a constant fraction of the edges remaining; this will imply that the expected
number of stages is O(logn) (Homework 10, Exercise 1).
If v is a vertex and A a set of vertices, define

N(@w) = {u|(u,v) € E} = {neighbors of v}
N(4) = |J N(u) = {neighbors of A}

ucA
d(v) = the degree of v = |N(v)|.

Here is the algorithm to find I in each stage.

Algorithm 36.1

1. Create a set S of candidates for I as follows. For each vertex v in
parallel, include v € S with probability %.

2. For each edge in F| if both its endpoints are in S, discard the one of
lower degree; ties are resolved arbitrarily (say by vertex number).
The resulting set is I.

LECTURE 36 LUBY’S ALGORITHM 195

Note that in step 1 we favor vertices with low degree and in step 2 we favor
vertices of high degree.
Define a vertex to be good if

>

uEN (v)

1 S l
2d(u) — 6

Intuitively, a vertex is good if it has lots of neighbors of low degree. This will
give it a decent chance of making it into N(I). Define an edge to be good if at
least one of its endpoints is good. A vertex or edge is bad if it is not good. We
will show that at least half of the edges are good, and each stands a decent
chance of being deleted, so we will expect to delete a reasonable fraction of
the good edges in each stage.

Lemma 36.2 For all v, Pr(v € I) > —+

=~
S

~
<

7
Proof. Let L(v) = {u € N(v) | d(u) > d(v)}. If v € S, then v does not
make it into I only if some element of L(v) is also in S. Then
Progl|veS) < Pr(BueLv)NnS|veSs)
< Y PrlueS|ved)

ueL(v)
= Y Pr(ueS) (by pairwise independence)
u€L(v)
< Y !
B ueL(v) Qd(u)
1
< Y (since d(u) > d(v))
ueL(v) 2d(U)
_) 1
— 2d(v) 2

Now

Pr(vel) = Pr(vel|veS)-Pr(vebs)
1 1 1
2 2d(v) Ad(v) -

Lemma 36.3 If v is good, then Pr(v € N(I)) > 4.
Proof. If v has a neighbor u of degree 2 or less, then
Pr(ve N(I)) > Pr(uel)
>) (by Lemma 36.2)

v

196 LECTURE 36 LuUBY’S ALGORITHM

Otherwise d(u) > 3 for all w € N(v). Then for all u € N(v), 2d(7 < £, and
since v is good,
1 1
2. > 2
weN () 2d(u) — 6
There must exist a subset M (v) C N(v) such that
1 1 1
- o< < - (59)
6 wedl(v) 2d(u) 3
Then
Pr(v e N(I)) > Pr(Jue M(v)NI)
> 3 Pruel)— > PrluelAwel)
uwEM (v) u,w € M(v)
u #w
(by inclusion-exclusion)
1
>y > Prue SAweS)
ueM (v 4d() u,w € M(v)
u # w
1
>y Free > Pr(ueS)-Pr(weSs)
w€EM (v) 4 (u) u,w € M(v)
U F£ w
(by pairwise independence)
> D
ueEM (v) 4d(u uw€EM (v) weM(v) d(u) 2d(w)
1 1 1
= (X) 5— X 5)
ueM(v) 2d(u)” "2 weM(v) 2d(w)
11
> Z.2 = by (59
Z 25 5 v (59)
O

We will continue the analysis of Luby’s algorithm in the next lecture.

Lecture 37 Analysis of Luby’s Algorithm

In the previous lecture we proved that for each good vertex v, the probability
that v is deleted in the current stage is at least %. Recall that a vertex v is
good if

(60)

|

(intuitively, if it has lots of neighbors of low degree), and that an edge is good
if it is incident to at least one good vertex. Since the probability that a good
edge is deleted is at least as great as the probability that its good endpoint is
deleted (if both its endpoints are good, so much the better), a good edge is
deleted with probability at least %.

Lemma 37.1 At least half the edges in the graph are good.

Proof. Direct each edge toward its endpoint of higher degree, breaking ties
arbitrarily. Then each bad vertex has at least twice as many edges going out
as coming in, since if not then at least a third of the vertices adjacent to v
would have degree d(v) or lower, and this would imply (60).

Using this fact, we can assign to each bad edge e directed into a bad
vertex v a pair of edges (bad or good) directed out of v so that each bad edge
is assigned a unique pair. This implies that there are at least twice as many
edges in all as bad edges. Equivalently, at least half the edges are good. O

197

198 LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM

We can now argue that the expected number of edges removed at a given
stage is at least a constant fraction of the number of edges present.

Theorem 37.2 Let the random variable X represent the number of edges
deleted in the current stage. Then

B
EX > L.
- 7

Proof. Let GG denote the set of good edges. For e € E, define the random
variable

Y — 1, if eis deleted
¢« 0, otherwise.

Then X =3 ,.p X, and by linearity of expectation,

EX = Y €X,
ecE

> Y EX.
ecG

1
> — (by Lemma 36.3)
eceG 36

1G]
36
|E]
72

Y

Y

(by Lemma 37.1).

O

We have shown that we can expect to delete at least a fixed fraction of
the remaining edges at each stage. This implies that the expected number
of stages required until all m edges are deleted is O(logm). We leave this
argument as a homework exercise (Homework 10, Exercise 1).

37.1 Making Luby’s Algorithm Deterministic

As described in the last lecture, each stage of Luby’s algorithm makes n in-
dependent calls on a random number generator, one for each vertex. We can
think of the call for vertex u as a flip of a biased coin with Pr(heads) = 5 d%u)
and Pr(tails) = 1 — T%u)' It can be shown that Q(n) truly random bits (in-
dependent flips of a fair coin) are necessary to generate these n independent
biased coin flips.

However, a quick check reveals that the analysis of Luby’s algorithm never

used the independence of the biased coin flips, but only the weaker condition

LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM 199

of pairwise independence. Recall from the last lecture that a collection of
events A are independent if for all subsets B C A,

r(1B) =]I Pr(4);

AeB

for pairwise independence, this only has to hold for subsets B of size two.

After observing that only pairwise independence was necessary for the
analysis, Luby made the beautiful observation that only O(logn) truly random
bits are needed to generate the n pairwise independent biased coin flips. This
leads to a deterministic NC' algorithm: in parallel, consider all possible bit
strings of length O(logn) representing all possible outcomes of O(logn) flips
of a fair coin (there are only 200°¢™) = nO(1) of them). Use each such bit string
to generate the n pairwise independent biased coin flips as if that string were
obtained from a random number generator, and carry on with the algorithm.
Since we expect to delete at least a constant fraction of the edges, one of
the deterministic simulations must delete at least that many edges. Pick the
one that discards the most edges and throw the other parallel computations
out, then repeat the whole process. Everything is deterministic and at least
a constant fraction of the edges are removed at each stage.

Here is how to simulate the n pairwise independent biased coin flips with
O(logn) independent fair coin flips. Let p be a prime number in the range n
to 2n (such a prime exists by Bertrand’s postulate; see [49, p. 343]). Assume
the vertices of the graph are elements of the finite field Z,. For each vertex
u, let a, be an integer in the range 0 < a, < p such that the fraction “; is as

close as possible to the desired bias 5 (. (We will not get the exact bias 3 (L
but only the approximation 2«. This will be close enough for our analysis.)

Let A, be any subset of Z of size a,. To simulate the biased coin flips,
choose elements x and y unlformly at random from Z, and calculate z +uy in
Z, for each vertex u. Declare the flip for vertex u to be heads if z +uy € A,,
tails otherwise.

Note that the random selection of x and y, since they are chosen with
uniform probability from a set of size p, requires 2logp = O(logn) truly
random bits.

For each z,y € Z,, there is exactly one x € Z, such that x + uy = z,
namely x = z — uy. Using this fact at the critical step, we calculate the
probability of heads for the vertex wu:

Priz +uy e Ay) = — {(z9) [z +uy € Aj|

> H@y) |z +uy =2z}

ZEAu

>op

ZEAu

| | |

200 LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM

Ay,
p.

Finally, we show pairwise independence. For any u,v,z,w € Z,, u # v,
there is exactly one solution x,y to the linear system

L w| | . z
1 v y| | w
over Z,, since the matrix is nonsingular. Thus

Pr(z +uy € A, ANz +vy € A)
= s H@y) lz+uyeAunz+oye A}

= = > Y K@y |e+uy=zAz+vy=w}

2
D" jcA, wea,

- Ly s
ey ey
Ay
p?

= Pr(zr+uyeA,) Pr(x+ovyeA,).

We have seen how to generate up to p pairwise independent events with only
2logp truly random bits. A generalization of this technique allows us to
generate up to p d-wise independent events with only dlogp truly random
bits: pick xg,...,Tq 1 € Z, uniformly at random; the u™ event is

d—1

o+ vu+ voul 4+ -+ g utt € A,

The analysis of this generalization is left as an exercise (Homework 10, Exercise
2).

