
Lecture �� Luby
s Algorithm

In this lecture and the next we develop a probabilistic NC algorithm of Luby
for �nding a maximal independent set in an undirected graph	 Recall that
a set of vertices of a graph is independent if the induced subgraph on those
vertices has no edges	 A maximal independent set is one contained in no
larger independent set	 A maximal independent set need not be of maximum
cardinality among all independent sets in the graph	

There is a simple deterministic polynomial�time algorithm for �nding a
maximal independent set in a graph
 just start with an arbitrary vertex and
keep adding vertices until all remaining vertices are connected to at least one
vertex already taken	 Luby �
�� and independently Alon� Babai� and Itai ���
showed that the problem is in random NC �RNC �� which means that there
is a parallel algorithm using polynomially many processors that can make
calls on a random number generator such that the expected running time is
polylogarithmic in the size of the input	

The problem is also in �deterministic� NC 	 This was �rst shown by Karp
and Wigderson ����	 Luby �
�� also gives a deterministic NC algorithm� but
his approach has a decidedly di�erent �avor
 he gives a probabilistic algorithm
�rst� then develops a general technique for converting probabilistic algorithms
to deterministic ones under certain conditions	 We will see how to do this in
the next lecture	

Luby�s algorithm is a good vehicle for discussing probabilistic algorithms�
since it illustrates several of the most common concepts used in the analysis
of such algorithms


���
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Law of Sum� The law of sum says that if A is a collection of pairwise
disjoint events� i�e� if A�B $ � for all A�B � A� A �$ B� then the probability
that at least one of the events in A occurs is the sum of the probabilities


Pr�
	A� $

X
A�A

Pr�A� �

Expectation� The expected value EX of a discrete random variableX is the
weighted sum of its possible values� each weighted by the probability that X
takes on that value


EX $
X
n

n � Pr�X $ n� �

For example� consider the toss of a coin	 Let

X $



� � if the coin turns up heads
� � otherwise	

��
�

Then EX $ �
�
if the coin is unbiased	 This is the expected number of heads

in one �ip	 Any function f�X� of a discrete random variable X is a random
variable with expectation

Ef�X� $
X
n

n � Pr�f�X� $ n�

$
X
m

f�m� � Pr�X $ m� �

It follows immediately from the de�nition that the expectation function E
is linear	 For example� if Xi are the random variables ��
� associated with n
coin �ips� then

E�X� "X� " � � �"Xn� $ EX� " EX� " � � �" EXn �

and this gives the expected number of heads in n �ips	 The Xi need not be
independent� in fact� they might all be the same �ip	

Conditional Probability and Conditional Expectation� The condi�
tional probability Pr�A j B� is the probability that event A occurs given that
event B occurs	 Formally�

Pr�A j B� $
Pr�A �B�

Pr�B�
�

The conditional probability is unde�ned if Pr�B� $ �	
The conditional expectation E�X j B� is the expected value of the random

variable X given that event B occurs	 Formally�

E�X j B� $
X
n

n � Pr�X $ n j B� �
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If the event B is that another random variable Y takes on a particular
value m� then we get a real�valued function E�X j Y $ m� of m	 Composing
this function with the random variable Y itself� we get a new random variable�
denoted E�X j Y �� which is a function of the random variable Y 	 The random
variable E�X j Y � takes on value n with probabilityX

E�XjY
m�
n

Pr�Y $ m� �

where the sum is over all m such that E�X j Y $ m� $ n	 The expected value
of E�X j Y � is just EX


E�E�X j Y �� $
X
m

E�X j Y $ m� � Pr�Y $ m�

$
X
m

X
n

n � Pr�X $ n j Y $ m� � Pr�Y $ m�

$
X
n

n �X
m

Pr�X $ n � Y $ m� ����

$
X
n

n � Pr�X $ n�

$ EX

�see ���� p	 �����	

Independence and Pairwise Independence� A set of events A are in�
dependent if for any subset B � A�

Pr�
�B� $

Y
A�B

Pr�A� �

They are pairwise independent if for every A�B � A� A �$ B�

Pr�A �B� $ Pr�A� � Pr�B� �

For example� the probability that two successive �ips of a fair coin both come
up heads is �

�
	 Pairwise independent events need not be independent
 consider

the three events

� the �rst �ip gives heads

� the second �ip gives heads

� of the two �ips� one is heads and one is tails	

The probability of each pair is �
�
� but the three cannot happen simultaneously	

If A and B are independent� then Pr�A j B� $ Pr�A�	
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Inclusion�Exclusion Principle� It follows from the law of sum that for
any events A and B� disjoint or not�

Pr�A � B� $ Pr�A� " Pr�B�
 Pr�A �B� �

More generally� for any collection A of events�

Pr�
	A�

$
X
A�A

Pr�A�
 X
B � A
jBj 
 �

Pr�
�B� " X

B � A
jBj 
 �

Pr�
�B�
 � � � � Pr�

�A� �
This equation is often used to estimate the probability of a join of several
events	 The �rst term alone gives an upper bound and the �rst two terms give
a lower bound


Pr�
	A� � X

A�A
Pr�A�

Pr�
	A� � X

A�A
Pr�A�
 X

A�B � A
A �
 B

Pr�A � B� �

�
�� Luby�s Maximal Independent Set Algorithm

Luby�s algorithm is executed in stages	 Each stage �nds an independent set
I in parallel� using calls on a random number generator	 The set I� the set
N�I� of neighbors of I� and all edges incident to I �N�I� are deleted from the
graph	 The process is repeated until the graph is empty	 The �nal maximal
independent set is the union of all the independent sets I found in each stage	
We will show that the expected number of edges deleted in each stage is at least
a constant fraction of the edges remaining� this will imply that the expected
number of stages is O�logn� �Homework ��� Exercise ��	

If v is a vertex and A a set of vertices� de�ne

N�v� $ fu j �u� v� � Eg $ fneighbors of vg
N�A� $

	
u�A

N�u� $ fneighbors of Ag

d�v� $ the degree of v $ jN�v�j �
Here is the algorithm to �nd I in each stage	

Algorithm 	���

�	 Create a set S of candidates for I as follows	 For each vertex v in
parallel� include v � S with probability �

�d�v�
	

�	 For each edge in E� if both its endpoints are in S� discard the one of
lower degree� ties are resolved arbitrarily �say by vertex number�	
The resulting set is I	
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Note that in step � we favor vertices with low degree and in step � we favor
vertices of high degree	

De�ne a vertex to be good ifX
u�N�v�

�

�d�u�
� �

�
�

Intuitively� a vertex is good if it has lots of neighbors of low degree	 This will
give it a decent chance of making it into N�I�	 De�ne an edge to be good if at
least one of its endpoints is good	 A vertex or edge is bad if it is not good	 We
will show that at least half of the edges are good� and each stands a decent
chance of being deleted� so we will expect to delete a reasonable fraction of
the good edges in each stage	

Lemma 	��� For all v� Pr�v � I� � �
�d�v�

�

Proof� Let L�v� $ fu � N�v� j d�u� � d�v�g	 If v � S� then v does not
make it into I only if some element of L�v� is also in S	 Then

Pr�v �� I j v � S� � Pr��u � L�v� � S j v � S�
� X

u�L�v�
Pr�u � S j v � S�

$
X

u�L�v�
Pr�u � S� �by pairwise independence�

� X
u�L�v�

�

�d�u�

� X
u�L�v�

�

�d�v�
�since d�u� � d�v��

� d�v�

�d�v�
$

�

�
�

Now

Pr�v � I� $ Pr�v � I j v � S� � Pr�v � S�
� �

�
� �

�d�v�
$

�

�d�v�
�

�

Lemma 	��	 If v is good� then Pr�v � N�I�� � �
�	
�

Proof� If v has a neighbor u of degree � or less� then

Pr�v � N�I�� � Pr�u � I�
� �

�d�u�
�by Lemma ��	��

� �

�
�
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Otherwise d�u� � � for all u � N�v�	 Then for all u � N�v�� �
�d�u�

� �
	
� and

since v is good�

X
u�N�v�

�

�d�u�
� �

�
�

There must exist a subset M�v� � N�v� such that

�

�
� X

u�M�v�

�

�d�u�
� �

�
� ����

Then

Pr�v � N�I�� � Pr��u �M�v� � I�
� X

u�M�v�

Pr�u � I�
 X
u�w �M�v�

u �
 w

Pr�u � I � w � I�

�by inclusion�exclusion�

� X
u�M�v�

�

�d�u�

 X

u�w �M�v�

u �
 w

Pr�u � S � w � S�

� X
u�M�v�

�

�d�u�

 X

u�w �M�v�

u �
 w

Pr�u � S� � Pr�w � S�

�by pairwise independence�

$
X

u�M�v�

�

�d�u�

 X

u�M�v�

X
w�M�v�

�

�d�u�
� �

�d�w�

$ �
X

u�M�v�

�

�d�u�
� � ��

�

 X

w�M�v�

�

�d�w�
�

� �

�
� �
�

$
�

��
by ����	

�

We will continue the analysis of Luby�s algorithm in the next lecture	
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In the previous lecture we proved that for each good vertex v� the probability
that v is deleted in the current stage is at least �

�	
	 Recall that a vertex v is

good if

X
u�N�v�

�

�d�u�
� �

�
����

�intuitively� if it has lots of neighbors of low degree�� and that an edge is good
if it is incident to at least one good vertex	 Since the probability that a good
edge is deleted is at least as great as the probability that its good endpoint is
deleted �if both its endpoints are good� so much the better�� a good edge is
deleted with probability at least �

�	
	

Lemma 	��� At least half the edges in the graph are good�

Proof� Direct each edge toward its endpoint of higher degree� breaking ties
arbitrarily	 Then each bad vertex has at least twice as many edges going out
as coming in� since if not then at least a third of the vertices adjacent to v
would have degree d�v� or lower� and this would imply ����	

Using this fact� we can assign to each bad edge e directed into a bad
vertex v a pair of edges �bad or good� directed out of v so that each bad edge
is assigned a unique pair	 This implies that there are at least twice as many
edges in all as bad edges	 Equivalently� at least half the edges are good	 �

��
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We can now argue that the expected number of edges removed at a given
stage is at least a constant fraction of the number of edges present	

Theorem 	��� Let the random variable X represent the number of edges
deleted in the current stage� Then

EX � jEj

�

�

Proof� Let G denote the set of good edges	 For e � E� de�ne the random
variable

Xe $



� � if e is deleted
� � otherwise	

Then X $
P

e�EXe� and by linearity of expectation�

EX $
X
e�E
EXe

� X
e�G
EXe

� X
e�G

�

��
�by Lemma ��	��

$
jGj
��

� jEj

�

�by Lemma �
	��	

�

We have shown that we can expect to delete at least a �xed fraction of
the remaining edges at each stage	 This implies that the expected number
of stages required until all m edges are deleted is O�logm�	 We leave this
argument as a homework exercise �Homework ��� Exercise ��	

���� Making Luby�s Algorithm Deterministic

As described in the last lecture� each stage of Luby�s algorithm makes n in�
dependent calls on a random number generator� one for each vertex	 We can
think of the call for vertex u as a �ip of a biased coin with Pr�heads� $ �

�d�u�

and Pr�tails� $ � 
 �
�d�u�

	 It can be shown that ��n� truly random bits �in�

dependent �ips of a fair coin� are necessary to generate these n independent
biased coin �ips	

However� a quick check reveals that the analysis of Luby�s algorithm never
used the independence of the biased coin �ips� but only the weaker condition
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of pairwise independence	 Recall from the last lecture that a collection of
events A are independent if for all subsets B � A�

Pr�
�B� $

Y
A�B

Pr�A� �

for pairwise independence� this only has to hold for subsets B of size two	
After observing that only pairwise independence was necessary for the

analysis� Luby made the beautiful observation that only O�logn� truly random
bits are needed to generate the n pairwise independent biased coin �ips	 This
leads to a deterministic NC algorithm
 in parallel� consider all possible bit
strings of length O�logn� representing all possible outcomes of O�logn� �ips
of a fair coin �there are only �O�logn� $ nO��� of them�	 Use each such bit string
to generate the n pairwise independent biased coin �ips as if that string were
obtained from a random number generator� and carry on with the algorithm	
Since we expect to delete at least a constant fraction of the edges� one of
the deterministic simulations must delete at least that many edges	 Pick the
one that discards the most edges and throw the other parallel computations
out� then repeat the whole process	 Everything is deterministic and at least
a constant fraction of the edges are removed at each stage	

Here is how to simulate the n pairwise independent biased coin �ips with
O�logn� independent fair coin �ips	 Let p be a prime number in the range n
to �n �such a prime exists by Bertrand�s postulate� see ���� p	 �����	 Assume
the vertices of the graph are elements of the �nite �eld Zp	 For each vertex
u� let au be an integer in the range � � au � p such that the fraction au

p
is as

close as possible to the desired bias �
�d�u�

	 �We will not get the exact bias �
�d�u�

�

but only the approximation au
p
	 This will be close enough for our analysis	�

Let Au be any subset of Zp of size au	 To simulate the biased coin �ips�
choose elements x and y uniformly at random from Zp and calculate x"uy in
Zp for each vertex u	 Declare the �ip for vertex u to be heads if x" uy � Au�
tails otherwise	

Note that the random selection of x and y� since they are chosen with
uniform probability from a set of size p� requires � log p $ O�logn� truly
random bits	

For each z� y � Zp� there is exactly one x � Zp such that x " uy $ z�
namely x $ z 
 uy	 Using this fact at the critical step� we calculate the
probability of heads for the vertex u


Pr�x " uy � Au� $
�

p�
jf�x� y� j x" uy � Augj

$
�

p�
X
z�Au
jf�x� y� j x" uy $ zgj

$
�

p�
X
z�Au

p
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$
au
p

�

Finally� we show pairwise independence	 For any u� v� z� w � Zp� u �$ v�
there is exactly one solution x� y to the linear system�

� u
� v

�
�
�
x
y

�
$

�
z
w

�

over Zp� since the matrix is nonsingular	 Thus

Pr�x" uy � Au � x " vy � Av�

$
�

p�
jf�x� y� j x" uy � Au � x" vy � Avgj

$
�

p�
X
z�Au

X
w�Av

jf�x� y� j x" uy $ z � x" vy $ wgj

$
�

p�
X
z�Au

X
w�Av

�

$
auav
p�

$ Pr�x" uy � Au� � Pr�x" vy � Av� �

We have seen how to generate up to p pairwise independent events with only
� log p truly random bits	 A generalization of this technique allows us to
generate up to p d�wise independent events with only d log p truly random
bits
 pick x�� � � � � xd�� � Zp uniformly at random� the uth event is

x� " x�u" x�u
� " � � �" xd��ud�� � Au �

The analysis of this generalization is left as an exercise �Homework ��� Exercise
��	


