
Approximation Algorithms

Vijay V� Vazirani

College of Computing
Georgia Institute of Technology

Preliminary and Incomplete

Copyright ����

�acknowledgements� credits� references missing�

Contents

� Introduction �

I COMBINATORIAL ALGORITHMS

� Set cover and its application to shortest superstring ��

� Metric Steiner tree and TSP ��

� Multiway cuts and k�cuts ��

� Facility location problems ��

� Feedback vertex set ��

� Shortest superstring ��

	 Knapsack ��

 Minimum makespan scheduling ��

II LP BASED ALGORITHMS

�� Introduction to LP�duality ��

�� Rounding applied to set cover �

�� LP�duality based analysis for set cover ��

�� The primal�dual schema �

�� Multicut and integer multicommodity �ow in trees ��

�� Steiner forest �

�� Steiner network � 	�

�� Multicut in general graphs �
�

�

� CONTENTS

�	 Sparsest cut ���

Chapter �

Introduction

This book deals with designing polynomial time approximation algorithms for NP�hard optimiza�
tion problems� Typically�� the decision versions of these problems are in NP� and are therefore
NP�complete� From the viewpoint of exact solutions� all NP�complete problems are equally hard�
since they are inter�reducible via polynomial time reductions� Typically� such a reduction maps
optimal solutions of the given instance to optimal solutions of the transformed instance and pre�
serves the number of solutions� Indeed� the counting versions of all known NP�complete problems
are �P�complete� and typically the proof follows directly from the proof of NP�completeness�

The picture looks di�erent when these problems are studied from the viewpoint of e�ciently
obtaining near�optimal solutions	 polynomial time reductions do not preserve near�optimality of
solutions� and NP�complete problems exhibit a rich set of possibilities� all the way from allowing
approximability to any required degree� to essentially not allowing approximability at all�

A problem is polynomial time solvable only if it has the algorithmically relevant combinatorial
structure that can be used as
footholds� to e�ciently home in on a solution� The process of
designing a polynomial time algorithm is a two�pronged attack	 unraveling this structure in the
given problem� and �nding algorithmic techniques that can exploit this structure�

Although NP�hard problems do not o�er footholds to �nd optimal solutions e�ciently� they
may still o�er footholds to �nd near�optimal solutions e�ciently� So� at a high level� the process
of designing approximation algorithms is not very di�erent	 it still involves unraveling relevant
structure and �nding algorithmic techniques to exploit it� Typically� the structure turns out to be
more elaborate� and often� the algorithmic techniques result from generalizing and extending some
of the powerful algorithmic tools developed in the study of exact algorithms� On the other hand�
looking at this process a little more closely� one can see that it has its own general principles� In
this chapter� we illustrate some of these in an easy setting�

Basic de�nitions

We �rst formally de�ne the notions of an optimization problem and an approximation algorithm�
An optimization problem�
� consists of	

� A set of instances� D�� We will assume that all numbers speci�ed in an input are rationals�
since our model of computation cannot handle in�nite precision arithmetic�

�In this paragraph� by �typically� we mean that a conservative estimate of the number of exceptions� among the
hundreds of problems that have been studied� is ��

�

� Introduction

� Each instance I � D� has a set of feasible solutions� S��I�� Further� there is polynomial time
algorithm that� given a pair �I� s�� decides whether s � S��I��

� There is a polynomial time computable objective function f�� that assigns a non�negative
rational number to each pair �I� s�� where I is an instance and s is a feasible solution for
I � �The objective function is frequently given a physical interpretation� such as cost� length�
weight etc��

� Finally�
 is speci�ed to be either a minimization problem or a maximization problem�

An optimal solution for an instance of a minimization �maximization� problem is a feasible
solution that achieves the smallest �largest� objective function value� We will denote by OPT�I�
the objective function value of an optimal solution to instance I � In this book� we will shorten this
to OPT when it is clear that we are referring to a generic instance of the problem being studied�

The size of instance I � denoted by jI j� is de�ned as the number of bits needed to write I under
the assumption that all numbers occurring in the instance are written in binary�

Let us illustrate these de�nitions in the context of the following minimization problem	

Problem �
� �Minimum vertex cover� Given an undirected graph G � �V�E�� �nd a min�
imum cardinality vertex cover� i�e�� a set V � � V such that every edge has at least one end point
incident at V ��

Instances of this problem are undirected graphs� Given an instance G � �V�E�� feasible solutions
are all vertex covers for G� The objective function value for a solution V � � V is the cardinality of
V �� Any minimum cardinality vertex cover is an optimal solution�

An approximation algorithm produces feasible solutions that are
close� to the optimal� the
formal de�nition di�ers for minimization and maximization problems� Let
 be a minimization
�maximization� problem� and let � be a positive real number� � � � �� � ��� An algorithm A is said
to be a � factor approximation algorithm for
 if on each instance I � A produces a feasible solution
s for I � such that f��I� s� � � � OPT�I� �f��I� s� � � � OPT�I��� An important requirement is
that A be a polynomial time algorithm� i�e�� its running time should should be bounded by a �xed
polynomial in the size of instance I � Clearly� the closer � is to �� the better is the approximation
algorithm�

On occassion� we will relax this de�nition and will allow A to be randomized� i�e�� it will be
allowed to use the �ips of a fair coin� Assume we have a minimization problem� Then� we will say
that A is a � factor randomized approximation algorithm for
 if on each instance I � A produces
a feasible solution s for I � such that

Pr�f��I� s� � � �OPT�I�� � �

�
�

where the probability is over the coin �ips� The de�nition for a maximization problem is analogous�
Thus� an algorithm is a factor � approximation algorithm for the minimum vertex cover problem

if it produces a vertex cover whose cardinality is within twice the optimal cover� and its running
time is polynomial in the number of vertices in the instance �notice that the size of an instance is
bounded by a polynomial in the number of vertices��

Lower bounding OPT

While designing an approximation algorithm for anNP�hard problem� one is immediately faced
with the following dilemma	 For establishing the approximation guarantee� the cost of the solution

�

produced by the algorithm needs to be compared with the cost of an optimal solution� However� it
is NP�hard not only to �nd an optimal solution� but also to compute the cost of such a solution�
So� how do we establish the approximation guarantee� The answer to this question provides a key
step in the design of approximation algorithms� Let us show this in the context of the minimum
vertex cover problem�

Designing an approximation algorithm for vertex cover

We will get around the di�culty mentioned above by coming up with a
good� polynomial time
computable lower bound on the size of the optimal cover� Let us observe that the size of a maximal
matching in G provides a lower bound� This is so because any vertex cover has to pick at least one
end point of each matched edge� This lower bounding scheme immediately suggests the following
simple algorithm	

Algorithm �
� �Minimum vertex cover�

Find a maximal matching in G� and output the set of matched vertices�

Theorem �
� Algorithm ��� is a factor � approximation algorithm for the minimum vertex cover
problem�

Proof � No edge can be left uncovered by the set of vertices picked � otherwise such an edge
could have been added to the matching� contradicting its maximality� Let M be the matching
picked� As argued above� jM j � OPT� The approximation factor follows from the observation that
the cover picked by the algorithm has cardinality � � jM j� which is � � �OPT� �

As with any approximation algorithm� the following question arises	 is our analysis tight� i�e��
can we establish a factor better than � for our algorithm� or is there an example on which the
vertex cover found is twice the optimal cover� It turns out that the analysis presented above is
tight� as shown in Example ����

Example �
� Consider the in�nite family of instances given by the complete bipartite graphs
Kn�n� rr r

rr r
rr r

rr r

PPPPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

S
S
S
S
S
S
S
S
S
SS

��
��

��
��

PPPPPPPP

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��

��
��

Q
Q
Q
Q
Q
Q
Q
Q�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���

When run on Kn�n the algorithm will pick all �n vertices� whereas picking one side of the bipartition
gives a cover of size n� �

An in�nite family of instances of this kind showing that the analysis of an approximation
algorithm is tight will be referred to as a tight example� The importance of �nding tight examples

� Introduction

for an approximation algorithm one has designed cannot be over emphasised	 they give critical
insight into the functioning of the algorithm �the reader is advised to run algorithms on tight
examples presented in this book�� and have often led to ideas for obtaining algorithms with improved
guarantees�

The example given above shows that even if we had picked a maximum matching instead of
a maximal matching� we would not have obtained a better approximation guarantee� Indeed�
obtaining a better approximation guarantee for vertex cover is currently a major open problem�
Perhaps a key step is obtaining a better lower bounding technique� The current method can
give a lower bound that is only half the size of the optimal vertex cover� as shown in the following
example	 Consider the complete graphKn� where n is odd� Then� the size of any maximal matching
is �n� ����� whereas the size of an optimal cover is n � ��

Simple recipes vs� grand theories

Assuming we have a minimization problem at hand� typically a central step in designing an
approximation algorithm is studying its combinatorial structure to obtain a good way of lower
bounding the cost of the optimal solution �for a maximization problem� we will need a good upper
bound�� Indeed� as in the vertex cover problem� sometimes the algorithm follows easily once this
is done�

The job of a potential algorithm designer� faced with an NP�hard problem� could certainly be
simpli�ed if one could give a standard set of recipes for coming up with the lower bounding scheme
and the algorithmic idea� However� nature is very rich� and we cannot expect a few tricks to help
solve the diverse collection of NP�hard problems� Indeed� in Part I� we have purposely refrained
from categorizing these techniques so as not to trivialize matters� Instead� we have attempted to
capture� as accurately as possible� the individual character of each problem� In Part II� we show
how LP�duality theory helps provide lower bounds for a large collection of problems� But once
again� the exact approximation guarantee obtainable depends on the speci�c LP�relaxation used�
and there is no �xed recipe for discovering good relaxations� just as there is no �xed recipe for
proving a theorem in mathematics �readers familiar with complexity theory will recognize this as
the philosophical point behind the P �� NP question��

One may wonder then whether there is a theory of approximation algorithms� One of the
purposes of this book is to show that we have here the beginnings of a promising theory� Of course�
con�rmation lies only in the future� in the meantime� judgement lies in the eyes of the beholder�

The greedy schema

Perhaps the �rst strategy one tries when designing an algorithm for an optimization problem is
the greedy strategy� in some form� For instance� for the vertex cover problem� such a strategy would
have been to pick a maximum degree vertex� remove it from the graph� and iterate until there are
no edges left� This strategy is not good for vertex cover � the cover picked by this algorithm can
be ��logn� factor larger than the optimal �see Exercise ����� However� the greedy schema yields
good exact and approximation algorithms for numerous problems� Furthermore� even if it does not
work for a speci�c problem� proving this via a counter�example can provide crucial insights into
the structure of the problem�

A maximal matching can be found via a greedy algorithm	 pick an edge� remove its two end
points� and iterate until there are no edges left� Does this make Algorithm ��� a greedy algorithm�
This is a moot point� it depends on how generally one de�nes
greedy�� In its extreme de�nition�

�

any good algorithm is greedy since it is making progress� Under a strict de�nition of
greedy
algorithm� one can show that an optimization problem has a greedy �exact� algorithm i� its un�
derlying structure is a matroid� There is no suitable de�nition that captures greedy strategies used
in this book for obtaining approximation algorithms� The set cover problem� discussed in Chapter
�� provides a very good example of the use of this schema�

Yes and No certi�cates

Since the design of approximation algorithms involves delicately attacking NP�hardness and
salvaging from it an e�cient approximate solution� it will be useful to review some key concepts
from complexity theory� Let us do this in the context of the minimum vertex cover problem�

Let us consider two problems	 those of �nding a maximum matching and a minimum vertex
cover in a graph G � �V�E�� Consider the following decision problems �the fact that one is a
maximization problem� and the other a minimization problem is re�ected in the way these questions
are posed�	

� Is the size of the maximum matching in G at least k�

� Is the size of the minimum vertex cover in G at most l�

Convincing someone that the answers to these questions are
Yes� involves simply demonstrat�
ing a matching of size k and a vertex cover of size l respectively� These answers constitute Yes
certi�cates for the problems	 a polynomial sized guess �in the size of the problem instance� that
can convince one in polynomial time that the answer to the question is
Yes�� Indeed� this is a
characterization of NP� NP is the class of problems that have short� i�e�� polynomial size bounded�
Yes certi�cates�

How do we convince someone that the answer to either one of these questions is
No�� We
have already observed that the size of a maximum matching is a lower bound on the size of a min�
imum vertex cover� If G is bipartite� then in fact equality holds� this is the classic K�onig�Egerv�ary
Theorem	

max
matching M

fjM jg � min
v� cover U

fjU jg�

So� if the answer to the �rst question is
No�� there must be a vertex cover of size k � � that can
be given as a certi�cate� Similarly� a matching of size l � � must exist in G if the answer to the
second question is
No�� These constitute No certi�cates for these problems� showing that both
problems are in co�NP when restricted to bipartite graphs� In fact� both problems are in P as well
under this restriction� It is easy to see that any problem in P has Yes as well as No certi�cates	
an optimal solution� which can be veri�ed to be optimal in polynomial time� provides certi�cates
to both questions� This is equivalent to the statement that P is contained in NP	 co�NP�

Edmonds coined the term
well�characterized� to describe problems that have Yes and No
certi�cates� i�e�� are in NP	co�NP� Indeed� his quest for a polynomial time algorithm for matching
started with the observation that it is well�characterized� Min�max relations of the kind given above
give a proof that a problem is well�characterized� Such relations are some of the most powerful and
beautiful results in combinatorics� and some of the most fundamental polynomial time algorithms
have been designed around such relations� Most of these min�max relations are actually special

� Introduction

cases of the LP�Duality Theorem� see Chapter � for an explanation� Interestingly enough� LP�
duality theory plays an even more vital role in the design of approximation algorithms	 it provides
a uni�ed way of obtaining good lower bounds for several key problems� a good fraction of this book
will be devoted to such algorithms�

Returning to the issue of Yes and No certi�cates� what if G is not restricted to be bipartite� In
this case� a maximum matching may be strictly smaller than a minimum vertex cover� For instance�
if G is simply an odd length cycle on �p� � vertices� then the size of a maximum matching is p�
whereas the size of a minimum vertex cover is p � �� This may happen even for graphs having a
perfect matching� for instance� the Petersen graph	

r r
rr rrr
r r

r

Z
Z

Z
ZZ

B
B
B
B
B�

�
�
�
�

�
�

�
��

�
�
�
��ZZ

Z
ZZ
�
�
�
�
��B

B
B
B
BB

JJ��

�� 		

This graph has a perfect matching� of cardinality �� however� the minimum vertex cover has car�
dinality �� One can show that there is no vertex cover of size � by observing that any vertex cover
must pick at least p � � vertices from an odd cycle of length �p � �� just to cover all the edges of
the cycle� and the Petersen graph has two disjoint cycles of length ��

Under the widely believed assumption that NP �� co�NP� NP�hard problems do not have No
certi�cates� Thus the minimum vertex cover problem in general graphs� which is NP�hard� does
not have a No certi�cate� The maximum matching problem in general graphs is in P�however�
the No certi�cate for this problem is not a vertex cover� but a more general structure	 an odd
set cover��� Under the assumption NP �� co�NP� there is no min�max relation for the minimum
vertex cover in general graphs� However� the approximation algorithm presented above gives the
following approximate min�max relation	

max
matching M

jM j � min
v� cover U

jU j � � max
matching M

jM j�

Approximation algorithms frequently yield such approximate min�max relations� which can be of
independent interest�

Scienti�c and practical signi�cance

The study of exact algorithms and complexity theory have led to a reasonable understand�
ing of the intrinsic complexity of natural computational problems �modulo some very di�cult�

�An odd set cover C of a graph G � �V� E	 is a collection of disjoint odd cardinality subsets of V � S�� � � � � Sk and
a collection of vertices v�� � � � � vl such that each edge of G is either incident at one of the vertices vi or has both
endpoints in one of the sets Si� The weight of this cover C is de
ned to be w�C	 � l �

Pk

i��
�jSij � �	�
� The

following min�max relation holds�

max
matching M

fjM jg � min
odd set cover C

fw�C	g�

!

though strongly believed� conjectures�� Since most of these problems are in factNP�hard� charting
the landscape of approximability of these problems via e�cient algorithms becomes a compelling
subject of scienti�c inquiry in computer science and mathematics� This task involves identifying
cornerstone problems� �nding relationships among problems� understanding the kinds of combi�
natorial structures that play the role of
footholds� refererred to earlier� developing appropriate
algorithmic techniques� and developing the theory of hardness of approximability so that at least for
the key problems we obtain positive and negative approximability results having matching bounds�
Exact algorithms have been studied intensively for over three decades� and yet basic insights are
still being obtained� It is reasonable to expect the theory of approximation algorithms to take its
time�

NP�hard problems abound in practice� On the one hand this fact adds to the importance of
the area of approximation algorithms� and on the other hand� it raises our expectations from it�
At the very least� we can expect this theory to provide guidelines for use in practice� For instance�
simply knowing the limits of approximability of natural problems can be useful in choosing the
right problem to model a realistic situation with�

What about the possibility of using algorithms developed directly in practice� Can we expect
this theory to have such direct impact on practice� One is inclined to say
No�� simply because
practitioners are normally looking for algorithms that give solutions that are very close to opti�
mal� say having error within �" or �" of the optimal� not within � "� a common bound in
several approximation algorithms� Further� by this token� what is the usefulness of improving the
approximation guarantee from say factor � to ����

Let us address both issues and point out some fallacies in these assertions� The approximation
guarantee only re�ects the performance of the algorithm on the most pathological instances� Per�
haps it is more appropriate to view the approximation guarantee as a measure that forces us to
explore deeper combinatorial structure of the problem �really getting into its #guts$ %� and discover
more powerful tools for exploiting this structure� It has been observed that the di�culty of con�
structing tight examples increases considerably as one obtains algorithms with better guarantees�
Indeed� for some recent algorithms ���� obtaining a tight example has been a paper by itself% These
and other sophisticated algorithms do have error bounds of the desired magnitude� �" to �"� on
typical instances� even though their worst case error bounds are much higher ���� In addition� the
theoretically proven algorithm should be viewed as a core algorithmic idea that needs to be �ne�
tuned to the types of instances arising in speci�c applications� All this points to the importance of
implementing and experimenting with the algorithms developed�

More than half of this book is based on the surge of progress made in the last eight years� after
a long period of lull� Already� in a few instances� sophisticated algorithmic ideas have found their
way into industrial products �see for example ����� For more widespread use however� we will have
to wait until these ideas di�use into the right circles � hopefully this book will help speed up the
process�

Exercise �
� Show that the greedy algorithm for minimum vertex cover achieves an approxi�
mation guarantee of O�logn�� Give a tight example for this algorithm�

Exercise �
� Give a lower bounding scheme for the weighted version of vertex cover� in which
you are trying to minimize the weight of the cover picked�

Part I

COMBINATORIAL ALGORITHMS

Chapter �

Set cover and its application to

shortest superstring

Understanding the area of approximation algorithms involves identifying cornerstone problems	
problems whose study leads to discovering techniques that become general principles in the area�
and problems that are general enough that other problems can be reduced to them� Problems such
as matching� maximum �ow� shortest path and minimum spanning tree are cornerstone problems
in the design of exact algorithms� In approximation algorithms� the picture is less clear at present�
Even so� problems such as minimum set cover and minimum Steiner tree can already be said to
occupy this position�

In this chapter� we will �rst analyse a natural greedy algorithm for the minimum set cover
problem� We will then show an unexpected use of set cover to solve the minimum superstring
problem� An algorithm with a much better approximation guarantee will be presented in Chapter
� for the latter problem� the point here is to illustrate the wide applicability of the set cover problem�

Minimum set cover

Problem �
� �Minimum set cover� Given a universe U of n elements and a collection of
subsets of U � S�� � � �Sk� with non�negative costs speci�ed� the minimum set cover problem asks for
a minimum cost collection of sets whose union is U �

Perhaps the �rst algorithm that comes to mind for this problem is one based on the greedy
strategy of iteratively picking the most cost�e�ective set and removing the covered elements� until
all elements are covered� Let C be the set of elements already covered at the beginning of an
iteration� During this iteration� de�ne the cost�e�ectiveness of a set S to be the average cost at

which it covers new elements� i�e�� cost�S�
jS�Cj�

De�ne the price of an element to be the average cost at

which it is covered� Equivalently� when a set S is picked� we can think of its cost being distributed
equally among the new elements covered� to set their prices�

��

�� Set cover and its application to shortest superstring

Algorithm �
� �Greedy set cover algorithm�

�� C
 �
�� while C �� U do

Find the most cost�e�ective set in the current iteration� say S�

Let � � cost�S�
jS�Cj

� i�e�� the cost�e�ectiveness of S�

Pick S� and for each e � S � C� price�e�
 ��

�� Output the picked sets�

Number the elements of U in the order in which they were covered by the algorithm� resolving
ties arbitrarily� Let e�� � � �en be this numbering�

Lemma �
� For each k � f�� � � � � ng� price�ek� � OPT
n�k�� �

Proof � In any iteration� the left over sets of the optimal solution can cover the remaining
elements at a cost of at most OPT� Therefore� there must be a set having cost�e�ectiveness at most
OPT
jCj

� In the iteration in which element ek was covered� C contained at least n � k � � elements�

Since ek was covered by the most cost�e�ective set in this iteration� it follows that

price�ek� � OPT

jCj � OPT

n� k � �
�

�

From Lemma ���� we immediately obtain	

Theorem �
� The greedy algorithm is an Hn factor approximation algorithm for the minimum set
cover problem� where Hn � � � �

� � � � �� �
n �

Proof � Since the cost of each set picked is distributed among the new elements covered� the
total cost of the set cover picked is equal to

Pn
k�� price�ek�� By Lemma ���� this is at most�

� � �
� � � � �� �

n

�
�OPT� �

Example �
� Following is a tight example	

...

1/n 1/(n-1) 1

1+ε

The greedy algorithm outputs the cover consisting of the n singleton sets� since in each iteration
some singleton is the most cost�e�ective set� So� the algorithm outputs a cover of cost

�

n
�

�

n � �
� � � �� � � Hn�

On the other hand� the optimal cover has a cost of � � �� �

��

Surprisingly enough� the obvious algorithm given above is essentially the best one can hope
for for the minimum set cover problem	 it is known that an approximation guarantee better than
O�lnn� is not possible� assuming P �� NP �it is easy to see that ln n� � � Hn � � � lnn��

In Chapter � we pointed out that �nding a good lower bound on OPT is a basic starting point
in the design of an approximation algorithm for a minimization problem� At this point� the reader
may be wondering whether there is any truth to this claim� We will show in Chapter �� that the
correct way to view the greedy set cover algorithm is in the setting of LP�duality theory � this
will not only provide the lower bound on which this algorithm is based� but will also help obtain
algorithms for several generalizations of this problem�

Solving shortest superstring via set cover

Let us motivate the shortest superstring problem� The human DNA can be viewed as a very
long string over a four letter alphabet� Scientists are attempting to decipher this string� Since it
is very long� several overlapping short segments of this string are �rst deciphered� Of course� the
locations of these segments on the original DNA are not known� It is hypothesised that the shortest
string which contains these segments as substrings is a good approximation to the original DNA
string�

Another application of this problem is in data compression	 instead of transmitting n strings
individually� one can instead transmit their supersting and the starting positions of each string in
the superstring�

Problem �
� �Shortest superstring� Given a �nite alphabet &� and a set of n strings�
S � fs�� � � � � sng � &�� �nd a shortest string s that contains each si as a substring� Without loss
of generality� we may assume that no string si is a substring of another string sj � j �� i�

This problem is NP�hard� Perhaps the �rst algorithm that comes to mind for �nding a short
superstring is the following greedy algorithm� De�ne the overlap of two strings s� t � &� as the
maximum length of a su�x of s that is also a pre�x of t� The algorithm maintains a set of strings
T � initially T � S� At each step� the algorithm selects from T two strings that have maximum
overlap and replaces them with the string obtained by overlapping them as much as possible� After
n � � steps� T will contain a single string� Clearly� this string contains each si as a substring�
This algorithm is conjectured to have an approximation factor of �� To see that the approximation
factor of this algorithm is no better than �� consider an input consisting of � strings	 abk� bkc� and
bk��� If the �rst two strings are selected in the �rst iteration� the greedy algorithm produces the
string abkcbk��� This is almost twice as long as the shortest superstring� abk��c�

We will obtain a � � Hn factor approximation algorithm by a reduction to the minimum set
cover problem� The set cover instance� denoted by S� is constructed as follows� For si� sj � S and
k � � if the last k symbols of si are the same as the �rst k symbols of sj � let 	ijk be the string
obtained by overlapping these k positions of si and sj � Let set I consist of the strings 	ijk for all
valid choices of i� j� k� For a string
 � &�� de�ne set�
� � fs � Sjs is a substring of
g� The The
universal set of set cover instance S is S� and the speci�ed subsets of S are set�
� for each string

 � S � I � The cost of the set set�
� is j
j� i�e�� the length of string
�

�
k
si

sj� �z �
�ijk

�� Set cover and its application to shortest superstring

Let OPTS and OPTdenote the cost of an optimal solution to S and the length of the shortest
superstring of S respectively� As shown in Lemma ���� OPTS and OPTare within a factor of � of
each other� and so an approximation algorithm for set cover can be used to obtain an approximation
algorithm for shortest superstring� The complete algorithm is	

Algorithm �
� �Shortest superstring via set cover�

�� Use the greedy set cover algorithm to 	nd a cover for the instance S� Let
set�
��� � � � � set�
k
 be the sets picked by this cover�

�� Concatenate the strings
�� � � � �
k in any order�

�� Output the resulting string� say s�

Lemma �
	
OPT � OPTS � � �OPT�

Proof � Consider an optimal set cover� say fset�
i�j� � i � lg� and obtain a string� say s� by
concatenating the strings
i� � � i � l in any order� Clearly� jsj � OPTS � Since each string of S is
a substring of some
i� � � i � l� it is also a substring of s� Hence OPTS � jsj � OPT�

To prove the second inequality� let s be a shortest superstring of s�� � � � � sn� jsj � OPT� It
su�ces to produce some set cover of cost at most � �OPT�

Assume that s�� � � � � sn are numbered in order of their leftmost occurrence in s� For the rest
of the proof� we will only consider the leftmost occurrences of s�� � � � � sn in S� For any i � j� the
occurrence of si in s must end before the occurrence of sj �otherwise sj would be a substring of si��

sb�

se�

sb�

se�

sb�

se�

�

�

�

s
� � �

� � �

� � �

We will partition the ordered list of strings s�� � � � � sn in groups� Each group will consist of a
contiguous set of strings from this list� bi and ei will denote the index of the �rst and last string
in the ith group �bi � ei is allowed�� Let b� � �� and let e� be the largest index of a string that

��

overlaps with s� �there exists at least one such string� namely s� itself�� In general� if ei � n we set
bi�� � ei � � and denote by ei�� the largest index of a string that overlaps with sbi�� � Eventually�
we will get et � n for some t � n�

For each pair of strings �sbi � sei�� let ki � be the length of the overlap between their leftmost
occurrences in s �this may be di�erent from their maximum overlap�� Let
i � 	bieiki � Clearly�
fset�
i�j� � i � tg is a solution for S� of cost Pi j
ij�

The critical observation is that
i does not overlap
i��� We will prove this claim for i � ��
the same argument applies to arbitrary i� Assume for a contradiction that
� overlaps
�� Then
the occurrence of sb� in s overlaps the occurrence of se� � Because e� � b� � b�� it follows that the
occurrence of sb� overlaps the occurrence of sb� � Ths contradicts the fact that e� is the highest
indexed string that overlaps with sb� �

Because of this observation� each symbol of s is covered by at most two of the
i$s� Hence
OPTS �P

i j
ij � � �OPT� �

Lemma ��� immediately gives	

Theorem �

 Algorithm ��	 is a � �Hn factor algorithm for the shortest superstring problem�

Exercise �
�� A more elaborate argument shows that in fact Algorithm ��� achieves an ap�
proximation factor of Hm� where m is the cardinality of the largest speci�ed subset of U � Prove
this approximation guarantee�

Exercise �
�� Show that a similar greedy strategy achieves an approximation guarantee of Hn

for set multi�cover� a generalization of set cover in which an integral coverage requirement is also
speci�ed for each element� and sets can be picked multiple number of times to satisfy all coverage
requirements� Assume that the cost of picking alpha copies of set Si is � � cost�Si��
Exercise �
�� By giving an appropriate tight example� show that the analysis of Algorithm
��� cannot be improved even if all speci�ed sets have unit cost� Hint	 Consider running the greedy
algorithm on a vertex cover instance�

Exercise �
�� The maximum coverage problem is the following	 Given a universe U of n
elements� with non�negative weights speci�ed� a collection of subsets of U � S�� � � � � Sl� and an integer
k� pick k sets so as to maximize the weight of elements covered� Show that the obvious algorithm�
of greedily picking the best set in each iteration until k sets are picked� achieves an approximation
factor of

��� ��� �

k
�k� � ��� �

e
��

Exercise �
�� Using set cover� obtain approximation algorithms for the following variants of
the shortest superstring problem �here sR is the reverse of string s�	

�� Find the shortest string s that contains for each string si � S� both si and sRi as subtrings�

�� Find the shortest string s that contains for each string si � S� either si or s
R
i as a subtring�

�Notice that this su�ces for the data compression application given earlier��

Chapter �

Metric Steiner tree and TSP

The origin of the Steiner tree problem goes back to Gauss� who posed it in a letter to Schumacher�
This problem and its generalizations will be studied extensively in this monograph�

Problem �
� �Metric Steiner tree� Given a graph G � �V�E� whose edge costs satisfy
triangle inequality and whose vertices are partitioned into two sets� required and Steiner� �nd a
minimum cost tree containing all the required vertices and any subset of the Steiner vertices�
Remark� There is no loss of generality in requiring that the edge costs satisfy triangle inequality	
if they don$t satisfy triangle inequality� construct the metric closure of G� say G�� which has the
same vertex set as G and edge costs given by shortest distances in G� Clearly� the cost of the
optimal Steiner tree in both graphs must be the same� Now� obtaining a Steiner tree in G�� and
replacing edges by paths wherever needed� gives a Steiner tree in G of at most the same cost�

Let R denote the set of required vertices� Clearly� a minimum spanning tree �MST� on R is
a feasible solution for this problem� Since the problem of �nding an MST is in Pand the metric
Steiner tree problem isNP�hard� we cannot expect the MST on R to always give an optimal Steiner
tree� below is an example in which the MST is strictly costlier�

b

t

t

tJ
J
J
J
JJ��

�
�
����

��HHHH
�

� ��

� �

Even so� an MST on R is not much more costly than an optimal Steiner tree	

Theorem �
� The cost of an MST on R is within � �OPT�

Proof � Consider a Steiner tree of cost OPT� By doubling its edges we obtain an Eulerian graph
connecting all vertices of R and� possibly� some Steiner vertices� Find an Euler tour of this graph�
for example by traversing the edges in DFS order	

��

��

The cost of this Euler tour is � � OPT� Next obtain a Hamilton tour on the vertices of R by
traversing the Euler tour and
short�cutting� Steiner vertices and previously visited vertices of R	

Because of triangle inequality� the shortcuts do not not increase the cost of the tour� If we delete
one edge of this Hamilton tour� we obtain a path that spans R and has cost at most � �OPT� This
path is also a spanning tree on R� Hence� the MST on R has cost at most � �OPT� �

Theorem ��� gives a straightforward factor � algorithm for the metric Steiner tree problem	
simply �nd an MST on the set of required vertices� As in the case of set cover� the
correct� way
of viewing this algorithm is in the setting of LP�duality theory� This will provide the lower bound
on which this algorithm is based� and will also help solve generalizations of this problem�

Example �
� A tight example is provided by a graph with n required vertices and one Steiner
vertex� Each edge between the Steiner vertex and a required vertex has cost �� and all other edges
have cost ��� ��� where � � is a small number �not all edges of cost ��� �� are shown below�� In
this graph� an MST on R has cost ��� ���n� ��� while OPT � n�

c
s

s

s
s

s

s

s

s

s

�
�
�
�
��
l
l
l
l
ll

D
D
D
D
D
DD

��
��

���������

��
��

aa
aa

T
T
T

	
	
		

����bbb

B
B
BB

�
�
�
�
��HH

HH
H

A
A
A
AA

�
�
�
�
�

					 �
�
�
�

e
e
e
e

�

Exercise �
� Let G � �V�E� be a graph with non�negative edge costs� The vertices of G are
partitioned into two sets� senders and receivers� The problem is to �nd a minimum cost subgraph
of G that has a path connecting each receiver to a sender� Give a good approximation algorithm
for this NP�hard problem�

Approximation algorithms for TSP

The following is a well�studied problem in combinatorial optimization�

Problem �
� �Traveling salesman problem �TSP�� Given a complete graph with non�
negative edge costs� �nd a minimum cost cycle visiting every vertex exactly once�

Not only is it NP�hard to solve this problem exactly� but also approximately	

Theorem �
� For any polynomial time computable function ��n�� TSP cannot be approximated
within a factor of ��n�� unless P � NP�

�� Metric Steiner tree and TSP

Proof � Assume for a contradiction that for any graph on n vertices� we can �nd in polynomial
time a salesman tour whose cost is within a factor of ��n� from the optimum� We show that this
implies a polynomial time algorithm for deciding whether a given graph has a Hamiltonian cycle�

Let G be a graph on n vertices� We extend G to the complete graph on n vertices� assigning
unit cost to edges of G� and a cost of n��n� to edges not in G� Clearly� the optimal salesman tour
in the new graph has a cost of n if and only if G has a Hamiltonian cycle� Moreover� any tour that
contains a new edge costs more than n��n�� So� an ��n� approximation algorithm �nds a tour of
cost n whenever one exists� �

Notice that in order to obtain such a strong non�approximability result� we had to assign edge
costs that violate triangle inequality� If we restrict ourselves to graphs in which edge costs satisfy
triangle inequality� i�e�� the metric traveling salesman problem� the problem remains NP�complete�
but it is no longer hard to approximate�

We will �rst present a simple factor � algorithm� The lower bound we will use for obtaining
this factor is the cost of an MST in G� This is a lower bound because deleting any edge from an
optimal solution to TSP we get a spanning tree of G�

Algorithm �
� �Metric TSP � factor ��

�� Find an MST� T � of G�

�� Double every edge of the MST to obtain an Eulerian graph�

�� Find an Euler tour� T � on this graph�

�� Output the tour that visits vertices of G in order of their 	rst appearence in T � Let C be this
tour�

Notice that Step � is similar to the
short�cutting� step in Theorem ����

Theorem �
	 Algorithm
�	 is a factor � algorithm for metric TSP�

Proof � As noted above� cost�T � � OPT� Since T contains each edge of T twice� cost�T � �
� � cost�T �� Because of triangle inequality� after the
short�cutting� step� cost�C� � cost�T �� Com�
bining these inequalities we get that cost�C� � � �OPT� �

Example �

 A tight example for this algorithm is given by the complete graph on n vertices
with edges of cost � and �� We present the graph for n � � below� The thick edges have cost � and
the remaining edges have cost �� On n vertices� the graph will have �n� � edges of cost �� and the
remaining edges of cost �� with the cost � edges forming the union of a star and an n � � cycle�
The optimal TSP tour has cost n as shown below�

r

rr

r

r

r

r r

r

r

r

r

S
SS

Q
Q

QQ��
��
B
B
B
B

S
S
S

�
�
�

PP
PP

�
�
�
�
Q

Q
QQ��

��
B
B
B
B

l
ll
b
bb��
��

��

�
�
�
�
�
��

A
A
A
D
D
D

�!

Suppose that the MST found by the algorithm is the spanning star created by edges of cost ��
Moreover� suppose that the Euler tour constructed in Step � visits vertices in order shown below	

r r

r

r

r

r

�
���
�
�
�
�
�B
B
B
B
B
BZ

Z
Z

Z
ZZr

r

r

r

r

r

S
S
S

�
�
�

PP
PP

��
��

�

�

�

�

� �

Then the tour obtained after short�cutting contains n � � edges of cost �� and has a total cost of
�n� �� This is almost twice the cost of the optimal TSP tour� �

Essentially� this algorithm �rst �nds a low cost Euler tour spanning the vertices of G� and then
short�cuts this tour to �nd a travelling salesman tour� Is there a cheaper Euler tour than that
found by doubling an MST� Notice that we only need to be concerned about the vertices of odd
degree in the MST� let V � denote this set of vertices� jV �j must be even since the sum of degrees
of all vertices in the MST is even �it is �n � ��� Now� if we add to the MST a minimum cost
perfect matching on V �� every vertex will have even degree� and we get an Eulerian graph� With
this modi�cation� the algorithm achieves an approximation guarantee of �

� �

Algorithm �
�� �Metric TSP � factor �
��

�� Find an MST of G� say T �

�� Compute a minimum cost perfect matching� M � on the set of odd vertices of T � Add M to
T and obtain an Eulerian graph�

�� Find an Euler tour� T � of this graph�
�� Output the tour that visits vertices of G in order of their 	rst appearence in T � Let C be this

tour�

Interestingly� the proof of this algorithm is based on a second lower bound on OPT�

Lemma �
�� Let V � � V � such that jV �j is even� and let M be a minimum cost perfect matching
on V �� Then� cost�M� � OPT���

Proof � Consider an optimal TSP tour of G� say � � Let � � be the tour on V � obtained by
short�cutting � � By triangle inequality� cost�� �� � cost���� Now� � � is the union of two perfect
matchings on V �� each consisting of alternate edges of � � So� the cheaper of these matchings has

cost � cost�� ��
� � OPT

� � Hence the optimal matching also has cost � OPT
� � �

Theorem �
�� Algorithm
��� achieves an approximation guarantee of �
� for metric TSP�

Proof � The proof follows by putting together the two lower bounds on OPT� �

Example �
�� A tight example for this algorithm is given by the following graph on n vertices	

S
S
S
SS�

�
�
��S

S
S
SS�

�
�

SS

�
�
�
��S

S
S
SS�

�
�
��

� �
� � �

�

� �

���

�

�

� � �

� � �

bn��c

� Metric Steiner tree and TSP

Thick edges represent the MST found in step �� This MST has only two odd vertices� and by adding
the edge joining them we obtain a traveling salesman tour of cost �n� ��� bn��c� In contrast� the
optimal tour has cost n� �

Finding a better approximation algorithm for metric TSP is currently one of the outstanding
open problems in this area� Many researchers have conjectured that an approximation factor of
��� may be achievable�

Exercise �
�� Consider the following variant of metric TSP	 given vertices u� v � V � �nd a
minimum cost simple path from u to v that visits all vertices� First give a factor � approximation
algorithm for this problem� and then improve it to factor �

� �

Exercise �
�� Give a factor � approximation algorithm for	 Given an undirected graph G �
�V�E�� with non�negative edge costs� and a partitioning of V into two sets Senders and Recievers�
�nd a minimum cost subgraph such that every Receiver vertex has a path to a Sender vertex�

Chapter �

Multiway cuts and k�cuts

The theory of cuts occupies a central place in the study of exact algorithms� In this chapter� we
will present approximation algorithms for natural generalizations of the minimum cut problem that
are NP�hard�

Given a connected� undirected graph G � �V�E� with an assignment of weights to edges�
w 	 E
 R�� a cut is de�ned by a partition of V into two sets� say V � and V � V �� and consists
of all edges that have one endpoint in each partition� Clearly� the removal of the cut from G

disconnects G� Given terminals s� t � V � consider a partition of V that separates s and t� The
cut de�ned by such a partition will be called an s�t cut� The removal of such a cut from G will
disconnect s and t� The problems of �nding a minimum weight cut and a minimum weight s�t cut
can be e�ciently solved using a maximum �ow algorithm� Let us generalize these two notions	

Problem �
� �Minimum k�cut� A set of edges whose removal leaves k connected components
is called a k�cut� The minimum k�cut problem asks for a minimum weight k�cut�

Problem �
� �Multiway cut� Given a set of terminals S � fs�� s�� � � � � skg � V � a multiway
cut is a set of edges whose removal disconnects the terminals from each other� The multiway cut
problem asks for the minimum weight such set�

The problem of �nding a minimum weight multiway cut is NP�hard for any �xed k � �� The
minimum k�cut problem is polynomial time solvable for �xed k �though with a prohibitive running
time of O�nk

������ however� it isNP�hard if k is speci�ed as part of the input� Interestingly enough�
both problems admit approximation algorithms with the same guarantee� of ��� �

k ��

The multiway cut problem

De�ne an isolating cut for si to be a set of edges whose removal disconnects si from the rest of
the terminals�

Algorithm �
� �Multiway cut�

�� For each i � �� � � � � k� compute a minimum weight isolating cut for si� say Ci�

�� Discard the heaviest of these cuts� and output the union of the rest� say C�

Each computation in Step � can be accomplished by identifying the terminals in S � fsig into
a single node� and �nding a minimum cut separating this node from si� this takes one max��ow

��

�� Multiway cuts and k�cuts

computation� Clearly� removing C from the graph disconnects every pair of terminals� and so is a
multiway cut�

Theorem �
� Algorithm
�
 achieves an approximation guarantee of ��� �
k ��

Proof � Let A be an optimal multiway cut in G� We can view A as the union of k cuts as
follows	 The removal of A from G will create k connected components� each having one terminal
�since A is a minimum weight multiway cut� no more than k components will be created�� Let Ai

be the cut separating the component containing si from the rest of the graph� Then A �
Sk
i��Ai�

Since each edge of A is incident at two of these components� each edge will be in two of the
cuts Ai� Hence�

kX
i��

w�Ai� � �w�A��

Clearly� Ai is an isolating cut for si� Since Ci is a minimum weight isolating cut for si� w�Ci� �
w�Ai�� Finally� since C is obtained by discarding the heaviest of the cuts Ci�

w�C� �
�
�� �

k

� kX
i��

w�Ci� �
�
�� �

k

� kX
i��

w�Ai� � �

�
�� �

k

�
w�A��

�

Example �
� A tight example for this algorithm is given by a graph on �k vertices consisting
of a k�cycle and a distinct terminal attached to each vertex of the cycle� The edges of the cycle
have weight � and edges attaching terminals to the cycle have weight � � � for a small fraction
� � � For example� the graph corresponding to k � � is	

r

rr

r
r
r r
r

�
�
�� �

�
��

�
�
��

�
�

��

s� s�

s�s	

�

��

�

�� ��� �

�� � �� �

For each terminal si� the minimum weight isolating cuts for si is given by the edge incident to si�
So� the cut C returned by algorithm has weight �k � ���� � ��� On the other hand� the optimal
multiway cut is given by the cycle edges� and has weight k� �

Exercise �
� Show that the algorithm presented above can be used as a subroutine for �nding
a k�cut within a factor of �� ��k of the minimum k�cut� How many subroutine calls are needed�

Exercise �
� A natural greedy algorithm for computing a multiway cut is the following	 starting
with G� compute minimum si�sj cuts for all pairs si� sj that are still connected and remove the

��

lightest of these cuts� repeat this until all pairs si� sj are disconnected� Prove that this algorithm
also achieves a guarantee of �� ��k�

The minimum k�cut problem

A natural algorithm for �nding a k�cut follows along the lines of the above�stated exercise	
starting with G� compute a minimum cut in each currently connected component and remove
the lightest one� repeat until there are k connected components� This algorithm does achieve a
guarantee of �� ��k� however� the proof is quite involved� Instead we will use the Gomory�Hu tree
representation of minimum cuts to give a simpler algorithm achieving the same guarantee�

Minimum cuts� as well as sub�optimal cuts� in undirected graphs have several interesting struc�
tural properties �as opposed to cuts in directed graphs�� The existence of Gomory�Hu trees is one
of the remarkable consequences of these properties�

Let T be a tree on vertex set V � the edges of T need not be in E� Each edge �u� v� in T de�nes
a partition of V given by the two connected components obtained by removing �u� v�� Consider the
cut de�ned in G by this partition� We will be say that this is the cut associated with �u� v� in G�
De�ne a weight function w� on the edges of T � Tree T will be said to be a Gomory�Hu tree for G if

�� for each edge e � T � w��e� is the weight of the cut associated with e in G� and

�� for each pair of vertices u� v � V � the weight of a minimum u�v cut is G is the same as that
in T �

Clearly� a minimum u�v cut in T is given by a minimum weight edge on the unique path from u

to v in T � say e� and the cut associated with e in G must separate u and v�
Intuitively� �nding a light k�cut requires picking light cuts that create lots of components�

Notice that the n � � cuts associated with the edges of T contain a minimum u�v cut for each of
the �n�� pairs of vertices u� v � V � This fact� together with the following lemma� justi�es the use of
Gomory�Hu trees for �nding a light k�cut�

Lemma �
	 Let S be the union of cuts in G associated with l edges of T � Then� removal of S
from G leaves a graph with at least l � � components�

Proof � Removing the corresponding l edges from T leaves exactly l� � connected components�
say with vertex sets V�� V�� � � � � Vl��� Clearly� removing S from G will disconnect each pair Vi and
Vj � Hence we must get at least l� � connected components� �

A Gomory�Hu tree can be computed using n � � max��ow computations� see ��� for details�
We will use this in the k�cut algorithm	

Algorithm �

 �Minimum k�cut �

�� Compute a Gomory�Hu tree T for G�

�� Output the union of the lightest �k � �� cuts of the �n� �� cuts associated with edges of T
in G� let C be the union�

As shown in Lemma ���� the removal of C from G will leave at least k components� If more
than k components are created� throw back some of the removed edges until there are exactly k
components� The following theorem establishes the promised approximation guarantee�

Theorem �
�� Algorithm
�� achieves an approximation factor of ��� �
k ��

�� Multiway cuts and k�cuts

Proof � Let A be an optimal k�cut in G� As in Theorem ���� we can view A as the union of k
cuts	 Let V�� V�� � � � � Vk be the k components formed by removing A from G� and let Ai denote the
cut separating Vi form the rest of the graph� Then A � A� � � � � � Ak � and� since each edge of A
lies in two of these cuts�

kX
i��

w�Ai� � �w�A��

Without loss of generality assume that Ak is the heaviest of these cuts� The idea behind the rest of
the proof is to show that there are k�� cuts de�ned by the edges of T whose weights are dominated
by the weight of the cuts A�� A�� � � � � Ak��� Since the algorithm picks the lightest k�� cuts de�ned
by T � the theorem follows�

The k � � cuts are identi�ed as follows� Let B be the set of edges of T that connect across
two of the sets V�� V�� � � � � Vk� Consider the graph on vertex set V and edge set B� and shrink each
of the sets V�� V�� � � � � Vk to a single vertex� This shrunk graph must be connected �since T was
connected�� Throw edges away until a tree remains� Let B� � B be the left over edges� jB�j � k���
The edges of B� de�ne the required k � � cuts�

Next� root this tree at Vk �recall that Ak was assumed to be the heaviest cut among the cuts
Ai�� This helps in de�ning a correspondence between the edges in B� and the sets V�� V�� � � � � Vk��	
each edge corresponds to the set it comes out of in the rooted tree�

V

Vk

w’(u,v)<w(A)

i
u

v

edge of B-B’

edge of B’
i

Suppose edge �u� v� � B� corresponds to set Vi in this manner� Now� since Ai is a u�v cut in G�

w�Ai� � w��u� v��

Thus each cut among A�� A�� � � � � Ak�� is at least as heavy as the cut de�ned in G by the corre�
sponding edge of B�� This together with the fact that C is the union of the lightest k � � cuts
de�ned by T gives	

w�C� �
X
e�B�

w��e� �
k��X
i��

w�Ai� �
�
�� �

k

� kX
i��

w�Ai� � �

�
�� �

k

�
w�A��

�

Example �
�� The tight example given above for multiway cuts on �k vertices also serves as
a tight example for the k�cut algorithm �of course� there is no need to mark vertices as terminals��

��

Below we give the example for k � �� together with its Gomory�Hu tree�

r

rr

r
r
r r
r

�
�
�� �

�
��

�
�
��

�
�

��

�

��

�

�� ��� �

�� � �� �

r

rr

r
r
r r
r

�
�
�� �

�
��

�
�
��

�
�

��

�

��

�� ��� �

�� � �� �

The lightest k � � cuts in the Gomory�Hu tree have weight � � � each� corresponding to picking
edges of weight �� � of G� So� the k�cut returned by the algorithm has weight �k � ����� ��� On
the other hand� the optimal k�cut picks all edges of weight �� and has weight k� �

Chapter �

Facility location problems

In this chapter� we will study approximation algorithms for facility location problems� The �avour of
these problems is illustrated by the following problem	 Given a set of cities with inter�city distances
speci�ed� pick k cities for locating warehouses in� so as to minimize the maximum distance of a city
from its closest warehouse� Formally�

Problem �
� �Minimum k�center problem� Given a complete undirected graph G � �V�E��
with costs on edges satisfying the triangle inequality� and an integer k� �nd a set S � V � jSj � k�
so as to minimize

max
v�V

fmin
u�S

fcost�u� v�gg�

Let us �rst restate the problem in more convenient terms� Suppose that edges are indexed in
non�decreasing order of cost� i�e�� cost�e�� � cost�e�� � � � �� cost�em�� and let Gi � �V�Ei�� where
Ei � fe�� e�� � � � � eig� A dominating set of G is a subset S � V such that every vertex in V � S is
adjacent to a vertex in S� Let dom�G� denote the size of a minimum cardinality dominating set in
G� computing dom�G� is NP�hard� The k�center problem is then equivalent to �nding the smallest
index i such that Gi has a dominating set of size at most k� i�e�� Gi contains k stars spanning all
vertices� where a star is the graph K��p� with p � �� If i� is the smallest such index� then cost�ei��
is the cost of an optimal k�center� this will be denoted by OPT�

De�ne the square of graph G� G�� as the graph containing an edge �u� v� whenever G has a path
of length at most two between u and v� u �� v� The following structural result gives a method for
lower bounding OPT	

Lemma �
� Given a graph H� let I be an independent set in H�� Then�

jI j � dom�H��

Proof � Let D be a minimum dominating set in H � Then� H contains jDj stars spanning all
vertices� Since each of these stars will be a clique in H�� H� contains jDj cliques spanning all
vertices� Clearly� I can pick at most one vertex from each clique� and the lemma follows� �

The k�center algorithm is	

��

��

Algorithm �
� �Minimum k�center�

�� Construct G�
�� G

�
�� � � � � G

�
m�

�� Compute a maximal independent set� Mi� in each graph G�
i �

�� Find the smallest index i such that jMij � k� say j�

�� Return Mj �

The lower bound on which this algorithm is based is	

Lemma �
� For j as de�ned in the algorithm�

cost�ej� � OPT�

Proof � For every i � j we have that jMij � k� Now� by Lemma ���� dom�Gi� � k� and so
i� � i� Hence� j � i�� �

Theorem �
� Algorithm ��
 achieves an approximation factor of � for the minimum k�center
problem�

Proof � The key observation is that a maximal independent set� I � in a graph is also a dominating
set �for� if some vertex v is not dominated by I � then I � fvg must also be an independent set�
contradicting the fact that I is a maximal independent set�� So� there exist stars in G�

j � centered
on the vertices of Mj � covering all vertices� By triangle inequality� each edge used in constructing
these stars has cost at most � � cost�ej�� The theorem follows from Lemma ���� �

Example �
� A tight example for the previous algorithm is given by a wheel graph on n�� ver�
tices� where all edges incident to the center vertex have cost �� and the rest of the edges have cost �	

r

r

r

r
r

r

r

r

r

r

�
�
�
�
�
�
�
l
l
l
l
l
ll

D
D
D
D
D
D
D
D

��
��

��
���������

��
���

aa
aaa

T
T
T
T

	
	
	
	

�����bbbb

B
B
B
BB

�
�
�
�
�
��HH

HH
HH

A
A
A
A
A
A

�
�
�
�
�
��

							 �
�
�
�
�

e
e
e
e
e

�Here� thin edges have cost � and thick edges have cost �� not all edges of cost � are shown��
For k � �� the optimal solution is the center of the wheel� and OPT � �� The algorithm will

compute index j � n� Now� G�
n is a clique� and� if a peripheral vertex is chosen as the maximal

independent set� then the cost of the solution found is �� �

Exercise �
� Perhaps a more obvious scheme would have been �nding a minimal dominating
set� instead of a maximal independent set� in G�

i in Step �� Show that this does not lead to a factor

�� Facility location problems

� algorithm for the k�center problem� In particular� notice that with this modi�cation� the lower
bounding method does not work� since Lemma ��� does not hold if I is picked to be a minimal
dominating set in H��

Next� we will show that � is essentially the best approximation factor achievable for the minimum
k�center problem�

Theorem �
	 Assuming P �� NP� there is no polynomial time algorithm achieving a factor of
�� �� � � � for the minimum k�center problem�

Proof � We will show that such an algorithm can solve the dominating set problem in polynomial
time� Let an instance of the dominating set problem be speci�ed by graph G � �V�E� and integer
k� Construct a complete graph G� � �V�E�� with edge costs given by

cost�u� v� �

	
�� if �u� v� � E�

�� if �u� v� �� E�

Clearly� if dom�G� � k� then G� has a k�center of cost �� On the other hand� if dom�G� � k�
then the optimum cost of a k�center in G� is �� In the �rst case� when run on G�� the �� � ���
approximation algorithm must give a solution of cost �� since it cannot use an edge of cost ��
Hence� using this algorithm� we can distinguish between the two possibilities� thus solving the
dominating set problem� �

The weighted k�center problem

Let us generalize the k�center problem as follows	

Problem �

 �Weighted k�center� In addition to a cost function on edges� we are given a
weight function on vertices� w 	 V
 R�� and a bound W � R�� The problem is to pick S � V of
total weight at most W � minimizing the same objective function as before� i�e��

max
v�V

fmin
u�S

fcost�u� v�gg�

Let wdom�G� denote the weight of a minimum weight dominating set in G� Then� with respect
to the graphs Gi de�ned above� we need to �nd the smallest index i such that wdom�Gi� � W � If
i� is this index� then the cost of the optimal solution is OPT � cost�ei���

Given a vertex weighted graph H � let I be an independent set in H�� For each u � I � let s�u�
denote a lightest neighbor of u in H � where u is also considered a neigbor of itself� �Notice that
the neighbor is picked in H and not in H��� Let S � fs�u�j u � Hg� The following fact� analogous
to Lemma ���� will be used to derive a lower bound on OPT	

Lemma �
�� w�S� � wdom�H��

Proof � Let D be a minimum weight dominating set of H � Then� there exist a set of disjoint
stars in H � centered on the vertices of D and covering all the vertices� Since each of these stars
becomes a clique in H�� I can pick at most one vertex from each of them� So� each vertex in I has
the center of the corresponding star available as a neighbor in H � Hence� w�S� � w�D�� �

�!

The algorithm is given below� In it� si�u� will denote a lightest neighbor of u in Gi� for this
de�nition� u will be considered a neigbor of itself as well�

Algorithm �
�� �Weighted k�center�

�� Construct G�
�� G

�
�� � � � � G

�
m�

�� Compute a maximal independent set� Mi� in each graph G�
i �

�� Compute Si � fsi�u�j u �Mig�
�� Find the minimum index i such that w�Si� � W � say j�

� Return Sj �

Theorem �
�� Algorithm ���� achieves an approximation factor of
 for the weighted k�center
problem�

Proof � Lemma ��� gives a lower bound on OPT	 cost�ej� � OPT� the argument is identical to
that in Lemma ��� and is omitted� Since Mj is a dominating set in G�

j � we can cover V with stars of
G�
j centered in vertices ofMj � By triangle inequality these stars use edges of cost at most ��cost�ej��

r

r

r

r

r

r

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����

����
����

����
����

����
����

����
����

����
����

����
����

����

��
����������

����������
����������

����������
����������

PP
PP

PP
PP

PPP

��
��

��
��
�

J
J
J
J
JJ

����
����

���
� c	ei

� �c	ei

� �c	ei

u

si�u�

Each star center is adjacent to a vertex in Sj � using an edge of cost at most cost�ej�� Move each of
the centers to the adjacent vertex in Sj � and rede�ne the stars� Again� by triangle inequality� the
largest edge cost used in constructing the �nal stars is at most � � cost�ej�� �

Example �
�� A tight example is provided by the following graph on n � � vertices� Vertex
weights and edge costs are as marked� all missing edges have cost given by the shortest path�

r r r rr
r

r

�
�
�
�
��

PPPPPP

�
�
�
�
�����

���

� � �

� � �

� � �

�

�

�

a

�

b

�

c

�

d

�

It is not di�cult to see that for W � �� the optimum cost of a k�center is � � �	 a k�center
achieving this cost is fa� cg� For any i � n� �� the set Si computed by the algorithm will contain

� Facility location problems

a vertex of in�nite weight� Suppose that� for i � n � �� the algorithm chooses Mn�� � fbg as a
maximal independent set� Then Sn�� � fag� and this is the output of the algorithm� The cost of
this solution is �� �

The k�median problem is	 Given a complete undirected graph G � �V�E�� with costs on edges
satisfying the triangle inequality� and an integer k� �nd a set S � V � jSj � k� and a mapping
f 	 V
 S so as to minimize

P
v�V cost�v� f�v��� Surprisingly enough� no approximation algorithm

achieving a non�trivial factor is currently known for this problem�

Chapter �

Feedback vertex set

Problem �
� �Feedback vertex set� Given an undirected graph G � �V�E� and a function w
assigning non�negative weights to its vertices� �nd a minimum weight subset of V whose removal
leaves an acyclic graph�

We present a factor � approximation algorithm for this NP�hard problem� An interesting
feature of the algorithm is that we �rst derive a lower bound on OPT for special vertex�weight
functions� the given vertex weights are then decomposed into these special weights�

Order the edges of G in an arbitrary order� The characteristic vector of a simple cycle C in G is
a vector in GF ���m� m � jEj� which has �$s in components corresponding to edges of C and $s in
the remaining components� The cycle space of G is the subspace of GF ���m that is spanned by the
characteristic vectors of all simple cycles of G� and the cyclomatic number of G� denoted cyc�G��
is the dimension of this space�

Theorem �
� cyc�G� � jEj�jV j�
�G�� where
�G� denotes the number of connected components
of G�

Proof � The cycle space of a graph is the direct sum of the cycle spaces of its connected
components� and so its cyclotomic number is the sum of the cyclotomic numbers of its connected
components� Therefore� it is su�cient to prove the theorem for a connected graph G�

Let T be a spanning tree in G� For each non�tree edge e� de�ne its fundamental cycle to
be the unique cycle formed in T � feg� The set of characteristic vectors of all such cycles is
linearly independent �each cycle includes an edge that is in no other fundamental cycle�� So�
cyc�G� � jEj � jV j� ��

Each edge e of T de�nes a fundamental cut �S� S� in G� S � V �S and S are the vertex sets of
two connected components formed by removing e from T �� De�ne the characteristic vector of a cut
to be a vector in GF ���m� that has �$s in components corresponding to the edges of G in the cut and
 $s in the remaining components� Consider the jV j � � vectors de�ned by edges of T � Since each
cycle must cross each cut an even number of times� these vectors are orthogonal to the cycle space
of G� Furthermore� these jV j � � vectors are linearly independent� since each cut has an edge �the
tree edge de�ning this cut� that is not in any of the other jV j � � cuts� Therefore the dimension of
the orthogonal complement to the cycle space is at least jV j � �� Hence� cyc�G� � jEj � jV j� ��
Combining with the previous inequality we get cyc�G� � jEj � jV j� �� �

Denote by �G�v� the decrease in the cyclomatic number of the graph on removing vertex v�
Since the removal of a feedback vertex set F � fv�� � � � � vfg decreases the cyclomatic number of G

��

�� Feedback vertex set

down to �

cyc�G� �
fX
i��

�Gi��
�vi��

where G
 � G and� for i � � Gi � G� fv�� � � � � vig� By Lemma ��� below� we get	

cyc�G� �
X
v�F

�G�v�� �����

Let us say that a function assigning vertex weights is cyclomatic if there is a constant c �
such that the weight of each vertex v is c � �G�v�� By inequality ������ for such a weight function�
c � cyc�G� is a lower bound on OPT� The importance of cyclotomic weight functions is established
in Lemma ��� below� which shows that for such a weight function� any minimal feedback vertex set
has weight within twice the optimal�

Let degG�v� denote the degree of v in G� and comps�G � v� denote the number of connected
components formed by removing v from G� The claim below follows in a straightforward way by
applying Theorem ��� to G and G� v	

Claim �
� For a connected graph G� �G�v� � degG�v�� comps�G� v��

Lemma �
� Let H be a subgraph of G �not necessarily vertex induced�� Then� �H�v� � �G�v��

Proof � It is su�cient to prove the lemma for the connected components of G and H containing
v� So� we may assume w�l�o�g� that G and H are connected �H may be on a smaller set of vertices��
By Claim ���� proving the following inequality is su�cient	

degH�v�� comps�H � v� � degG�v�� comps�G� v��

We will show that edges in G �H can only help this inequality� Let c�� c�� � � � � ck be components
formed by removing v from H � Edges of G � H not incident at v can only help merge some of
these components �and of course� they don$t change the degree of v�� An edge of G � H that is
incident at v can lead to an additional component� but this is compensated by the additional degree
it provides to v� �

Lemma �
� If F is a minimal feedback vertex set of G� thenX
v�F

�G�v� � � � cyc�G��

Proof � Since the cycle space of G is the direct sum of the cycle spaces of its connected compo�
nents� it su�ces to prove the lemma for a connected graph G�

Let F � fv�� � � � � vfg� and let k be the number of connected components obtained by deleting
F from G� Partition these components into two types	 those that have edges incident to only one
of the vertices of F � and those that have edges incident to two or more vertices of F � Let t and
k � t be the number of components of the �rst and second type respectively� We will prove that

fX
i��

�G�vi� �
fX
i��

�degG�vi�� comps�G� vi�� � ��jEj � jV j��

��

thereby proving the lemma� Clearly�
Pf

i�� comps�G� vi� � f � t� Therefore� we are left to prove

fX
i��

degG�vi� � ��jEj � jV j� � f � t�

comp. 1 comp. 2 comp. k
. . .

. . .
v v v1 2 k

Since F is a feedback vertex set� each of the k components is acyclic� and is therefore a tree�
So� the number of edges in these components is jV j � f � k� Next� we put a lower bound on the
number of edges in the cut �F� V � F �� Since F is minimal� each vi � F must be in a cycle that
contains no other vertices of F � So� each vi must have at least two edges incident at one of the
components� For each vi� arbitrarily remove one of these edges from G� thus removing a total of
f edges� Now� each of the t components must still have at least one edge and each of the k � t

components must still have at least two edges incident at F � Therefore� the number of edges in the
cut �F� V � F � is at least f � t � ��k � t� � f � �k � t�

These two facts imply that

fX
i��

degG�vi� � �jEj � ��jV j � f � k�� �f � �k � t��

The lemma follows� �

Corollary �
� Let w be a cyclotomic weight function on the vertices of G� and let F be a minimal
feedback vertex set in it� Then w�F � � � �OPT�

Finally� let us deal with arbitrary weights� Consider the following basic operation	 Given graph
G � �V�E� and a weight function w� let

c � min
v�V

w�v�

�G�v�

�
�

The weight function t�v� � c�G�v� is the largest cyclotomic weight function in w� De�ne w��v� �
w�v�� t�v� to be the residual weight function� Finally� let V � be the set of vertices having positive
residual weight �clearly� V � � V �� and let G� be the subgraph of G induced on V ��

Using this basic operation� decompose G into a
telescoping� sequence of induced subgraphs�
until an acyclic graph is obtained� each time �nding the largest cyclotomic weight function in the
current residual weight function� Let these graphs be G � G
 � G� � � � � � Gk� where Gk is
acyclic� Gi is the induced subgraph of G on vertex set Vi� where V � V
 � V� � � � � � Vk� Let
ti� i � � � � � � k � � be the cyclotomic weight function de�ned on graph Gi� Thus� w
 � w is the

�� Feedback vertex set

residual weight function for G
� t
 is the largest cyclotomic weight function in w
� w� � w
 � t

is the residual weight function for G�� and so on� Finally� wk is the residual weight function for
Gk� For convenience� de�ne tk � wk� Since the weight of a vertex v has been decomposed into the
weights t
� t�� � � � tk � we have

X
i� v�Vi

ti�v� � w�v��

The next fact suggests an algorithm for constructing a feedback vertex set on which Lemma ���
can be applied	

Lemma �
� Let H be a subgraph of G � �V�E�� induced on vertex set V � � V � Let F be a minimal
feedback vertex set in H� and let F � � V �V � be a minimal set such that F �F � is a feedback vertex
set for G� Then F � F � is a minimal feedback vertex set for G�

Proof � Since F is minimal for H � for each v � F � there is a cycle� say C� in H that does not
use any other vertex of F � Since F � 	 V � � �� C uses only one vertex� v� from F � F � as well� and
so v is not redundant� �

After the entire decomposition� Fk � � is a minimal feedback vertex set of Gk� For i �
k� k� �� � � � � �� the minimal feedback vertex set Fi found in Gi is extended in a minimal way using
vertices of Vi�� � Vi to yield a minimal feedback vertex set� say Fi��� for Gi��� The last set� F
� is
a feedback vertex set for G�

�
�

�
��

�
�
��

�
�
�����

�
�
��

�
�
�

Fk��

Fk � Fk��

F� � F�
G

G�

Gk��

Gk��

Gk

The algorithm is described in detail below� For future reference� let us call this process of
decomposing G into a telescoping sequence of subgraphs and building a set F from the smallest
graph outwards as layering�

��

Algorithm �
	 �Feedback vertex set�

�� Decomposition phase�

H
 G� w�
 w� i

While H is not acyclic�

c
 minu�H
n
w��u�
�H�u�

o
Gi
 H � ti
 c � �Gi

� w�
 w� � ti

H
 the subgraph of Gi induced by vertices u with w��u� �

i
 i� ��

k
 i� Gk
 H

�� Extension phase

Fk
 �
For i � k� � � � � �� extend Fi to a feedback vertex set Fi�� of Gi�� by adding a minimal set

of vertices from Vi�� � Vi�

Output F

Theorem �

 Algorithm ��� achieves an approximation guarantee of factor � for the feedback
vertex set problem�

Proof � Let F � be an optimal feedback vertex set for G� Since Gi is an induced subgraph of G�
F ��Vi must be a feedback vertex set for Gi �not necessarily optimal�� Since the weights of vertices
have been decomposed into the functions ti� we have

OPT � w�F �� �
kX
i�

ti�F
� 	 Vi� �

kX
i�

OPTi�

where OPTi is the weight of an optimal feedback vertex set of Gi with weight function ti�
Decomposing the weight of F
� we get	

w�F
� �
kX
i�

ti�F
 	 Vi� �
kX
i�

ti�Fi��

By Lemma ���� Fi is a minimal feedback vertex set in Gi� Since for � i � k� �� ti is a cyclotomic
weight function� by Lemma ���� ti�Fi� � �OPTi� recall that Fk � �� Therefore�

w�F
� � �
kX
i�

OPTi � � �OPT�

�

Example �
�� A tight example for the algorithm is given by the graph obtained by removing
a perfect matching from a complete bipartite graph and duplicating every edge� �Note that the
algorithm works for parallel edges as well� If a tight example without parallel edges is desired� then

�� Feedback vertex set

a vertex with very high weight can be placed on every edge��	

s
s
s

s s

s
s
sPPPPPPPPP

Q
Q
Q
Q
Q
Q
Q
QQ

S
S
S
S
S
S
S
S
S
S
S
S�

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��

��
���

PPPPPPPPP

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

��
��

��
���

Q
Q
Q
Q
Q
Q
Q
QQ

���
���

��

��

��
���
��
���
��
��
���
��
���
��
��
���
���
���
��
���
��
��
���
���
���
��
���
��
���
��
��
���
��
��
���
��
���
��
���
��
��
���
��
���
�

��
���
��
���
��
��
���
��
���
��
��
���
���
���
��
���
��
��
���
���
���
��
���
��
���
��
��
���
��
��
���
��
���
��
���
��
��
���
��
���
�

Assuming that the graph is cyclomatic weighted� each vertex receives the same weight� The de�
composition obtained by the algorithm consists of only one non�trivial graph� G itself� on which
the algorithm computes a minimal feedback vertex set� A possible output of the algorithm is the
set shown above� this set contains �n� � vertices as compared with the optimum of n given by one
side of the bipartition� �

Remark� We can reduce the weighted vertex cover problem to the minimum feedback vertex set
problem by duplicating every edge and then placing a very high weight vertex on each edge� Hence�
any improvement to the approximation factor for the minimum feedback vertex set problem will
carry over to the weighted vertex cover problem�

Exercise �
�� A natural greedy algorithm for �nding a minimum feedback vertex set is to
repeatedly pick and remove the most cost�e�ective vertex� i�e�� a vertex minimizing w�v�

�H�v� � where H
is the current graph� until there are no more cycles left� Give examples to show that this is not a
constant factor algorithm� What is the approximation guarantee of this algorithm�

Exercise �
�� Obtain a factor � approximation algorithm for the weighted vertex cover problem
using the technique of layering� Use the following obvious fact to construct the layering	 if the
weight of each vertex is equal to its degree in G� i�e�� the graph is degree weighted� then the weight
of any vertex cover is within twice the optimal�

Chapter �

Shortest superstring

In Chapter � we de�ned the shortest superstring problem and gave a � �Hn factor algorithm for it
by reducing to the set cover problem� In this chapter� we will �rst give a factor � algorithm� and
then we will improve this to factor ��

A factor � algorithm

We begin by developing a good lower bound on OPT� Let us assume that s�� s�� � � � � sn are
numbered in order of leftmost occurrence in the shortest superstring� s�

�
 �
�
�
pref	x�� x�
 pref	xn� x�
pref	xn��� xn
 over	xn� x�

s

s�

s�
� � �

sn��

sn

s�

Let overlap�si� sj� denote the maximum overlap between si and sj � i�e�� the longest su�x of si
that is a pre�x of sj � Also� let pre�x�si� sj� be the pre�x of si obtained by removing its overlap
with sj � The overlap in s between two consecutive si$s is maximum possible� because otherwise a
shorter superstring can be obtained� Hence� assuming that no si is substring of another� we get

OPT � jpre�x�s�� s��j� jpre�x�s�� s��j� � � �� jprefix�sn� s��j� joverlap�sn� s��j� �����

Notice that we have repeated s� in the end in order to obtain the last two terms of ������
This equality shows the close relation between the shortest superstring of S and the minimum
traveling salesman tour on the pre�x graph of S� de�ned as the directed graph on vertex set
f�� � � � � ng that contains an edge i
 j of weight jpre�x�si� sj�j for each i� j �self loops included��
Clearly� jpre�x�s�� s��j � jpre�x�s�� s��j � � � � � jprefix�sn� s��j represents the weight of the tour

��

�� Shortest superstring

�
 �
 � � �
 n
 �� Hence� by ������ the minimum weight of a traveling salesman tour of the
pre�x graph gives a lower bound on OPT� As such� this lower bound is not very useful� since we
cannot e�ciently compute a minimum traveling salesman tour�

The key idea is to lower bound OPT using the minimum weight of a cycle cover of the pre�x
graph �a cycle cover is a collection of disjoint cycles covering all vertices�� Since the tour �
 �

� � �
 n
 � is a cycle cover� from ����� we get that the minimum weight of a cycle cover lower
bounds OPT�

Unlike minimum TSP� a minimum weight cycle cover can be computed in polynomial time� We
�rst construct a bipartite version of the pre�x graph	 let U � fu�� � � � � ung and V � fv�� � � � � vng
be the two sides of the bipartition� for each i� j � f�� � � � � ng add an edge of weight jpre�x�si� sj�j
from ui to vj � It is easy to see that each cycle cover of the pre�x graph corresponds to a perfect
matching of the same weight in this bipartite graph� and vice versa� Hence� �nding a minimum
weight cycle cover reduces to �nding a minimum weight perfect matching in the bipartite graph�

If c � �i�
 i�
 � � � il
 i�� is a cycle in the pre�x graph� let

��c� � pre�x�si� � si�� � � � � � pre�x�sil�� � sil� � pre�x�sil � si���

Notice that each string si� � si� � � � �sil is a substring of ���c���� Next� let

	�c� � ��c� � si� �

Then 	�c� is a superstring of si� � � � � � sil
�� In the above construction� we
opened� cycle c at an

arbitrary string si� � For the rest of the algorithm� we will call si� the representative string for c�
We can now state the complete algorithm	

Algorithm �
� �Shortest superstring � factor ��

�� Construct the pre	x graph corresponding to strings in S�

�� Find a minimum cycle cover of the pre	x graph� C � fc�� � � � � ckg�
�� Output 	�c�� � � � � � 	�ck��

Clearly� the output is a superstring of the strings in S� Notice that if in each of the cycles we
can �nd a representative string of length at most the weight of the cycle� then the string output is
within � �OPT� So� the hard case is when all strings of some cycle c are long� But since they must
all be substrings of ���c���� they must be periodic� This will be used to prove Lemma ���� which
establishes another lower bound on OPT� This in turn will give	

Theorem �
� Algorithm 	�� achieves an approximation factor of
 for the shortest superstring
problem�

Proof � Let wt�C� � Pk
i�� wt�ci�� The output of the algorithm has length

kX
i��

j	�ci�j � wt�C� �
kX
i��

jrij�

�This remains true even for the shorter string ��c	�overlap�sl� s�	� We will work with ��c	� since it will be needed
for the factor � algorithm presented in next section� where we use the property that ��c	 begins and ends with a copy
of si� �

�!

where ri denotes the representative string from cycle ci� We have shown that wt�C� � OPT� Next�
we show that the sum of the lengths of representative strings is at most � �OPT�

Assume that r�� � � � � rk are numbered in order of their leftmost occurrence in the shortest su�
perstring of S� Using Lemma ���� we get the following lower bound on OPT	

OPT �
kX
i��

jrij �
k��X
i��

joverlap�ri� ri���j �
kX
i��

jrij � �
kX
i��

wt�ci��

Hence�

kX
i��

jrij � OPT � �
kX
i��

wt�ci� � � �OPT�

�

Lemma �
� If each string in S� � S is a substring of t� for a string t� then there is a cycle of
weight at most jtj in the pre�x graph covering all the vertices corresponding to strings in S��

Proof � For each string in S�� locate the starting point of its �rst occurrence in t�� Clearly� all
these starting points will be distinct �since no string in S is a substring of another� and will lie in
the �rst copy of t� Consider the cycle in the pre�x graph visiting the corresponding vertices in this
order� Clearly� the weight of this cycle is at most jtj� �

Lemma �
� Let c and c� be two cycles in C� and let r� r� be representative strings from these cycles�
Then

joverlap�r� r��j � wt�c� � wt�c���

Proof � Suppose� for contradiction� that joverlap�r� r��j � wt�c� � wt�c��� Denote by � ���� the
pre�x of length wt�c� �wt�c��� respectively� of overlap�r� r���

�
� � �� � �� � �

�

�� �� ��

�

overlap�r� r��

�r

r�

Clearly� overlap�r� r�� is a pre�x of both �� and ������ In addition� � is a pre�x of �����

and �� is a pre�x of ��� Since overlap�r� r�� � j�j � j��j� it follows that � and �� commute� i�e��
� � �� � �� � �� Bur then� �� � ������ This is so because for any k � �

�k � ����k � ����k � �k�

Hence� for any N � � the pre�x of length N of �� is the same as that of ������
Now� by Lemma ���� there is a cycle of weight at most wt�c� in the pre�x graph covering all

strings in c and c�� contradicting the fact that C is a minimum weight cycle cover� �

� Shortest superstring

Exercise �
� Show that Lemma ��� cannot be strengthened to

joverlap�r� r��j � max fwt�c��wt�c��g�

Improving to factor �

Notice that any superstring of the strings 	�ci�� i � �� � � � � k� is also a superstring of all strings in
S� So� instead of simply concatenating these strings� let us make them overlap as much as possible
�this may sound circular� but it is not%��

Let us de�ne the compression achieved by a superstring as the di�erence between the total length
of the input strings and the length of the resulting superstring� Clearly� maximum compression
is achieved by the shortest superstring� Several algorithms are known to achieve at least half the
optimal compression� For instance� the greedy superstring algorithm presented in a previous lecture
does so� though its proof is based on a complicated case analysis� A less e�cient algorithm� based
on cycle cover� is presented at the end�

Algorithm �
� �Shortest superstring � factor ��

�� Construct the pre	x graph corresponding to strings in S�

�� Find a minimum cycle cover of the pre	x graph� C � fc�� � � � � ckg�
�� Run the greedy algorithm on f	�c��� � � � � 	�ck�g and output the resulting string� 	�

Let OPT� denote the length of the shortest superstring of the strings in S� � f	�c�� � � �	�ck�g�
and let ri be the representative string of ci�

Lemma �
� j	j � OPT� � wt�C��

Proof � Assuming that 	�c��� � � � � 	�ck� appear in this order in a shortest superstring of S� � the
maximum compression that can be achieved on S� is given by

k��X
i��

joverlap�	�ci�� 	�ci����j�

Since each string 	�ci� has ri as a pre�x as well as su�x� by Lemma ����

joverlap�	�ci�� 	�ci����j � wt�ci� � wt�ci����

Hence� the maximum compression achievable on S� is at most ��wt�C�� i�e�� jjS�jj�OPT� � ��wt�C��
where jjX jj denotes the sum of the lengths of the strings in X �

��

OPT� j	j jjS�jj

�

� wt�C�

�

� � � wt�C�

The compression achieved by the greedy algorithm on S� is at least half the maximum com�
pression� hence j	j is closer to OPT� than to jjS�jj� and the lemma follows� �

Finally� we relate OPT� to OPT�

Lemma �
	 OPT� � OPT �wt�C��

Proof � Let OPTr denote the length of the shortest superstring of the strings in Sr � fr�� � � � � rkg�
Because each 	�ci� begins and ends with ri� the compression achievable on the strings of S� is at
least as large as that achievable on the strings of Sr� Thus�

jjS�jj � OPT� � jjSrjj � OPTr�

Clearly� jjS�jj � jjSrjj� wt�C�� This gives

OPT� � OPTr �wt�C��

The lemma follows by noticing that OPTr � OPT� �

Combining the previous two lemmas we get	

Theorem �

 Algorithm 	�� achieves an approximation factor of
 for the shortest superstring
problem�

Finally� we present an algorithm achieving at least half the optimal compression� Suppose that
the strings to be compressed� s�� � � � � sk� are numbered in the order in which they appear in a
shortest superstring� Then� the optimal compression is given by

k��X
i��

joverlap�	i� 	i���j�

This is the weight of the traveling salesman path �
 �
 � � �
 k in the overlap graph of the
strings s�� � � � � sk� this graph contains an arc i
 j of weight joverlap�si� sj�j for each i �� j �thus
this graph has no self loops�� Hence� the optimal compression is upper bounded by the maximum
traveling salesman tour in the overlap graph� which in turn is upper bounded by the maximum
cycle cover� The latter can be computed in polynomial time using matching� similar to a minimum
weight cycle cover� the associated bipartite graph and �nding a maximum weight perfect matching
in it� Since the overlap graph has no self loops� each cycle has length at least �� So� the lightest

�� Shortest superstring

edge in each cycle has weight at most half that of the cycle� Open each cycle by discarding the
lightest edge� overlap strings in the order given by remaining paths� and concatenate the resulting
strings� This gives a superstring achieving compression of at least half the weight of the cycle cover�
hence also half the optimal compression�

Chapter 	

Knapsack

In Chapter � we had mentioned that some NP�hard optimization problems allow approximability
to any required degree� In this chapter� we will formalize this notion and will show that the
knapsack problem admits such an approximability�

De�nition 	
� Let
 be an NP�hard optimization problem with objective function f�� We
will say that algorithm A is an approximation scheme for
 if on input �I� ��� where I is an instance
of
 and � � is an error parameter� it outputs a solution s such that	

� f��I� s� � �� � �� �OPT if
 is a minimization problem�

� f��I� s� � ��� �� �OPT if
 is a maximization problem�

A will be said to be a polynomial time approximation scheme� abbreviated PTAS� if for each �xed
� � � its running time is bounded by a polynomial in the size of instance I �

The de�nition given above allows the running time of A to depend arbitrarily on �� This is
recti�ed in the following more stringent notion of approximability	

De�nition 	
� If in the previous de�nition we require that the running time of A be bounded
by a polynomial in the size of instance I and �

� � then A will be said to be a fully polynomial
approximation scheme� abbreviated FPAS�

In a very technical sense� an FPAS is the best one can hope for for an NP�hard optimization
problem� assuming P �� NP� see the discussion at the end of this chapter� The knapsack problem
admits an FPAS�

Problem 	
� �Knapsack� Given a set S � fa�� � � � � ang of objects� with speci�ed sizes and
pro�ts� size�ai� � Z� and pro�t�ai� � Z�� and a
knapsack capacity� B � Z�� �nd a subset of
objects whose total size is bounded by B and total pro�t is maximized�

An obvious algorithm for this problem is to sort the objects by decreasing ratio of pro�t to size�
and then greedily pick objects in this order� It is easy to see that as such this algorithm can be
made to perform arbitrarily badly� However� a small modi�cation yields a factor � algorithm	 Let
the sorted order of objects be a�� � � � � an� Find the least k such that the size of the �rst k objects
exceeds B� Now� pick the more pro�table of fa�� � � � � ak��g and fakg �we have assumed that the
size of each object is at most B��

Exercise 	
� Show that this algorithm achieves factor ��

A pseudo�polynomial time algorithm for knapsack

��

�� Knapsack

Before presenting an FPAS for knapsack� we need one more concept� For any optimization
problem
� an instance consists of objects� such as sets or graphs� and numbers� such as cost� pro�t�
size etc� So far� we have assumed that all numbers occurring in a problem instance I are written
in binary� The size of the instance� denoted jI j� was de�ned as the number of bits needed to write
I under this assumption� Let us say that Iu will denote instance I with all numbers occurring in it
written in unary� The unary size of instance I� denoted jIuj� is de�ned as the number of bits needed
to write Iu�

An algorithm for problem
 is said to be e�cient if its running time on instance I is bounded
by a polynomial in jI j� Let us consider the following weaker de�nition	

De�nition 	
� An algorithm for problem
 whose running time on instance I is bounded by
a polynomial in jIuj will be called a pseudo�polynomial time algorithm�

The knapsack problem� being NP�hard� does not admit a polynomial time algorithm� however�
it does admit a pseudo�polynomial time algorithm� This fact is used critically in obtaining an FPAS
for it� All known pseudo�polynomial time algorithms for NP�hard problems are based on dynamic
programming�

Let P be the pro�t of the most pro�table object� i�e� P � maxa�S pro�t�a�� Then nP is a
trivial upperbound on the pro�t that can be achieved by any solution� For each i � f�� � � � � ng and
p � f�� � � � � nPg� let Si�p denote a subset of fa�� � � � � aig whose total pro�t is exactly p� and total
size is minimized� Let A�i� p� denote the size of the set Si�p �A�i� p� � � if no such set exists��
Clearly A��� p� is known for every p � f�� � � � � nPg� The following recurrence helps compute all
values A�i� p� in O�n�P � time	

A�i� �� p� � min fA�i� p�� size�ai��� �A�i� p� pro�t�ai����g

if pro�t�ai��� � p� and A�i� �� p� � A�i� p� otherwise�

The maximum pro�t achievable by objects of total size bounded by B is max fpj A�n� p� � Bg�
We thus get a pseudo�polynomial algorithm for knapsack�

An FPAS for knapsack

Notice that if the pro�ts of objects were small numbers� i�e�� they were bounded by a polynomial
in n� then this would be a regular polynomial time algorithm� since its running time would be
bounded by a polynomial in jI j� The key idea behind obtaining an FPAS is to exploit precisely
this fact	 We will ignore a certain number of least signi�cant bits of pro�ts of objects �depending
on the error parameter ��� so that the modi�ed pro�ts can be viewed as numbers bounded by a
polynomial in n and �

� � This will enable us to �nd a solution whose pro�t is at least ��� �� �OPT
in time bounded by a polynomial in n and �

� �

��

Algorithm 	
� �FPAS for knapsack�

�� Given � � � let K � �P
n �

�� For each object ai� de	ne pro�t��ai� �

�
pro�t�ai�

K

�

�� With these as pro	ts of objects� using the dynamic programming algorithm� 	nd the most
pro	table set� say S��

�� Output either S� or the most pro	table object of size at most B� whichever gives higher
pro	t�

Lemma 	
� Let A denote the set output by the algorithm� Then�

pro�t�A� � ��� �� �OPT�

Proof � Let O denote the optimal set� For any object a� because of rounding down� K �pro�t��a�
can be smaller than pro�t�a�� but by not more than K� Therefore�

pro�t�O��K � pro�t��O� � nK�

The dynamic programming step must return a set at least as good as O under the new pro�ts�
Therefore�

pro�t�S�� �� pro�t��O� � pro�t�O�� nK � OPT� �P�

Since the algorithm also considers the most pro�table element� pro�t�A� � P � Therefore�

pro�t�A� � pro�t�S�� � OPT� � � pro�t�A��

Hence�

pro�t�A� � �

� � �
OPT�

The lemma follows� �

Theorem 	
	 Algorithm ��� is a fully polynomial approximation scheme for knapsack�

Proof � By Lemma ���� the solution found is within ��� �� factor of OPT� Since the running

time of the algorithm is O
�
n�

j
P
K

k�
� O

�
n�

�
n
�

��
� which is polynomial in n and ���� the theorem

follows� �

A preliminary hardness result

In this section� we will prove in a formal sense that very few of the known NP�hard problems
admit an FPAS� First� here is a strengthening of the notion of NP�hardness in a similar sense in
which a pseudo�polynomial algorithm is a weakening of the notion of an e�cient algorithm	

�� Knapsack

De�nition 	

 A problem
 is strongly NP�hard if every problem in NP can be polynomially
reduced to
 in such a way that numbers in the reduced instance are always written in unary�

The restriction automatically forces the transducer to use polynomially bounded numbers only�
Most known NP�hard problems are in fact strongly NP�hard� this includes all the problems in
previous chapters for which approximation algorithms were obtained� A stronglyNP�hard problem
cannot have a a psuedo�polynomial time algorithm� assuming P �� NP� Thus� knapsack is not
strongly NP�hard� assuming P �� NP�

We will show below that under some very weak restrictions� anyNP�hard problem admitting an
FPAS must admit a pseudo�polynomial time algorithm� Theorem ��� is proven for a minimization
problem� a similar proof holds for a maximization problem�

Theorem 	
�� Let p be a polynomial and
 be an NP�hard minimization problem such that the
objective function f� is integer valued and on any instance I� OPT�I� � p�jIuj�� If
 admits an
FPAS� then it also admits a pseudo�polynomial time algorithm�

Proof � Suppose there is an FPAS for
 whose running time on instance I and error parameter
� is q�jI j� �� �� where q is a polynomial�

On instance I � set the error parameter to � � �
p�jIuj�

� and run the FPAS� Now� the solution
produced will have objective function value

� �� � ��OPT�I� � OPT�I� � �p�jIuj� � OPT�I� � ��

So� in fact with this error parameter� the FPAS will be forced to produce an optimal solution�
The running time will be q�jI j� p�jIuj��� i�e�� polynomial in jIuj� Therefore� we have obtained a
pseudo�polynomial time algorithm for
� �

The following corollary applies to most known NP�hard problems�

Corollary 	
�� Let
 be an NP�hard optimization problem satisfying the restrictions of Theorem
����� If
 is strongly NP�hard� then
 does not admit an FPAS� assuming P �� NP�

Proof � If
 admits an FPAS� then it admits a pseudo�polynomial time algorithm by Theorem
��� � But then it is not strongly NP�hard� assuming P �� NP� leading to a contradiction� �

The stronger assumption that OPT � p�jI j� in Theorem ��� would have enabled us to prove
that there is a polynomial time algorithm for
� However� this stronger assumption is less widely
applicable� For instance� it is not satis�ed by the minimum makespan problem� which we will study
in Chapter !�

The design of all known FPAS$s and PTAS$s is based on the idea of trading accuracy for
running time � the given problem instance is mapped to a coarser instance� depending on the error
parameter �� which is solved optimally by a dynamic programming approach� The latter ends up
being an exhaustive search of polynomially many di�erent possibilities �for instance� for knapsack�
this involves computing A�i� p� for all i and p�� and in most such algorithms� the running time
is prohibitive even for reasonable n and �� Further� if the algorithm had to resort to exhaustive
search� does the problem really o�er
footholds� to home in on a solution e�ciently� So� is an
FPAS the best one can hope for for an NP�hard problem� Clearly� the issue is complex and there
is no straightforward answer�

Chapter

Minimum makespan scheduling

A central problem in scheduling theory is the following	

Problem

� �Minimummakespan scheduling� Given processing times for n jobs� p�� p�� � � � � pn�
and an integer m� �nd an assignment of the jobs to m identical machines so that the completion
time� also called the makespan� is minimized�

Interestingly enough a factor � algorithm for this problem� regarded as the �rst approxima�
tion algorithm designed with a proven guarantee� was obtained even before the theory of NP�
completeness was discovered� We begin by presenting this algorithm because of its historic impor�
tance� before giving a polynomial approximation scheme for the problem�

Factor � algorithm

The algorithm is very simple	 arbitrarily order the jobs� schedule the next job on the machine
that has been assigned the least amount of work so far�

This algorithm is based on the following two lower bounds on OPT� the optimal makespan	

�� the average time for which a machine has to run� �
P

i pi� �m� and

�� the running time of any one job�

For future reference� let LB denote the combined lower bound� i�e��

LB � max

	
�

m

X
i

pi� maxfpig
�
�

Algorithm

� �Minimum makespan scheduling�

�� Order the jobs arbitrarily�

�� Schedule jobs on machines in this order� scheduling the next job on the machine that has
been assigned the least amount of work so far�

Theorem

� Algorithm ��� achieves an approximation guarantee of � for the minimum makespan
problem�

��

�� Minimum makespan scheduling

Proof � Let Mi be the machine that completes last in the schedule produced by the algorithm�
and let j be the index of the last job scheduled on this machine�

�
�
pj� �
m

P
i pi

M�

���

Mi

���

Mm

Let startj be the time at which job j starts execution on Mi� Since the algorithm assigns a job to
the least loaded machine� it follows that all machines are busy until startj � This implies that

startj � �

m

X
i

pi � OPT�

Further� pj � OPT� So� the makespan of the schedule is startj � pj � � �OPT� �

Example

� A tight example for this algorithm is provided by a sequence of m� jobs with
unit processing time� followed by a single job of length m� The schedule obtained by the algorithm
has a makespan of �m� while OPT � m� �� �

A PTAS for the minimum makespan problem

By Corollary ����� the minimum makespan problem does not admit an FPAS� assuming P ��
NP� instead we will obtain a PTAS for it� The minimum makespan problem is closely related to
the bin packing problem by the following observation	 there exists a schedule with makespan t if
and only if n objects of sizes p�� p�� � � � � pn can be packed into m bins of capacity t each� This
suggests a reduction from minimum makespan to bin packing as follows	 Denoting the sizes of the
n objects� p�� � � � � pn� by I � let bins�I� t� represent the minimum number of bins of size t required
to pack these n objects� Then� the minimum makespan is given by

minft 	 bins�I� t� � mg�

As shown above� LB and � �LB are lower and upper bounds on the minimum makespan� So� we can
determine the minimum makespan by a binary search in this interval� At �rst sight� this reduction
may not seem very useful since the bin packing problem is also NP�hard� However� it turns out
that this problem is polynomial time solvable if the object sizes are drawn from a set of �xed
cardinality� we will use this fact critically in solving the minimum makespan problem�

Bin packing with �xed number of object sizes

We �rst present a dynamic programming algorithm for the restricted bin packing problem� Let
k be the �xed number of object sizes� and assume that bins have capacity �� Fix an ordering
on the object sizes� Now� an instance of the bin packing problem can be described by a k�tuple�

�!

�i�� i�� � � � � ik�� specifying the number of objects of each size� Let BINS�i�� i�� � � � � ik� denote the
minimum number of bins needed to pack these objects�

For a given instance� �n�� n�� � � � � nk��
Pn

i�� ni � n� we �rst compute Q� the set of all k�tuples
�q�� q�� � � � � qk� such that BINS�q�� q�� � � � � qk� � � and � qi � ni� � � i � k� Clearly� Q contains at
most O�nk� elements� Next� we compute all entires of the k�dimensional table BINS�i�� i�� � � � � ik�
for every �i�� i�� � � � � ik� � f � � � � � n�g � f � � � � � n�g � � � �� f � � � � � nkg� The table is initialized by
setting BINS�q� � � for every q � Q� Then� we use the following recurrence to compute the
remaining entries	

BINS�i�� i�� � � � � ik� � � � min
q�Q

BINS�i� � q�� � � � � ik � qk�� �!���

Clearly� computing each entry takes O�nk� time� So� the entire table can be computed in O�n�k�
time� thereby determining BINS�n�� n�� � � � � nk��

Reducing makespan to restricted bin packing

The basic idea is that if we can tolerate some error in computing the minimum makespan� then
we can reduce this problem to the restricted version of bin packing in polynomial time� There will
be two sources of error	

� rounding object sizes so that there are a bounded number of di�erent sizes� and

� terminating the binary search to ensure polynomial running time�

Each error can be made as small as needed� at the expense of running time� Moreover� for any �xed
error bound� the running time is polynomial in n� and so we obtain a polynomial approximation
scheme�

Let � be an error parameter� and t be in the interval �LB� � � LB�� We say that an object is small
if its size is less than t�� small objects are discarded for now� The rest of the objects are rounded
down as follows	 each pi in the interval

�
t��� � ��i� t��� � ��i��

�
is replaced by p�i � t��� � ��i�

for i � � So� the resulting p�i$s can assume at most k � dlog��� �
�e distinct values� Determine an

optimal packing for the rounded objects in bins of size t using the dynamic programming algorithm�
Since rounding reduces the size of each object by a factor of at most ���� if we consider the original
sizes of the objects� then the packing determined is valid for a bin size of t�� � ��� Keeping this
as the bin size� pack the small objects greedily in leftover spaces in the bins� open new bins only
if needed� Clearly� any time a new bin is opened� all previous bins must be full to the extent of at
least t� Denote by ��I� t� �� the number of bins used by this algorithm� recall that these bins are of
size t�� � ���

Let us call the algorithm presented above the core algorithm since it will form the core of the
PTAS for computing makespan� As shown in Lemma !�� and its Corollary� the core algorithm also
helps establish a lower bound on the optimal makespan�

Lemma

� ��I� t� �� � bins�I� t��

Proof � If the algorithm does not open any new bins for the small objects� then the assertion
clearly holds since the rounded down pieces have been packed optimally in bins of size t� In the
other case� all but the last bin are packed to the extent of t at least� Hence� the optimal packing
of I in bins of size t must also use at least ��I� t� �� bins� �

� Minimum makespan scheduling

Since OPT � minft 	 bins�I� t� � mg� Lemma !�� gives	

Corollary

� minft 	 ��I� t� �� �mg � OPT�

If minft 	 ��I� t� �� � mg could be determined with no additional error during the binary search�
then clearly we could use the core algorithm to obtain a schedule with a makespan of �� � ��OPT�
Next� we will specify the details of the binary search and show how to control the error it introduces�
The binary search is performed on the interval �LB� � � LB�� So� the length of the available interval
is LB at the start of the search� and it reduces by a factor of � in each iteration� We continue the
search until the avialable interval drops to a length of � � LB� This will require dlog� �

�e iterations�
Let T be the right endpoint of the interval we terminate with�

Lemma

� T � �� � �� �OPT�

Proof � Clearly� minft 	 ��I� t� �� � mg must be in the interval �T � �� T �� Hence�

T � minft 	 ��I� t� �� � mg� � � LB�

Now� using Corollary !�� and the fact that LB � OPT� the lemma follows� �

Finally� the output of the core algorithm for t � T gives a schedule whose makespan is at most
T � �� � ��� So� we get	

Theorem

	 The algorithm produces a valid schedule having makespan at most

�� � ��� �OPT � �� � ��� �OPT�

The running time of the entire algorithm is O
�
n�kdlog� �

� e
�
� where k � dlog��� �

�e�

Part II

LP BASED ALGORITHMS

Chapter ��

Introduction to LP�duality

As stated in Chapter � LP�duality theory uni�es a large part of the theory of approximation
algorithms as we know it today� For a comprehensive introduction to linear programming we
recommend ���� In this chapter� we will review some concepts that we will use critically�

Linear programming is the problem of optimizing �i�e�� minimizing or maximizing� a linear
function subject to linear inequality constraints� the function being optimized is called the objective
function� Perhaps the most interesting fact about this problem from our perspective is that it is
well�characterized in the sense of Chapter � � Let us illustrate this through a simple example	

minimize �x� � x� � �x�

subject to x� � x� � �x� � �

�x� � �x� � x� � �

x�� x�� x� �

Notice that in this example all constraints are of the kind
�� and all variables are constrained
to be non�negative� This is the standard form of a minimization linear program� a simple trans�
formation enables one to write any minimization linear program in this manner� The reason for
choosing this form will become clear shortly�

Any solution� i�e�� a setting for the variables in this linear program� that satis�es all the con�
straints is said to be a feasible solution� Let z� denote the optimum value of this linear program�
Let us consider the question�
Is z� at most ��� where � is a given rational number� For instance�
let us ask whether z� � � � A Yes certi�cate for this question is simply a feasible solution whose
objective function value is at most � � For example� x � ��� �� �� constitutes such a certi�cate since
it satis�es the two constraints of the problem� and the objective function value for this solution is
� � � � � � � � � � � � Thus� any Yes certi�cate to this question provides an upper bound on z��

How do we provide a No certi�cate for such a question� In other words� how do we place a
good lower bound on z�� In our example� one such bound is given by the �rst constraint	 since
the xi$s are restricted to be non�negative� term by term comparison of coe�cients shows that
�x� � x� � �x� � x� � x� � �x�� Since the right hand side of the �rst constraint is � � we get that
the objective function is at least � for any feasible solution� A better lower bound can be obtained
by taking the sum of the two constraints	 for any feasible solution x�

�x� � x� � �x� � �x� � x� � �x�� � ��x� � �x� � x�� � ���

The idea behind this process of placing a lower bound is that we are �nding suitable non�
negative multipliers for the constraints so that when we take their sum� the coe�cient of each xi

��

��

in the sum is dominated by the coe�cient in the objective function� Now� the right hand side of
this sum is a lower bound on z� since any feasible solution has a non�negative setting for each xi�
Notice the importance of ensuring that the multipliers are non�negative	 they do not reverse the
direction of the constraint inequality�

Clearly� the rest of the game lies in choosing the multipliers in such a way that the right hand
side of the sum is as large as possible� Interestingly enough� the problem of �nding the best such
lower bound can be formulated as a linear program	

maximize � y� � �y�

subject to y� � �y� � �

�y� � �y� � �

�y� � y� � �

y�� y� �

Here y� and y� were chosen to be the non�negative multipliers for the �rst and the second
constraint respectively� Let us call the �rst linear program the primal program and the second the
dual program� There is a systematic way of obtaining the dual of any linear program� one is a
minimization problem and the other is a maximization problem� Further� the dual of the dual is
the primal program itself �see ����� By construction� every feasible solution to the dual program
gives a lower bound on the optimum value of the primal� Observe that the reverse also holds	 every
feasible solution to the primal program gives an upper bound on the optimal value of the dual�
Therefore� if we can �nd feasible solutions for the dual and the primal with matching objective
function values� then both solutions must be optimal� In our example� x � ����� � ����� and
y � ��� �� both achieve objective function values of ��� and so both are optimal solutions� The
reader may wonder whether our example was ingeniously chosen for this to happen� Surprisingly
enough� this is not an exception but the rule% This is the central theorem of linear programming	
the LP�Duality Theorem�

In order to state this theorem formally� let us consider the following minimization problem�
written in standard form� as the primal program� equivalently� we could have started with a maxi�
mization problem as the primal program�

minimize
nX

j��

cjxj �� ���

subject to
nX

j��

aijxj � bi� i � �� � � � � m

xj � � j � �� � � � � n

where aij � bi� and cj are given rational numbers�

Then the dual program is	

maximize
mX
i��

biyi �� ���

subject to
mX
i��

aijyi � cj � j � �� � � � � n

yi � � i � �� � � � � m

�� Introduction to LP�duality

Theorem ��
� �LP�Duality Theorem� The primal program has �nite optimum if and only if its
dual has �nite optimum� Moreover� if x� � �x��� � � � � x

�
n� and y

� � �y��� � � � � y
�
m� are optimal solutions

for the primal and the dual program respectively� then

nX
j��

cjx
�
j �

mX
i��

biy
�
i �

Notice that the LP�Duality Theorem is really a min�max relation� since one program is a
minimization problem and the other is a maximization problem� This theorem shows that the
linear programming problem is well�characterized	 feasible solutions to the primal �dual� provide
Yes �No� certi�cates to the question�
Is the optimum value less than or equal to ��� Thus� as a
corollary of this theorem we get that linear programming is in NP	 co�NP�

Going back to our example� by construction� any feasible solution to the dual program gives
a lower bound on the optimal value of the primal� So� in fact it also gives a lower bound on the
objective function value achieved by any feasible solution to the primal� This is the easy half of
the LP�Duality Theorem� sometimes called the Weak Duality Theorem� We give a formal proof
of this since some steps in the proof will lead to the next important fact� For a proof of the LP�
Duality Theorem see ���� The design of several exact algorithms have their basis in the LP�Duality
Theorem� In contrast� in approximation algorithms� typically the Weak Duality Theorem su�ces�

Theorem ��
� �Weak Duality Theorem� If x � �x�� � � � � xn� is a feasible solution for the primal
program and y � �y�� � � � � ym� is a feasible solution for the dual� then

nX
j��

cjxj �
mX
i��

biyi� �� ���

Proof � Since y is dual feasible and xj $s are non�negative�

nX
j��

cjxj �
nX
j��

�
mX
i��

aijyi

�
xj � �� ���

Similarly� since x is primal feasible and yi$s are non�negative�

mX
i��

�
� nX
j��

aijxj

�
A yi �

mX
i��

biyi� �� ���

The theorem follows by observing that

nX
j��

�
mX
i��

aijyi

�
xj �

mX
i��

�
� nX
j��

aijxj

�
A yi�

�

By the LP�Duality Theorem� x and y are both optimal solutions if and only if �� ��� holds with
equality� Clearly� this happens if and only if both �� ��� and �� ��� hold with equality� Hence� we
get the following result about the structure of optimal solutions	

��

Theorem ��
� �Complementary Slackness Conditions� Let x and y be primal and dual feasible
solutions respectively� Then� x and y are both optimal if and only if all of the following conditions
are satis�ed�

Primal complementary slackness conditions
For each � � j � n� either xj � or

Pm
i�� aijyi � cj� and

Dual complementary slackness conditions
For each � � i � m� either yi � or

Pn
j�� aijxj � bi�

The complementary slackness conditions play a vital role in the design of e�cient algorithms�
both exact and approximation� see Chapter �� for details� For a better appreciation of their
importance� we recommend that the reader study Edmonds$ weighted matching algorithm �see� for
example� �����

Min�max relations and the LP�Duality Theorem

In order to appreciate the role of LP�duality theory in approximation algorithms� it is important
to �rst understand its role in exact algorithms� To do so� we will review some of these ideas in the
context of the max��ow min�cut theorem� in particular� we will show how this and other min�max
relations follow from the LP�Duality Theorem� Some of the ideas on cuts and �ows developed here
will also be used in the study of multicommodity �ow in Chapters �� �� and ���

The problem of computing a maximum �ow in a network is	 Given a directed� graph� G � �V�E�
with two distinguished nodes� source s and sink t� and positive arc capacities� c 	 E
 R�� �nd the
maximum amount of �ow that can be sent from s to t subject to

�� capacity constraint� for each arc e� the �ow sent through e is bounded by its capacity� and

�� �ow conservation� at each node v� other than s and t� the total �ow into v should equal the
total �ow out of v�

An s�t cut is de�ned by a partition of the nodes into two sets X and X so that s � X and t � X�
and consists of the set of arcs going from X to X� The capacity of this cut� c�X�X�� is de�ned to
be the sum of capacities of these arcs� Because of the capacity constraints on �ow� the capacity of
any s�t cut is an upper bound on any feasible �ow� So� if the capacity of an s�t cut� say �X�X�
equals the value of a feasible �ow� then �X�X� must be a minimum s�t cut and the �ow must be
a maximum �ow in G� The max��ow min�cut theorem proves that it is always possible to �nd a
�ow and an s�t cut so that equality holds�

Let us formulate the maximum �ow problem as a linear program� First� introduce a �ctitious
arc of in�nite capacity from t to s� thus converting the �ow to a circulation� the objective now is
to maximize the �ow on this arc� denoted by fts� The advantage of making this modi�cation is
that we can now require �ow conservation at s and t as well� If fij denotes the amount of �ow sent
through arc �i� j� � E� we can formulate the maximum �ow problem as follows	

maximize fts

subject to fij � cij � �i� j� � E

�The maximum �ow problem in undirected graphs reduces to that in directed graphs� replace each edge �u� v	 by
two directed edges� �u� v	 and �v � u	� each of the same capacity as �u� v	�

�� Introduction to LP�dualityX
j� �j�i��E

fji �
X

j� �i�j��E

fij � � i � V

fij � � �i� j� � E

The second set of inequalities say that for each node i� the total �ow into i is at most the total �ow
out of i� Notice that if this inequality holds at each node� then in fact it must be satis�ed with
equality at each node� thereby implying �ow conservation at each node �this is so because a de�cit
in �ow balance at one node implies a surplus at some other node�� With this trick� we get a linear
program in standard form�

To obtain the dual program we introduce variables dij and pi corresponding to the two types
of inequalities in the primal� We will view these variables as distance labels on arcs and potentials
on nodes respectively� The dual program is	

minimize
X

�i�j��E

cijdij

subject to dij � pi � pj � � �i� j� � E

ps � pt � �

dij � � �i� j� � E

pi � � i � V

For developing an intuitive understanding of the dual program� it will be best to �rst transform
it into an integer program that seeks �� solutions to the the variables	

minimize
X

�i�j��E

cijdij

subject to dij � pi � pj � � �i� j� � E

ps � pt � �

dij � f � �g� �i� j� � E

pi � f � �g� i � V

Let �d��p�� be an optimal solution to this integer program� The only way to satisfy the
inequality p�s � p�t � � with a �� substitution is to set p�s � � and p�t � � So� this solution
naturally de�nes an s�t cut �X�X�� where X is the set of potential � nodes� and X the set of
potential nodes� Consider an arc �i� j� with i � X and j � X� Since p�i � � and p�j � � by the
�rst constraint� d�ij � �� But since we have a �� solution� d�ij � �� The distance label for each
of the remaining arcs can be set to either or � without violating the �rst constraint� however� in
order to minimize the objective function value� it must be set to � So� the objective function value
is precisely the capacity of the cut �X�X�� and hence �X�X� must be a minimum s�t cut�

Thus� this integer program is a formulation of the minimum s�t cut problem% What about the
dual program� The dual program can be viewed as a relaxation of the integer program where the
integrality constraint on the variables is dropped� This leads to the constraints � � dij � for
�i� j� � E and � � pi � for i � V � Next� we notice that the upper bound constraints on the
variables are redundant� their omission cannot give a better solution� Dropping these constraints
gives the dual program in the form given above� We will say that this program is the LP relaxation
of the integer program�

Consider an s�t cut C� Set C has the property that any path from s to t in G contains at
least one edge of C� Using this observation� we can interpret any feasible solution to the dual

��

program as a fractional s�t cut	 the distance labels it assigns to arcs satisfy the property that on
any path from s to t the distance labels add up to at least �� To see this� consider an s�t path
�s � v
� v�� � � � � vk � t�� Now� the sum of the potential di�erences on the end points of arcs on this
path�

k��X
i�

�pi � pi��� � ps � pt�

So� by the �rst constraint� the sum of the distance labels on the arcs must add up to at least ps�pt�
which is � �� Let us de�ne the capacity of this fractional s�t cut to be the dual objective function
value achieved by it�

In principle� the best fractional s�t cut could have lower capacity than the best integral cut�
Surprisingly enough� this does not happen� Consider the polyhedron de�ning the set of feasible
solutions to the dual program� Let us call a feasible solution a vertex solution if it is a vertex
of this polyhedron� From linear programming theory we know that for any objective function�
i�e�� assignment of capacities to the arcs of G� there is a vertex solution that is optimal �for this
discussion let us assume that for the given objective function� an optimal solution exists�� Now�
it can be proven that each vertex solution is integral� with each coordinate being or �� �This
follows from the fact that the constraint matrix of this program is totally unimodular�� see ��� for
a proof�� Thus� the dual program always has an integral optimal solution�

By the LP�Duality Theorem maximum �ow in G must equal capacity of a minimum fractional
s�t cut� But since the latter equals the capacity of a minimum s�t cut� we get the max��ow min�cut
theorem�

So� the max��ow min�cut theorem is a special case of the LP�duality theorem� it holds be�
cause the dual polyhedron has integral vertices� In fact� most min�max relations in combinatorial
optimization hold for analogous reasons�

Finally� let us illustrate the usefulness of complementary slackness conditions by utilizing them
to derive additional properties of optimal solutions to the �ow and cut programs� Let f� be an
optimum solution to the primal LP �i�e�� a maximum s�t �ow�� Also� let �d��p�� be an integral
optimum solution to the dual LP� and let �X�X� be the cut de�ned by �d��p��� Consider an arc
�i� j� such that i � X and j � X� We have proven above that d�ij � �� Since d�ij �� � by the dual

complementary slackness condition� f�ij � cij � Next� consider an arc �k� l� such that k � X and
l � X � Since p�k � p�l � ��� and d�kl � f � �g� the constraint d�kl � p�k � p�l � must be satis�ed
as a strict inequality� So� by the primal complementary slackness condition� f�kl � � Thus we
have proven that arcs going from X to X are saturated by f�� and the reverse arcs carry no �ow�
�Observe that it was not essential to invoke complementary slackness conditions to prove these
facts� they also follow from the fact that �ow across cut �X�X� equals its capacity��

Exercise ��
� Show that the dual of the dual of a linear program is the program itself�

Exercise ��
� Show that any minimization program can be transformed into an equivalent
program in standard form� i�e�� the form of LP �� ����

Exercise ��
� Change some of the constraints of the primal program �� ��� into equalities�
i�e�� so they are of the form

nX
j��

aijxj � bi�

�A matrix A is said to be totally unimodular if the determinant of every square submatrix of A is ���� or ��

�� Introduction to LP�duality

Show that the dual of this program involves modifying program �� ��� so that the corresponding
dual variables yi are unconstrained� i�e�� they are not constrained to be non�negative� Additionally�
if some of the variables xj in program �� ��� are unconstrained� then the corresponding constraints
in the dual become equalities�

Exercise ��
� In this exercise� you will derive von Neumann$s Minimax Theorem in game
theory from the LP�Duality Theorem� A �nite two�person zero�sum game is speci�ed by an m� n
matrix A with real entries� In each round� the row player� R� selects a row� say i� simultaneously�
the column player� C� selects a column� say j� The payo� to R at the end of this round is aij �
Thus� jaij j is the amount that C pays R �R pays C� if aij is positive �aij is negative�� no money is
exchanged if aij is zero� Zero sum game refers to the fact that the total amount of money possessed
by R and C together is conserved�

The strategy of each player is speci�ed by vector whose entries are non�negative and add up
to one� giving the probabilities with which the player picks each row or column� Let R$s strategy
be given by m�dimensional vector x� and C$s strategy be given by n�dimensional vector y� Then�
the excected pay o� to R in a round is xTAy� The job of each player is to pick a strategy that
guarantees maximum possible expected winnings �equivalently� minimum possible expected losses��
regardless of the strategy chosen by the other player� If R chooses strategy x� he can be sure
of winning only miny xTAy� where the minimum is taken over all possible strategies of C� So�
the optimal choice for R is given by maxxminy x

TAy� Similarly� C will minimize her losses by
choosing the strategy given by miny maxx xTAy� The Minimax Theorem states that for every
matrix A� maxxminy x

TAy � miny maxx x
TAy�

Let us say that a strategy is pure if it picks a single row or column� i�e�� the vector corresponding
to it consists of one � and the rest $s� A key observation is that for any strategy x of R� miny x

TAy

is attained for a pure strategy of C	 Suppose the minimum is attained for strategy y� Consider
the pure strategy corresponding to any non�zero component of y� The fact that the components
of y are non�negative and add up to one leads to an easy proof that this pure strategy attains the
same minimum� So� R$s optimum strategy is given by maxxminj

Pm
i�� aijxi� The second critical

observation is that the problem of computing R$s optimal strategy can be expressed as a linear
program	

maximize z

subject to z �
mX
i��

aijxi � � j � �� � � � � n

mX
i��

xi � �

xi � � i � �� � � � � m

Find the dual of this LP� and show that it computes the optimal strategy for C� �Use the fact
that for any strategy y of C� maxx x

TAy is attained for a pure strategy of R�� Hence� prove the
Minimax Theorem using the LP�Duality Theorem�

Chapter ��

Rounding applied to set cover

As stated in the Introduction� a key step in designing an approximation algorithm for an NP�hard
problem is establishing a good lower bound on the cost of the optimal solution �for this discussion
we will assume that we have a minimization problem at hand�� This is where linear programming
helps out	 Many combinatorial optimization problems can be expressed as integer programming
problems� For these problems� the cost of an optimal solution to the LP�relaxation provides the
desired lower bound� As in the case of the minimum s�t cut problem �see Chapter � �� a feasible
solution to the LP�relaxation represents a fractional solution to the original problem� However�
in this case� we cannot expect the polyhedron de�ning the set of feasible solutions to have integer
vertices� since the original problem is NP�hard�

An obvious strategy for obtaining a
good� solution to the original problem is to solve the
linear program and then convert the solution obtained into an integral solution� trying to ensure
that in the process the cost does not increase much� The approximation guarantee is established
by comparing the cost of the integral and fractional solutions� This strategy is called rounding�

A second� less obvious and perhaps more sophisticated� strategy is to use the dual of the LP�
relaxation in the design of the algorithm and in the proof of its approximation guarantee� Under
this strategy lies the primal dual schema� a rather general algorithm design schema that yields
the best known approximation algorithms for a diverse collection of problems� These ideas will be
presented in Chapters �� and ���

In this chapter� we will present two di�erent algorithms for the set cover problem based on
rounding� De�ne the frequency of an element in a set cover instance to be the number of sets it
is in� The approximation guarantee achieved by the �rst algorithm is the frequency of the most
frequent element� Frequently� the rounding procedure uses randomization� This is illustrated in
the second algorithm which achieves an approximation guarantee of O�logn�� Notice that neither
algorithm dominates the other on all instances�

�!

� Rounding applied to set cover

A simple rounding algorithm

Recall the minimum set cover problem	 Given a set U with n elements� a collection of subsets
of U � S� and a cost function c 	 S
 Q�� �nd a minimum cost sub�collection of S that covers all
elements of U � Let f denote the frequency of the most frequent element�

To formulate this problem as an integer program� let us assign a variable xS for each set S � S�
which is allowed �� values� This variable will be set to � i� set S is picked in the set cover� Clearly�
the constraint is that for each element e � U we want that at least one of the sets containing it be
picked�

minimize
X
S�S

c�S�xS ������

subject to
X

S� e�S

xS � �� e � U

xS � f � �g� S � S

The LP�relaxation of this integer program is obtained by letting the domain of variables xS be
� � xS � � Since the upper bound on xS is redundant� we get	

minimize
X
S�S

c�S�xS ������

subject to
X

S� e�S

xS � �� e � U

xS � � S � S

One way of converting a solution to this linear program into an integral solution is to round
up all non�zero variables to �� It is easy to construct examples showing that this could increase
the cost by a factor of '�n� �see Example ������ However� this simple algorithm does achieve the
desired approximation guarantee of f �see Exercise ������ Let us consider a slight modi�cation of
this algorithm that is easier to prove� and picks fewer sets in general	

Algorithm ��
� �Set cover via rounding�

�� Find an optimal solution to the LP�relaxation�

�� Pick all sets S for which xS � �
f in this solution�

Theorem ��
� Algorithm ���� achieves an approximation factor of f for the set cover problem�

Proof � Let C be the collection of picked sets� Consider an arbitrary element e� Since e is in at
most f sets� one of these sets must be picked to the extent of at least �

f in the fractional cover� So�
e is covered by C� and hence C is a valid set cover� For each set S � C� xS has been increased by
a factor of at most f � Therefore� the cost of C is at most f times the cost of the fractional cover�
thereby proving the desired approximation guarantee� �

The weighted vertex cover problem can be seen as a set cover problem with f � �	 elements
correspond to edges and sets correspond to vertices� with inclusion corresponding to incidence� The

��

cost of a set is the weight of the corresponding vertex� Since each edge is incident to two vertices�
each element is in two sets� and so f � �� Using the algorithm given above� we get a factor �
algorithm for weighted vertex cover� matching the approximation guarantee for the unweighted
problem presented in Chapter � � this is the best known approximation guarantee for the weighted
as well as unweighted vertex cover problems�

Example ��
� Let us give a tight example for the set cover algorithm� For simplicity� we
will describe a hypergraph and use the transformation given above to obtain a set cover instance
from it� Let V�� � � � � Vk be disjoint sets of cardinality n each� The hypergraph has vertex set
V � V� � � � � � Vk� and nk hyperedges� each hyperedge picks one vertex from each Vi� In the set
cover instance� elements correspond to hyperedges and sets correspond to vertices� Once again�
inclusion corresponds to incidence� Each set has cost �� Picking each set to the extent of �

k gives an
optimal fractional cover of cost n� Given this fractional solution� the rounding algorithm will pick
all nk sets� On the other hand� picking all sets corresponding to vertices in V� gives a set cover of
cost n� �

Exercise ��
� Show� using the primal complementary slackness conditions� that picking all
sets that are non�zero in the fractional solution also leads to a factor f algorithm�

A randomized rounding approach to set cover

Let xS � pS � S � S be an optimal solution to the linear program� Viewing pS $s as probabilities�
we will pick a sub�collection of S as follows	 for each set S � S� pick S with probability pS � Let C
be the collection of sets picked� The expected cost of C is

X
S�S

Pr�S is picked� � cS �
X
S�S

pS � cS � OPT�

where OPT is the cost of the optimal solution to the linear program� Let us compute the probability
that an element e � U is covered by C� Suppose that e occurs in k sets of S� and the probabilities
associated with these sets are p�� � � � � pk� Since e is fractionally covered in the optimal solution�
p� � p� � � � �� pk � �� Using elementary calculus� it is easy to show that under this condition� the
probability that e is covered by C is minimized when each of the pi$s is ��k� So�

Pr�e is covered by C� � ��
�
�� �

k

�k

� �� �

e
�

where e represents the base of the natural logarithms� Thus� each element is covered with constant
probability by C�

To get a complete set cover� independently pick c logn such sub�collections� and obtain their
union� say C�� where c is a constant such that

�
�

e

�c logn
� �

�n
�

Now�

Pr�e is not covered by C�� �
�
�

e

�c logn
� �

�n
�

�� Rounding applied to set cover

Summing over all elements e � U �

Pr�some e � U is not covered by C�� � n � �

�n
� �

�
�

Therefore C� is a set cover with probability at least ���� If C� is not a set cover� the above procedure
is repeated� until a valid sub�collection is found� Clearly� the expected number of repetitions needed
is at most �� The expected cost of C� is at most � �OPT � �c logn� � O�logn� �OPT�

We have presented perhaps the simplest randomized rounding algorithm for set cover� Using
more elaborate probabilistic machinery� one can get algorithms achieving essentially the same factor
as the greedy algorithm presented in Chapter ��

Exercise ��
� Show that with some constant probability� C covers at least half the elements
at a cost of at most OPT�

Chapter ��

LP�duality based analysis for set

cover

As stated in Chapter ��� there is a more sophisticated way� than rounding� of using the LP�
relaxation� Let us call the LP�relaxation the primal program� We know from Chapter � that
any feasible solution to the dual gives a lower bound on the primal� and hence also on the original
integer program� Now� we devise an algorithm that �nds an integral solution to the primal and
simultaneously a feasible �fractional� solution to the dual� The approximation guarantee is estab�
lished by comparing the cost of these two solutions� The main advantage over rounding is that
instead of having to work with an arbitrary optimal solution to the LP�relaxation� we can pick
the two solutions carefully so they have nice combinatorial properties� Another advantage is that
the algorithm can be made more e�cient� since it does not have to �rst solve the LP�relaxation
optimally�

The reader may suspect that from the viewpoint of approximation guarantee� the current
method is inferior to rounding� since an optimal solution to the primal gives a tighter lower bound
than a feasible solution to the dual� Let us de�ne the integrality gap of a minimizing integer
program to be the maximum ratio of an optimal integral and optimal fractional solution �for a
maximizing integer program� we will seek the minimum such ratio�� Clearly� the integrality gap of
the integer programming formulation being used is the best approximation guarantee one can hope
to achieve by using either of the two approaches� Interestingly enough� for most problems studied�
the approximation guarantee researchers have managed to establish using the LP�duality approach
is essentially equal to the integrality gap of the integer programming formulation�

We will use this strategy to re�analyze the natural greedy algorithm for the minimum set cover
problem given in Chapter �� Recall that in Chapter � we had deferred giving the lower bounding
method on which this algorithm was based� The method is precisely the one described above�
The power of this approach will become apparent when we show the ease with which it extends to
solving generalizations of the set cover problem�

Introducing a variable ye corresponding to each element e � U � we obtain the dual for ������	

maximize
X
e�U

ye ������

subject to
X

e� e�S

ye � c�S�� S � S

ye � � e � U

��

�� LP�duality based analysis for set cover

Intuitively� why is ���� the dual of ����� In our experience� this is not the right question to
be asked� As stated in Chapter � � there is a purely mechanical procedure for obtaining the dual
of a linear program� Once the dual is obtained� one can devise intuitive� and possibily physically
meaningful� ways of thinking about it� Using this mechanical procedure� one can obtain the dual
of a complex linear program in a fairly straightforward manner� Indeed� the LP�duality based
approach derives its wide applicability from this fact�

An intuitive way of thinking about program ���� is that it is packing
stu�� into elements� trying
to maximize the total amount packed� subject to the constraint that no set is overpacked� a set is
said to be overpacked if the total amount packed into its elements exceeds its cost� Thus� ������
and ������ can be thought of as a covering and packing linear programs respectively� Whenever the
coe�cients in the constraint matrix� objective function and right hand side are all non�negative�
we get such a pair of linear programs� Such pairs of programs will arise frequently in subsequent
chapters�

Let us re�analyze the natural greedy set cover algorithm using LP�duality theory� Recall that
the algorithm picks the most cost�e�ective set in each iteration� and for each element e� price�e�
is de�ned to be the average cost at which it is covered for the �rst time �see Algorithm ����� The
prices of elements give us a setting for the dual variables as follows	

ye
 price�e�

Hn
�

Lemma ��
� The vector y de�ned above is a feasible solution for the dual program�

Proof � Essentially� we need to show that no set is overpacked by the solution y� Consider a set
S � S consisting of k elements� Number the elements in the order in which they are covered by
the algorithm� breaking ties arbitrarily� say e�� � � � � ek�

Consider the iteration in which the algorithm covers element ei� At this point� S contains at
least k� i�� uncovered elements� So� in this iteration� S itself can cover ei at an average cost of at
most c�S�

k�i�� � Since the algorithm chose the most cost�e�ective set in this iteration� price�ei� � c�S�
k�i�� �

So�

yei �
�

Hn
� c�S�

k � i� �
�

Summing over all elements in S�

kX
i��

yei �
c�S�

Hn
�
�
�

k
�

�

k � �
� � � �� �

�

�
�

Hk

Hn
� c�S� � c�S��

Therefore� S is not overpacked� �

Theorem ��
� The approximation guarantee of the greedy algorithm is Hn�

Proof � The cost of the set cover picked is

X
e�U

price�e� � Hn

�X
e�U

ye

�
� Hn �OPT�

��

where OPT denotes the cost of the optimal fractional set cover� The last inequality follows from
the fact that y is dual feasible� �

Exercise ��
� Show that the analysis given above actually establishes an approximation guar�
antee of Hk� where k is size of the largest set in the given instance�

As shown in Example ���� this analysis is tight� As a corollary of Theorem ���� we also
get an upper bound of Hn on the integrality gap of the integer programming formulation �������
Can we hope to design a better algorithm using this formulation� or is this upper bound on the
integrality gap tight� The next example shows that this bound is essentially tight� So� to obtain a
better algorithm using the current approach� we will �rst have to think of an integer programming
formulation with a smaller integrality gap� Assuming P �� NP� such a formulation does not exist�
since it has been proven that under this assumption� one cannot obtain a better approximation
guarantee for the set cover problem�

Example ��
� Consider the following set cover instance� Let n � �k � �� where k is a positive
integer� and let U � fe�� e�� � � � � eng� For � � i � n� consider i written as a k�bit number� We
can view this as a k�dimensional vector over GF ���� let �i denote this vector� For � � i � n de�ne
set Si � fej j �i � �j � �g� where �i � �j denotes the inner product of these two vectors� Finally� let
S � fS�� � � � � Sng� and de�ne the cost of each set to be ��

It is easy to check that each set contains �k�� � n��
� elements� and each element is contained

in n��
� sets� So� xi �

�
n�� � � � i � n is a fractional set cover� Its cost is �n

n�� �

Next� we will show that any integral set cover must pick at least k of the sets� by showing that
the union of any k � � sets must leave some element uncovered� Let i�� � � � � ik�� be the indices of
k � � sets� and let A be a �k � ��� k matrix over GF ��� whose rows consist of vectors �i�� � � � ��ik��
respectively� Let B be the �k � ��� �k � �� submatrix consisting of the �rst k � � columns of A�
Let �z � �z�� � � � � zk�T be a k�dimensional column vector� where z�� � � � � zk are indeterminates over
GF ���� Let us show that the equation A�z � � has a solution �z �� � this gives an element of U that
is not covered by any of the k � � sets� If B is singular� one can �nd such a solution after �rst
setting zk � � If B is non�singular� there is a solution with zk � ��

Therefore� any integral set cover has cost at least k � log� �n� ��� Hence� the lower bound on
the integrality gap established by this example is

�
n� �

�n

�
� log� �n� �� �

log� n

�
�

�

Generalizations of the set cover problem

The greedy algorithm and its analysis using LP�duality extend naturally to several generaliza�
tions of the set cover problem	

� Set multicover� each element needs to be covered a speci�ed integer number of times

� Multiset multicover� we are given a collection of multisets� rather than sets� of U �a
multi�set contains a speci�ed number of copies of each element�

� Covering integer programs� these are integer programs of the form	

�� LP�duality based analysis for set cover

minimize c � x
subject to Ax � b�

where all entries in A� b� c are non�negative� and x is required to be non�negative and integral�

For the �rst two problems� let us also consider variants in which we impose the additional
constraint that each set be picked at most once� One can obtain an O�logn� factor approximation
algorithm for covering integer programs� and Hn factor algorithms for the rest of the problems�
In this section� we will present an Hn factor approximation algorithm for set multicover with the
constraint that each set can be picked at most once� and will leave the rest of the problems as
exercise�

Let re � Z�� be the coverage requirement for each element e � U � The integer programming
formulation of set multicover is not very di�erent from that of set cover	

minimize
X
S�S

c�S�xS

subject to
X

S� e�S

xS � re� e � U

xS � f � �g� S � S

Notice� however� that in the LP�relaxation� the constraints xS � � are no longer redundant� if we
drop them� then a set may be picked multiple number of times to satisfy the coverage requirement of
an element� Thus� the LP�relaxation looks di�erent from that for set cover� In particular� because
of the negative numbers in the constraint matrix and the right hand side� it is not even a covering
linear program� this is the reason we are providing details for this case�

minimize
X
S�S

c�S�xS

subject to
X

S� e�S

xS � re� e � U

�xS � �� S � S
xS � � S � S

The additional constraints in the primal lead to new variables� zS � in the dual� which becomes	

maximize
X
e�U

reye �
X
S�S

zS

subject to

� X
e� e�S

ye

�
� zS � c�S�� S � S

ye � � e � U

zS � � S � S

The algorithm is again greedy� Let us say that element e is alive if it is covered by fewer than
re picked sets� In each iteration� the algorithm picks� from amongst the currently unpicked sets�
the most cost�e�ective set� where the cost�e�ectiveness of a set is de�ned to be the average cost
at which it covers alive elements� The algorithm halts when there are no more alive elements� i�e��
each element has been covered to the extent of its requirement�

��

When a set S is picked� its cost is distributed equally among the alive elements it covers
as follows	 if S covers e for the jth time� we set price�e� j� to the current cost�e�ectiveness of
S� Clearly� the cost�e�ectiveness of sets picked is non�decreasing� Hence� for each element e�
price�e� �� � price�e� �� � � � � � price�e� re��

At the end of the algorithm� the dual variables are set as follows	 For each e � U � let ye �
�
Hn

price�e� re�� For each S � S that is picked by the algorithm� let

zS �
�

Hn

�
�� X
e covered by S

�price�e� re�� price�e� je��

�
�� �

where je is the copy of e that is covered by S� Notice that since price�e� je� � price�e� re�� zS is
non�negative� If S is not picked by the algorithm� zS is de�ned to be �

Lemma ��
� The pair �y� z� is a feasible solution for the dual program�

Proof � Consider a set S � S consisting of k elements� Number its elements in the order in
which their requirements are ful�lled� i�e�� the order in which they stopped being alive� Let the
ordered elements be e�� � � � � ek�

First� assume that S is not picked by the algorithm� When the algorithm is about to cover the
last copy of ei� S contains at least k � i� � alive elements� so

price�ei� rei� �
c�S�

k � i� �
�

Since zS is zero� we get that

�
kX
i��

yei

�
� zS �

�

Hn

kX
i��

price�ei� rei� �
c�S�

Hn
�
�
�

k
�

�

k � �
� � � �� �

�

�
� c�S��

Next� assume that S is picked by the algorithm� and before this happens� k� � elements of S
are already completely covered� Then

�
kX
i��

yei

�
� zS �

�

Hn
�
�
� k�X
i��

price�ei� rei� �
kX

i�k���

price�ei� ji�

�
� �

where S covers jthi copy of ei� for each i � fk� � �� � � � � kg� But
Pk

i�k��� price�ei� ji� � price�S��
since the cost of S is equally distributed among the copies it covers� Finally consider elements ei�
i � f�� � � � � k�g� When the last copy of ei is being covered� S is not yet picked and covers at least
k � i� � alive elements� So� price�ei� rei� � c�S���k� i� ��� Therefore�

�
kX
i��

yei

�
� zS � c�S�

Hn
�
�
�

n
� � � �� �

n � k� � �
� �

�
� c�S��

Hence� �y� z� is feasible for the dual program� �

Theorem ��
� The greedy algorithm for set multicover has an approximation factor of Hn�

�� LP�duality based analysis for set cover

Proof � The value of the dual feasible solution �y� z� is

X
e�U

reye �
X
S�S

zS �
�

Hn

X
e�U

reX
j��

price�e� j��

Since the cost of the sets picked by the algorithm is distributed among the covered elements� it
follows that the total cost of the multicover produced by the algorithm is

X
e�U

reX
j��

price�e� j��

So� by weak duality� the algorithm produces a multicover of cost

Hn �
�X
e�U

reye �
X
S�S

zS

� Hn �OPT

�

Exercise ��
� Give an O�logn� factor approximation algorithm for covering integer programs
and Hn factor approximation algorithms for the rest of the generalizations of set cover stated above�

Exercise ��
	 Consider the following variant on the set multi�cover problem	 Let U be the
universal set� jU j � n� and S a collection of subsets of U � For each S � S� its cost is given as
a function of time� t � f�� � � � � Tg� Each of these cost functions is non�increasing with time� In
addition� for each element in U � a coverage requirement is speci�ed� again as a function of time�
these functions are non�decreasing with time� The problem is to pick sets at a minimum total cost
so that the coverage requirements are satis�ed for each element at each time� A set can be picked
any number of times� the cost of picking a set depends on the time at which it is picked� Once
picked� the set remains in the cover for all future times at no additional cost� Give an Hn factor
algorithm for this problem� �An H�n�T � factor algorithm is straightforward��

Chapter ��

The primal�dual schema

LP�duality theory not only provides a method of lower bounding the cost of the optimal solution
for several NP�hard problems� but also provides a general schema for obtaining the approximation
algorithm itself	 the primal�dual schema� In this chapter� we will �rst present the central ideas
behind this schema� and then illustrate them in a simple setting by again obtaining an f factor
algorithm for the minimum set cover problem� where f is the frequency of the most frequent
element� An algorithm achieving this factor� using rounding� was presented in Chapter ���

The primal�dual schema has its origins in the design of exact algorithms� In that setting�
this schema yielded the most e�cient known algorithms to some of the cornerstone problems in
P� including matching� network �ow and shortest paths� These problems have the property that
their LP�relaxations have integral optimal solutions� By Theorem � �� we know that optimal
solutions to linear programs are characterized by fact that they satisfy all the complementary
slackness conditions� In fact� the primal�dual schema is driven by these conditions	 starting with
initial feasible solutions to the primal and dual programs� it iteratively satis�es more and more
complementary slackness conditions� when they are all satis�ed� both solutions must be optimal�
During the iterations� the primal is always modi�ed integrally� so that eventually we get an integral
optimal solution�

In the case of NP�hard problems� we cannot be looking for an optimal solution to the LP�
relaxation since� in general� none of these solutions may be integral� Does this rule out a comple�
mentary slackness condition driven approach� Interestingly enough� the answer is
No�� It turns
out that the algorithm can be driven by a suitable relaxation of these conditions%

Overview of the schema

Let us consider the following primal program� written in standard form	

minimize
nX

j��

cjxj

subject to
nX

j��

aijxj � bi� i � �� � � � � m

xj � � j � �� � � � � n

where aij � bi� and cj are speci�ed in the input� The dual program is	

�!

� The primal�dual schema

maximize
mX
i��

biyi

subject to
mX
i��

aijyi � cj � j � �� � � � � n

yi � � i � �� � � � � m

All known approximation algorithms using the primal�dual schema run by ensuring the primal
complementary slackness conditions and relaxing the dual conditions� They �nd primal and dual
feasible solutions satisfying	

Primal complementary slackness conditions

For each � � j � n	 either xj � or
Pm

i�� aijyi � cj � and

Relaxed dual complementary slackness conditions
For each � � i � m	 either yi � or

Pn
j�� aijxj � � � bi�

where � � � is a constant� if � were set to �� we would get the usual condition�

Proposition ��
� If x and y are primal and dual feasible solutions satisfying the conditions stated
above then

nX
j��

cjxj � � �
mX
i��

biyi�

Proof �

nX
j��

cjxj �
nX
j��

�
mX
i��

aijyi

�
xj �

mX
i��

�
� nX
j��

aijxj

�
A yi � �

mX
i��

biyi� ������

The �rst equality is obtained by applying the primal conditions� and the inequality follows by
applying the relaxed dual conditions� The second equality follows by simply changing the order of
summation� �

The algorithm starts with a primal infeasible solution and a dual feasible solution� these are
usually the trivial solutions x � � and y � �� It iteratively improves the feasibility of the primal
solution� and the optimality of the dual solution� ensuring that in the end a primal feasible solution
is obtained and all conditions stated above are satis�ed� The primal solution is always extended
integrally� thus ensuring that the �nal solution is integral� The improvements to the primal and
the dual go hand�in�hand	 the current primal solution is used to determine the improvement to the
dual� and vice versa� Finally� the cost of the dual solution is used as a lower bound on OPT� and
by Proposition ����� the approximation guarantee of the algorithm is ��

Despite being so general� this schema leaves su�cient scope for exploiting the special combi�
natorial structure of the speci�c problem	 in designing the solution improving algorithms and in
comparing the �nal solutions� thereby yielding very good approximation guarantees� Since nu�
merous NP�hard problems can be expressed as integer programming problems� the primal�dual
schema should �nd even greater applicability in the setting of approximation algorithms than exact
algorithms�

Primal�dual schema applied to set cover

��

Let us obtain a factor f algorithm for the set cover problem using the primal�dual schema�
A statement of this problem appears in Chapter ��� its LP�relaxation is given in ������ and dual
program is given in ������� As shown in Chapter ��� the weighted vertex cover problem can be
stated as a set cover problem with f � ��

Let us start by stating the primal complementary slackness conditions and relaxing the dual
conditions appropriately�

Primal conditions� These can be written as	

�S � S 	 xS �� �
X

e� e�S

ye � c�S��

Set S will said to be tight if
P

e� e�S ye � c�S�� Since we will increment the primal variables
integrally� we can state the conditions as	 Pick only tight sets in the cover�
Clearly� in order to maintain dual feasiblity� we are not allowed to overpack any set�

Dual conditions� The dual conditions will be relaxed with � � f �

�e 	 ye �� �
X

S� e�S

xS � f

Since we will �nd a (� solution for x� these conditions are equivalently to	
Cover each element with non�zero dual at most f times�
Since each element is in at most f sets� this condition is trivially satis�ed for all elements�

The two sets of conditions naturally suggest the following algorithm	

Algorithm ��
� �Set cover � factor f�

�� Initialization� x
 �� y
 �

�� Until all elements are covered� do�

Pick an uncovered element� say e� and raise ye until some set goes tight�

Pick all tight sets in the cover and update x�

Declare all the elements occurring in these sets as �covered��

�� Output the set cover x�

Theorem ��
� Algorithm �
�� achieves an approximation factor of f �

Proof � Clearly there will be no uncovered elements and no overpacked sets at the end of
the algorithm� So� the primal and dual solutions will both be feasible� Since they satisfy the
relaxed complementary slackness conditions with � � f � by Proposition refprimal�dual�prop�relax
the approximation factor is f � �

Example ��
� A tight example for this algorithm is provided by the following set system	

�� The primal�dual schema

n-1e

n+1

n

1 2

1 1 1

e

e e

e

1+ε

. . .

Here� S consists of n�� sets of cost �� fe�� eng� � � � � fen��� eng� and one set of cost ���� fe�� � � � � en��g�
for a small � � � Since en appears in all n sets� this set system has f � n�

Suppose the algorithm raises yen in the �rst iteration� When yen is raised to �� all sets fei� eng�
i � �� � � � � n � � go tight� They are all picked in the cover� thus covering the elements e�� � � � � en�
In the second iteration� yen�� is raised to � and the set fe�� � � � � en��g goes tight� The resulting set
cover has a cost of n� �� whereas the optimum cover has cost � � �� �

Chapter ��

Multicut and integer

multicommodity �ow in trees

In Chapter �� we used the primal�dual schema to derive a factor � algorithm for the weighted
vertex cover problem� This algorithm was particularly easy to obtain because the relaxed dual
complementary slackness conditions were automatically satis�ed in any integral solution� In this
chapter� we will use the primal�dual schema to obtain an algorithm for a generalization of this
problem� this time enforcing the relaxed dual complementary slackness conditions will be a non�
trivial part of the algorithm� Furthermore� we will introduce the procedure of reverse delete for
pruning the primal solution � this is a critical procedure in several other primal�dual algorithms as
well�

Problem ��
� �Minimum multicut� Let G � �V�E� be an undirected graph with non�
negative capacity ce for each edge e � E� Let f�s�� t��� � � � � �sk� tk�g be a speci�ed set of pairs of
vertices� where each pair is distinct� but vertices in di�erent pairs are not required to be distinct�
A multicut is a set of edges whose removal separates each of the pairs� The problem is to �nd a
minimum capacity multicut in G�

Notice that the multiway cut problem� de�ned in Chapter �� is a special case of the minimum
multicut problem� since separating terminals s�� � � � � sl is equivalent to separating the vertex pairs
�si� sj�� for � � i � j � l� This observation implies that the minimum multicut problem isNP�hard
even for k � �� since the multiway cut problem is NP�hard for the case of � terminals� For k � ��
the minimum multicut problem is in P�

In Chapter �� we will obtain an O�log k� factor approximation algorithm for the minimum
multicut problem� In this chapter� we will obtain a factor � algorithm for the special case when G
is restricted to be a tree� Notice that in this case there is a unique path between si and ti� and the
multicut must pick an edge on this path to disconnect si from ti� The problem looks deceptively
simple� the following lemma should convince the reader that in fact it is quite non�trivial�

Lemma ��
� The minimum cardinality vertex cover problem is polynomial time equivalent to the
minimum multicut problem when restricted to trees of height � and unit capacity edges�

Proof � Let us �rst reduce the restriction of the multicut problem to the minimum vertex cover
problem� Let G be a tree of height � with root r and leaves v�� � � � � vn� and let �s�� t��� � � � � �sk� tk�
be the pairs of vertices that need to be be disconnected� If the root r is contained in a pair �si� ti��
the edge �si� ti� must be included in every multicut� So� w�l�o�g� assume that r does not occur in
any of the pairs�

��

�� Multicut and integer multicommodity flow in trees

Construct graph H with vertex set fv�� � � � � vng and k edges �s�� t��� � � � � �sk� tk�� Vertex vi in
H corresponds to the edge �vi� r� in G� Now� it is easy to see that a subset of vertices in H is a
vertex cover for H i� the corresponding set of edges in G is a multicut for G� This establishes the
reduction�

The reduction in the other direction should now be obvious	 Given a graph H � construct a tree
G of height � whose leaves correspond to the vertices of H � Each edge of H speci�es a vertex pair
that needs to be disconnected in G� �

By Lemma ����� the minimum multicut problem is NP�hard even if restricted to trees of height
� and unit capacity edges� By essentially the same proof� if the edge capacities are allowed to be
arbitrary� but the tree is still of height �� the problem is equivalent to the weighted vertex cover
problem�

Since we want to apply LP�duality theory for designing the algorithm� let us �rst give an integer
programming formulation for the problem� and obtain its LP�relaxation� Introduce a �� variable
de for each edge e � E� which will be set to � i� e is picked in the multicut� Let pi denote the
unique path between si and ti in the tree�

minimize
X
e�E

cede

subject to
X
e�pi

de � �� i � f�� � � � � kg

de � f � �g� e � E

The LP�relaxation is obtained by replacing the constraint de � f � �g by de � � as before� there is
no need to add the constraint de � � explicitly�

minimize
X
e�E

cede

subject to
X
e�pi

de � �� i � f�� � � � � kg

de � � e � E

We can now think of de as specifying the fractional extent to which edge e is picked� A solution to
this linear program is a fractional multicut	 on each path pi� the sum of fractions of edges picked is
at least �� In general� minimum fractional multicut may be strictly cheaper than minimum integral
multicut� This is illustrated in Example �����

We will interpret the dual program as specifying a multicommodity �ow in G� with a separate
commodity corresponding to each vertex pair �si� ti�� Dual variable fi will denote the amount of
this commodity routed along the unique path from si to ti�

maximize
kX
i��

fi ������

subject to
X

i� e�pi

fi � ce� e � E

fi � � i � f�� � � � � kg

The commodities are routed concurrently� The object is to maximize the sum of the commodities
routed� subject to the constraint that the sum of �ows routed through an edge is bounded by the

��

capacity of the edge� Notice that the sum of �ows through an edge �u� v� includes �ow going in
either direction� u to v� and v to u�

By the Weak Duality Theorem� a feasible multicommodity �ow gives a lower bound on the
minimum fractional multicut� and hence also on the minimum integral multicut� By the LP�Duality
Theorem� minimum fractional multicut equals maximum multicommodity �ow�

Example ��
� Consider the following graph with unit capacity edges and � vertex pairs	

1/2

1/2

1/2

t ,s

t ,s s ,t 2 331

21

The arrows show how to send �
� units of �ow by sending �

� unit of each commodity� Picking each
edge to the extent of �

� gives a multicut of capacity �
� as well� So� these must be optimal solutions

to the primal and dual programs� On the other hand� any integral multicut must pick at least two
of the three edges in order to disconnect all three pairs� Hence� minimum integral multicut has
capacity �� �

Finally� let us state one more problem�

Problem ��
� �Maximum integer multicommodity �ow� Graph G and the pairs are spec�
i�ed as in the minimum multicut problem� however� the edge capacities are all integral� A separate
commodity is de�ned for each �si� ti� pair� The object is maximize the sum of the commodities
routed� subject to edge capacity constraints� and that on each path� each commodity is routed
integrally�

Let us consider this problem when G is restricted to be a tree� If in ������� the variables are
constrained to be non�negative integral� we would get an integer programming formulation for this
problem� Clearly� the objective function value of this integer program is bounded by that of the
linear program ������� Furthermore� the best fractional �ow may be strictly larger� For instance� in
Example ����� maximum integral multicommodity �ow is �� since sending � unit of any of the three
commodities will saturate two of the edges� This problem is NP�hard� even for trees of height ��

Exercise ��
� Show that the maximum integer multicommodity �ow problem on trees of height
� is equivalent to the maximum weight matching problem� and hence is in P�

Exercise ��
� Give a polynomial time algorithm for computing a maximum integer multi�
commodity �ow on unit capacity trees of arbitrary height� Assume that you are allowed to use a
subroutine for the maximum matching problem�

Exercise ��
� Find the best integral and fractional multicut and multicommodity �ow in the
following graph� All capacities are �� and the speci�ed pairs are �s�� t��� � � ��s�� t��� Notice that the
optimal fractional multicut is not half intergal� In contrast� it is known that LP�relaxation of the
multiway cut problem always has a half�integral solution� even in general graphs�

�� Multicut and integer multicommodity flow in trees

t2

s4

s
2

3s

1t

t55s
s
1

t34t

The algorithm

We will use the primal�dual schema to obtain an algorithm that simultaneously �nds a multicut
and an integer multicommodity �ow that are within a factor of � of each other� provided the given
graph is a tree� Hence� we get approximation algorithms for both problems� of factor � and �

�
respectively�

Let us de�ne the multicut LP to be the primal program� An edge e is saturated if the total
�ow through it equals its capacity� Our �rst task is to relax the dual complementary slackness
conditions appropriately�

Primal conditions� For each e � E� de �� �P
i� e�pi fi � ce�

Equivalently� any edge picked in the multicut must be saturated�

Relaxed dual conditions� Let us relax the dual conditions to	
For each i � f�� � � � � kg� fi �� �P

e�pi de � ��
Equivalently� at most two edges can be picked from a path carrying non�zero �ow�
Clearly� we must pick at least one edge from each �si� ti� path simply to ensure feasibility of the
multicut�

Let us root the tree G at an arbitrary vertex� De�ne the depth of vertex v to be the length
of the path from v to the root� the depth of the root is � For two vertices u� v � V � let lca�u� v�
denote the lowest common ancestor of u and v� i�e� the minimum depth vertex on the path from u
to v� Let e� and e� be two edges on a path from a vertex to the root� If e� occurs before e� on this
path� then� e� is said to be deeper than e��

The algorithm starts with an empty multicut and �ow� and interatively improves the feasibility
of the primal solution and the optimality of the dual solution� In an iteration� it picks the deepest
unprocessed vertex� say v� and greedily routes integral �ow between pairs that have v as their
lowest common ancestor� When no more �ow can be routed between these pairs� all edges that got
saturated� i�e�� got saturated� in this iteration are added to the list D in arbitrary order� When all
the vertices have been processed� D will be a multicut� however� it may have redundant edges� To
remove them� a reverse delete step is performed	 Edges are considered in the reverse of the order
in which they were added to D� and if the deletion of edge e from D still gives a valid multicut� e
is discarded from D�

��

Algorithm ��
	 �Multicut and integer multicommodity �ow in trees�

�� Initialization� f
 �� D
 �
�� Flow routing� For each vertex v� in non�increasing order of depth� do�

For each pair �si� ti� such that lca�si� ti� � v� greedily route integral �ow from si to ti�

Add to D all edges that got saturated in the current iteration� in arbitrary order�

�� Let e�� e�� � � � � el be the ordered list of edges in D�

�� Reverse delete� For j � l downto � do�

If D � fejg is a multicut in G� then D
 D � fejg

� Output the �ow and multicut D�

Lemma ��

 Let �si� ti� be a pair with non�zero �ow� and let lca�si� ti� � v� At most one edge is
picked in the multicut from each of the two paths� si to v� and ti to v�

Proof � The argument is the same for each path� Suppose two edges e and e� are picked from
the si�v path� with e being the deeper edge� Clearly� e� must be in D all through reverse delete�
Consider the moment during reverse delete when edge e is being tested� Since e is not discarded�
there must be a pair� say �sj � tj�� such that e is the only edge of D on the sj�tj path� Let u be
the lowest common ancestor of sj and tj � Since e

� does not lie on the sj�tj path� u must be deeper
than e�� and hence deeper than v� After u has been processed� D must contain an edge from the
sj�tj path� say e

���

s

s

ssss

�
�
�

�
�
�

�
�
�

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll

�
�

�
�
�
��
�

�
�

si ti

v

e�

e

sj tj

u

Since non�zero �ow has been routed from si to ti� e must be added during or after the iteration
in which v is processed� Since v is an ancestor of u� e is added after e��� So e�� must be in D when e
is being tested� This contradicts the fact that at this moment e is the only edge of D on the sj�tj
path� �

Theorem ��
�� Algorithm �
�� achieves approximation guarantees of factor � for the minimum
multicut problem and factor �

� for the maximum integer multicommodity �ow problem on trees�

Proof � The �ow found at the end of Step � is maximal� and since at this point D contains all
the saturated edges� D is a multicut� Since the reverse delete step only discards redundant edges�

�� Multicut and integer multicommodity flow in trees

D is a multicut after this step as well� Thus feasible solutions have been found for both� the �ow
and the multicut�

Since each edge in the multicut is saturated� the primal conditions are satis�ed� By lemma
���!� at most two edges have been picked in the multicut from each path carrying non�zero �ow�
Therefore� the relaxed dual conditions are also satis�ed� Hence� by Proposition ����� the capacity
of the multicut found is within twice the �ow� Since a feasible �ow is a lower bound on the optimal
multicut� and a feasible multicut is an upper bound on the optimal integer multicommodity �ow�
the claim follows� �

Exercise ��
�� Prove that if e and e� are both in D in Step �� and e is deeper than e�� e is
added before or in the same iteration as e��

Finally� we obtain the following approximate min�max relation from Theorem ���� 	

Corollary ��
�� On trees with integer edge capacities�

max
int� �ow F

jF j � min
multicut C

jCj � � max
int� �ow F

jF j�

where jF j represents the value of �ow function F � and jCj represents the capacity of multicut C�

In Chapter �� we will present an O�log k� factor algorithm for the minimum multicut problem
in general graphs� once again� the lower bound used is an optimal fractional multicut� On the other
hand� no non�trivial approximation algorithms are known for the integer multicommodity �ow
problem in graphs more general than trees� As shown in Example ������ even for planar graphs�
the integrality gap of an LP analogous to ������ is lower bounded by n

� � where n is the number of
source�sink pairs speci�ed�

Example ��
�� Consider the following planar graph with n source�sink pairs� Every edge is
of unit capacity� Any pair of paths between the ith and jth source�sink pairs intersect in at least
one unit capacity edge� The magni�ed part shows how this is arranged at each intersection� So�
sending one unit of any commodity blocks all other commodities� On the other hand� half a unit
of each commodity can be routed simultaneously�

r

r��
r

r

r

r

r r r r r

r

i ��
�	

����������
����������

����������
����

�����
�����
�����
�����
�����
�����
�s�

s�

t� t� tn�� tnt�

s�

sn��

sn

�

Chapter ��

Steiner forest

In this chapter� we will obtain a factor � approximation algorithm for the Steiner forest problem
using the primal�dual schema� An interesting feature of this algorithm is the manner in which dual
complementary slackness conditions will be relaxed� The Steiner forest problem generalizes the
metric Steiner tree problem� for which a factor � algorithm was presented in Chapter �� Recall�
however� that we had postponed giving the lower bounding method behind that algorithm� we will
clarify this as well�

Problem ��
� �Steiner forest� Given a graph G � �V�E�� a cost function on edges c 	 E

Q� �not necessarily satisfying the triangle inequality�� and a collection of disjoint subsets of V �
S�� � � �Sk � �nd a minimum cost subgraph in which each pair of vertices belonging to the same set
Si is connected�

Exercise ��
� Show that there is no loss of generality in requiring that the edge costs satisfy
the triangle inequality for the above problem� �The reasoning is the same as that for the Steiner
tree problem��

Let us restate the problem� this will also help generalize it later� De�ne a connectivity require�
ment function r that maps unordered pairs of vertices to f � �g as follows	

r�u� v� �

	
� if u and v belong to the same set Si
 otherwise

Now� the problem is to �nd a minimum cost subgraph F that contains a u�v path for each pair
�u� v� with r�u� v� � �� The solution will be a forest� in general�

In order to give an integer programming formulation for this problem� let us de�ne a function
on all cuts in G� f 	 �V
 f � �g� which speci�es the minimum number of edges that must cross
each cut in any feasible solution�

f�S� �

	
� if � u � S and v � S such that r�u� v� � �
 otherwise

Let us also introduce a (� variable xe for each edge e � E� xe will be set to � i� e is picked in the
subgraph� The integer program is	

minimize
X
e�E

cexe ������

�!

� Steiner forest

subject to
X

e� e���S�

xe � f�S�� S � V

xe � f � �g� e � E

where ��S� denotes the set of edges crossing the cut �S� S��

Exercise ��
� Show� using the max��ow min�cut theorem� that a subgraph has all the required
paths i� it does not violate any of the cut requirements� Use this fact to show that ������ is an
integer programming formulation for the Steiner forest problem�

Following is the LP�relaxation of ������� once again� we have dropped the redundant conditions
xe � ��

minimize
X
e�E

cexe ������

subject to
X

e� e���S�

xe � f�S�� S � V

xe � � e � E

The dual program is	

maximize
X
S�V

f�S� � yS ������

subject to
X

S� e���S�

yS � ce e � E

yS � S � V

Notice that the primal and dual programs form a covering and packing pair of LP$s� see Chapter
�� for this notion� Some �gurative terminology will help describe the algorithm more easily� Let
us say that edge e feels dual yS if yS � and e � ��S�� Say that set S has been raised in a dual
solution if yS � � Clearly� raising S or S has the same e�ect� So� sometimes we will also say
that we have raised the cut �S� S�� Further� there is no advantage in raising set S with f�S� � �
since this does not contribute to the dual objective function� So� we may assume that such cuts
are never raised� Say that edge e is tight if the total amount of dual it feels equals its cost� The
dual program is trying to maximize the sum of the dual variables yS subject to the condition that
no edge feels more dual than its cost� i�e�� is not over�tight�

Next� let us state the primal and relaxed dual complementary slackness conditions� The algo�
rithm will pick edges integrally only� De�ne the degree of set S to be the number of picked edges
crossing the cut �S� S��

Primal conditions� For each e � E� xe �� �P
i� e���S� yS � ce�

Equivalently� every picked edge must be tight�

Relaxed dual conditions� The following relaxation of the dual conditions would have led to a
factor � algorithm	
For each S � V� yS �� � P

e� e���S� xe � � � f�S�� i�e�� every raised cut has degree at most ��

Clearly� each cut �S� S� with f�S� � � must have degree at least one� just to ensure feasibility� We
do not know how to enforce this relaxation of the dual condition� Interestingly enough� we can
still obtain a factor � algorithm � by relaxing this condition further% Raised sets will be allowed to

��

have high degree� however� we will ensure that on average� raised duals have degree at most �� The
exact de�nition of
on average� will be given later�

The algorithm starts with no edges picked and no cuts raised� In the spirit of the primal�dual
schema� the current primal solution indicates which cuts need to be raised� and in turn� the current
dual solution indicates which edge needs to be picked� Thus� the algorithm iteratively improves the
feasibility of the primal� and the optimality of the dual� until a feasible primal is obtained�

Let us describe what happens in an iteration� In any iteration� the picked edges form a forest�
Say that set S is unsatis�ed if f�S� � �� but there is no picked edge crossing the cut �S� S�� Set S
is said to be active if it is a minimal �w�r�t� inclusion� unsatis�ed set in the current iteration�

Lemma ��
� Set S is active i� it is a connected component in the currently picked forest and
f�S� � ��

Proof � Let S be an active set� Now� S cannot cross a connected component because otherwise
there will already be a picked edge in the cut �S� S�� So� S is a union of connected components�
Since f�S� � �� there is a vertex u � S and v � S such that r�u� v� � �� Let S� be the connected
component containing u� Clearly� S� is also unsatis�ed� and by minimality of S� S � S�� �

By the the characterization of active sets given in Lemma ����� it is easy to �nd all active sets
in the current iteration� The dual variables of these sets are raised simultaneously until some edge
goes tight� Any one of the newly tight edges is picked� and the current iteration terminates�

When a primal feasible solution is found� say F � the edge augmentation step terminates� How�
ever� F may contain redundant edges� which need to be pruned for achieving the desired approx�
imation factor� this is illustrated in Example ����� Formally� edge e � F is said to be redundant
if F � feg is also a feasible solution� All redundant edges can be dropped simultaneously from F �
Equivalently� only non�redundant edges are retained�

This algorithm is presented below� We leave its e�cient implementation as an exercise�

Algorithm ��
� �Steiner forest�

�� �Initiallization� F
 �� for each S � V � yS
 �

�� �Edge augmentation� while there exists an unsatis	ed set do�

simultaneously raise yS for each active set S� until some edge e goes tight�

F
 F � feg�
�� �Pruning� return F � � fe � F j F � feg is primal infeasibleg

Example ��
� Consider a star in which all edges have cost �� except one edge whose cost is ��

r u

r r

rr

u

T
T
T
T
T
T

�
�
�
�
�
�

�

�

�
�

�
�

The only requirement is to connect the end vertices of the edge of cost �� The algorithm will add
to F all edges of cost � before adding the edge of cost �� Clearly� at this point� F is not within

�� Steiner forest

twice the optimal� However� this will be corrected in the pruning step when all edges of cost � will
be removed� �

Let us run the algorithm on a non�trivial example to illustrate its �ner points�

Example ��
� Consider the following graph� Costs of edges are marked� and the only non�zero
connectivity requirements are r�u� v� � � and r�s� t� � �� The thick edges indicate an optimal
solution� of cost ���

9

20

19

ts

u v

16
a b

12 12

6 6

In the �rst iteration� the following four singleton sets are active	 fsg� ftg� fug� and fvg� When
their dual variables are raised to � each� edges �u� a� and �v� b� go tight� One of them� say �u� a�
is picked� and the iteration ends� In the second iteration� fu� ag replaces fug as an active set�
However� in this iteration there is no need to raise duals� since there is already a tight edge� �v� b��
This edge is picked� and the iteration terminates� The primal and dual solutions at this point are
shown below� with picked edges marked thick	

v20u

6 6

19

t

b

9

a
16

s

12 12

66

6 6

In the third iteration� fv� bg replaces fvg as an active set� When the active sets are raised by �
each� edge �u� s� goes tight and is picked� In the fourth iteration� the active sets are fu� s� ag� fvg
and ftg� When they are raised by � each� edge �b� t� goes tight and is picked� The situation now is	

��

v

12

66

u 20

9

ba

s t

12

66

16

12

3

8 9

19

In the �fth iteration� the active sets are fa� s� ug and fb� v� tg� When they are raised by � each�
�u� v� goes tight� and we now have a primal feasible solution	

v

22

66

u 20

ba

s t

12

66

16

12

3

8 9

19

1

9

In the pruning step� edge �u� a� is deleted� and we obtain the following solution of cost ��	

�� Steiner forest

20

9 19

6

16

12 12

6

s t

vu

a b

�

In Lemma ���� we will show that simultaneously deleting all redundant edges still leaves us
with a primal feasible solution� i�e�� it is never the case that two edges e and f are both redundant
individually� but on deletion of e� f becomes non�redundant�

Lemma ��
	 At the end of the algorithm� F � and y are primal and dual feasible solutions respec�
tively�

Proof � At the end of Step �� F satis�es all connectivity requirements� In each iteration� dual
variables of connected components only are raised� Therefore� no edge running within the same
component can go tight� and so F is acyclic� i�e�� it is a forest� Therefore� if r�u� v� � �� there is a
unique u�v path in F � So� each edge on this path in non�redundant and is not deleted in Step ��
Hence F � is primal feasible�

Since whenever an edge goes tight the current iteration ends and active sets are rede�ned� no
edge is overtightened� Hence y is dual feasible� �

Let degF ��S� denote the number of edges of F � crossing the cut �S� S�� The characterization of
degrees of satis�ed components established in the next lemma will be used crucially in proving the
approximation guarantee of the algorithm�

Lemma ��

 Consider any iteration of the algorithm� and let C be a component w�r�t� the cur�
rently picked edges� If f�C� � then degF ��C� �� ��

Proof � Suppose degF ��C� � �� and let e be the unique edge of F � crossing the cut �C�C�� Since
e is non�redundant �every edge in F � is non�redundant�� there is a pair of vertices� say u� v� such
that r�u� v� � � and e lies on the unique u�v path in F �� Since this path crosses the cut �C�C�
exactly once� one of these vertices must lie in C and the other in C� But since r�u� v� � �� we get
that f�C� � �� thus leading to a contradiction� �

Lemma ��
��
X
e�F �

ce � �
X
S�V

yS

Proof � Since every picked edge is tight�X
e�F �

ce �
X
e�F �

X
S� e���S�

yS

��

Changing the order of summation we get	

X
e�F �

ce �
X
S�V

X
e���S��F �

yS �
X
S�V

degF ��S� � yS �

So� we need to show that

X
S�V

degF ��S� � yS � �
X
S�V

yS �

We will prove a stronger claim	 that in each iteration� the increase in the l�h�s� of this inequality
is bounded by the increase in the r�h�s� Consider an iteration� and let) be the extent to which
active sets were raised in this iteration� Then� we need to show	

)�
�
� X
S active

degF ��S�

�
A � �)� �� of active sets�

Notice that the degree w�r�t� F � of any active set S is due to edges that will be picked during or
after the current iteration� Let us rewrite this inequality as follows	

P
S active degF ��S�

� of active sets
� �� ������

Thus we need to show that in this iteration� the average degree of active sets with respect to
F � is at most �� The mechanics of the argument lies in the fact that in a tree� or in general in a
forest� the average degree of vertices is at most ��

Let H be a graph on vertex set V and edge set F �� Consider the set of connected components
w�r�t� F at the beginning of the current iteration� In H � shrink the set of vertices of each of
these components to a single node� to obtain graph H � �we will call the vertices of H � as nodes for
clarity�� Notice that in going from H to H �� all edges picked in F before the current iteration have
been shrunk� Clearly� the degree of a node in H � is equal to the degree of the corresponding set
in H � Let us say that a node of H � corresponding to an active component is an active node� any
other node will be called inactive� Each active node of H � has non�zero degree �since there must
be an edge incident to it to satisfy its requirement�� and H � is a forest� Now� remove all isolated
nodes from H �� The remaining graph is a forest with average degree at most �� By Lemma ���!
the degree of each inactive node in this graph is at least �� i�e�� the forest has no inactive leaves�
Hence� the average degree of active nodes is at most �� �

Observe that the proof given above is essentially a charging argument	 for each active node of
degree greater than �� there must be correspondingly many active nodes of degree one� i�e�� leaves�
in the forest� The exact manner in which the dual conditions have been relaxed must also be clear
now	 in each iteration� the duals being raised have average degree at most �� Lemmas ���� and
���� give	

Theorem ��
�� Algorithm ���� achieves an approximation guarantee of factor � for the Steiner
forest problem�

The tight example given for the metric Steiner tree problem� Example ���� is also a tight example
for this algorithm�

�� Steiner forest

Let us run Algorithm ���� on an instance of the metric Steiner tree problem� If the edge costs
satisfy strict triangle inequality� i�e�� for any three vertices u� v� w� c�u� v� � c�u� w� � c�v� w�� then
it is easy to see that the algorithm will �nd a minimum spanning tree on the required vertices�
i�e�� it is essentially the algorithm for the metric Steiner tree problem presented in Chapter ��
Even if triangle inequality is not strictly satis�ed� the cost of the solution found is the same as
the cost of an MST� and if among multiple tight edges� the algorithm always prefers picking edges
running between required vertices� it will �nd an MST� This clari�es the lower bound on which
that algorithm was based�

The minimum spanning tree problem is a further special case	 every pair of vertices need
to be connected� Observe that when run on such an instance� Algorithm ���� essentially executes
Kruskal$s algorithm� i�e�� in each iteration� it picks the cheapest edge running between two connected
components� Although the primal solution found is optimal� the dual found can be as small as half
the primal� For instance consider a cycle on n vertices� with all edges of cost �� The cost of the
tree is n � �� but the dual found is n

� � Indeed� this is an optimal dual solution� since there is a
fractional primal solution of the same value	 pick each edge to the extent of half� This example
places a lower bound of �essentially� � on the integrality gap of the primal program� In turn� the
algorithm places an upper bound of ��

Extensions and generalizations

Algorithm ���� actually works for a general class of problems that includes the Steiner forest
problem as a special case� A function f 	 �V
 f � �g is said to be proper if satis�es the following
properties	

�� f�V � �

�� f�S� � f�S�

�� If A and B are two disjoint subsets of V and f�A � B� � � then f�A� � � or f�B� � ��

Notice that function f de�ned for the Steiner forest problem is a proper function� Consider the
integer program ������ with f restricted to be a proper function� This class of integer programs
captures several natural problems� besides the Steiner forest problem� Consider for instance	

Problem ��
�� �Point�to�point connection� Given a graph G � �V�E�� a cost function
on edges c 	 E
 Q� �not necessarily satisfying the triangle inequality�� and two disjoint sets of
vertices� S and T � of equal cardinality� �nd a minimum cost subgraph that has a path connecting
each vertex in S to a unique vertex in T �

Exercise ��
�� Show that the point�to�point connection problem can be formulated as an
integer program using ������� with f being a proper function�

Exercise ��
�� Show that Algorithm ���� is in fact a factor � approximation algorithm for
integer program ������ with f restricted to be any proper function�

Exercise ��
�� Consider the following generalization of the Steiner forest problem to higher
connectivity requirements	 the speci�ed connectivity requirement function r maps pairs of vertices
to f � � � � � kg� where k is part of the input� Assume that multiple copies of any edge can be used�
each copy of edge e will cost c�e�� Using Algorithm ���� as a subroutine� give a factor ���blog� kc���
algorithm for the problem of �nding a minimum cost graph satisfying all connectivity requirements�

Chapter ��

Steiner network

The following generalization of the Steiner forest problem to higher connectivity requirements has
applications in network design� and is also known as the survivable network design problem� In this
chapter� we will give a factor � approximation algorithm for this problem using LP�rounding� A
special case of this problem was considered in Exercise ������

Problem ��
� �Steiner network� We are given a graph G � �V�E�� a cost function on edges
c 	 E
 Q� �not necessarily satisfying the triangle inequality�� a connectivity requirement function
r mapping unordered pairs of vertices to Z�� and a function u 	 E
 Z� � f�g stating an upper
bound on the number of copies of edge e we are allowed to use� if ue ��� then there is no bound
on the number of copies of edge e� The problem is to �nd a minimum cost multi�graph on vertex
set V that has r�u� v� edge disjoint paths for each pair of vetices u� v � V � Each copy of edge e
used for constructing this graph will cost c�e��

In order to give an integer programming formulation for this problem� we will �rst de�ne a
cut requirement function� as we did for the metric Steiner forest problem� Function f 	 �V
 Z��
for S � V is de�ned to be the largest connectivity requirement separated by the cut �S� S�� i�e��
f�S� � maxfr�u� v�ju � S and v � Sg�

minimize
X
e�E

cexe ������

subject to
X

e� e���S�

xe � f�S�� S � V

xe � Z�� e � E and ue ��
xe � f � �� � � � � ueg� e � E and ue ���

The LP�relaxation is	

minimize
X
e�E

cexe ������

subject to
X

e� e���S�

xe � f�S�� S � V

xe � � e � E and ue ��
ue � xe � � e � E and ue ���

As shown in Chapter ��� certain NP�hard problems� such a vertex cover and node multiway
cut admit LP�relaxations having the remarkable property that they always have a half�integral

��

�� Steiner network

optimal solution� Rounding up all halves to � in such a solution leads to a factor � approximation
algorithm� Does relaxation ������ have this property� The following lemma shows that the answer
is
No��

Lemma ��
� Consider the Petersen graph with a connectivity requirement of one between each
pair of vertices and with each edge of unit cost� Relaxation ������ does not have a half�integral
optimal solution for this instance�

Proof � Consider the fractional solution xe � ��� for each edge e� Since the Petersen graph is
��edge connected �in fact� it is ��vertex connected as well�� this is a feasible solution� The cost of
this solution is �� In any feasible solution� the sum of edge variables incident at any vertex must
be at least one� to allow connectivity to other vertices� Therefore any feasible solution must have
cost at least � �since the Petersen graph has � vertices�� Hence� the solution given above is in fact
optimal�

Any solution with xe � � for some edge e must have cost exceeding �� since additional edges
are required to connect the endpoints of e to the rest of the graph� Therefore� any half integral
solution of cost � would have to pick� to the extent of half each� the edges of a Hamiltonian cycle�
Since the Petersen graph has no Hamiltonian cycles� there is no half integral optimal solution� �

Let us say that an extreme solution� also called a vertex solution or a basic feasible solution�
for an LP is a feasible solution that cannot be written as the convex combination of two feasible
solutions� It turns out that the solution xe � ���� for each edge e� is not an extreme solution�
An extreme optimal solution is shown in Figure ����� thick edges are picked to the extent of ����
thin edges to the extent of ���� and the missing edge is not picked� The isomorphism group of
the Petersen graph is edge�transitive� and so there are �� related extreme solutions� the solution
xe � ��� for each edge e is the average of these�

Figure ����	

Notice that although the extreme solution is not half�integral� it picks some edges to the extent
of half� We will show below that in fact this is a property of any extreme solution to LP ������� We
will obtain a factor � algorithm by rounding up these edges and iterating� Let H be the set of edges

�!

picked by the algorithm at some point� Then� the residual requirement of cut �S� S� is f ��S� �
f�S�� j�H�S�j� where �H�S� represents the set of edges of H crossing the cut �S� S�� In general�
the residual cut requirement function� f �� may not correspond to the cut requirement function for
any set of connectivity requirements� We will need the following de�nitions to characterize it	

De�nition ��
� Function f 	 �V
 Z� is said to be submodular if f�V � � � and for every two
sets A�B � V � the following two conditions hold	

� f�A� � f�B� � f�A�B� � f�B �A��

� f�A� � f�B� � f�A 	B� � f�A �B��

Two subsets of V � A and B� are said to cross if each of the sets A � B� B � A and A 	 B is
non�empty� If A and B don$t cross then either they are disjoint or one of these sets is contained in
the other�

Lemma ��
� For any graph G on vertex set V � the function j�G���j is submodular�

Proof � If setsA andB do not cross� then the two conditions given in the de�nition of submodular
functions hold trivially� Otherwise� edges having one endpoint in A 	 B and the other in A �B
�edge e� in the �gure below� contribute to ��A� and ��B� but not to ��A�B� or ��B�A�� Similarly�
edge e� below does not contribute to ��A 	 B� or to ��A � B�� The remaining edges contribute
equally to both sides of both conditions� �

A B

e

e

1

2

De�nition ��
� Function f 	 �V
 Z is said to be weakly supermodular if f�V � � � and for
every two sets A�B � V � at least one of the following conditions holds	

� f�A� � f�B� � f�A�B� � f�B �A�

� f�A� � f�B� � f�A 	B� � f�A �B�

It is easy to check that the original cut requirement function is weakly supermodular� by Lemma
����� so is the residual cut requirement function�

Lemma ��
� Let H be a subgraph of G� If f 	 �V �G�
 Z� is a weakly supermodular function�
then so is the residual cut requirement function f ��

Proof � Suppose f�A�� f�B� � f�A�B�� f�B �A�� the proof of the other case is similar� By
Lemma ����� j�H�A�j� j�H�B�j � j�H�A�B�j� j�H�B�A�j� Subtracting� we get f ��A� � f ��B� �
f ��A�B� � f ��B � A�� �

! Steiner network

We can now state the central polyhedral fact needed for the factor � algorithm in its full
generality�

Theorem ��
� For any weakly supermodular function f � any extreme solution� x� to LP ������
must pick some edge to the extent of at least a half� i�e�� xe � ��� for at least one edge e�

The algorithm

Based on Theorem ���� the factor � algorithm is	

Algorithm ��
	 �Steiner network�

�� Initialization� H
 �� f �
 f �

�� While f � �� �� do�

Find an extreme optimal solution� x� to LP �����
 with cut requirements given by f ��

For each edge e such that xe � ���� include dxee copies of e in H �
and decrement ue by this amount�

Update f �� for S � V � f ��S�
 f�S�� j�H�S�j�
�� Output H �

The algorithm presented above achieves an approximation guarantee of factor � for an arbitrary
weakly supermodular function f � Establishing a polynomial running time involves showing that
an extreme optimal solution to LP ������ can be found e�ciently� We do not know how to do this
for an arbitrary weakly supermodular function f � However� if f is the original cut requirement
function for some connectivity requirements� then a polynomial time implementation is possible�
by showing the existence of a polynomial time separation oracle for each iteration�

For the �rst iteration� a separation oracle follows from a max��ow subroutine� Given a solution
x� construct a graph on vertex set V with capacity xe for each edge e� Then� for each pair of
vertices u� v � V � check if this graph admits a �ow of at least r�u� v� from u to v� If not� we will
get a violated cut� i�e�� a cut �S� S� such that �x�S� � f�S�� where

�x�S� �
X

e� e���S�

xe�

Let f � be the cut requirement function of a subsequent iteration� Given a solution to LP ������
for this function� say x�� de�ne x as follows	 for each edge e� xe � x�e� eH � where eH is the number
of copies of edge e in H � The following lemma shows that a separation oracle for the original
function f leads to a separation oracle for f �� Furthermore� this lemma also shows that there is no
need to update f � explictly after each iteration�

Lemma ��

 A cut �S� S� is violated by solution x� under cut requirement function f � i� it is
violated by solution x under cut requirement function f �

Proof � Notice that �x�S� � �x��S� � j�H�S�j� Since f�S� � f ��S� � j�H�S�j� �x�S� � f�S� i�
�x��S� � f ��S�� �

!�

Lemma �� implies that solution x� is feasible for the cut requirement function f � i� solution
x is feasible for f � Assuming Theorem ����� whose proof we will provide below� let us show that
Algorithm ���� achieves an approximation guarantee of ��

Theorem ��
�� Algorithm ���� achieves an approximation guarantee of � for the Steiner network
problem�

Proof � By induction on the number of iterations executed by the algorithm when run with a
weakly supermodular cut requirement function f � we will prove that the cost of the integral solution
obtained is within a factor of two of the cost of the optimal fractional solution� Since the latter is
a lower bound on the cost of the optimal integral solution� the claim follows�

For the base case� if f requires one iteration� the claim follows� since the algorithm rounds up
only edges e with xe � ����

For the induction step� assume that x is the extreme optimal solution obtained in the �rst
iteration� Obtain *x from x by zeroing out components that are strictly smaller than ���� By
Theorem ����� *x �� � Let H be the set of edges picked in the �rst iteration� Since H is obtained by
rounding up non�zero components of *x� and each of these components is � ���� cost�H� � �cost�*x��

Let f � be the residual requirement function after the �rst iteration� and H � be the set of edges
picked in subsequent iterations for satisfying f �� The key observation is that x � *x is a feasible
solution for f �� and so by the induction hypothesis� cost�H �� � �cost�x � *x�� Let us denote by
H �H � the edges of H together with those of H �� Clearly� H �H � satis�es f � Now�

cost�H �H �� � cost�H� � cost�H �� � �cost�*x� � �cost�x� *x� � �cost�x��

�

Corollary ��
�� The integrality gap of LP ������ is bounded by ��

Example ��
�� The tight example given for the metric Steiner tree problem� Example ���� is
also a tight example for this algorithm� Observe that after including a subset of edges of the cycle�
an extreme optimal solution to the resulting problem picks the remaining edges of the cycle to the
extent of half each� So� the algorithm �nds a solution of cost ��� ���n� ��� whereas the cost of the
optimal solution is n� �

Characterizing extreme solutions

From polyhedral combinatorics we know that a feasible solution for a set of linear inequalities in
Rm is an extreme solution i� it satis�es m linearly independent inequalities with equality� Extreme
solutions of LP ������ satisfy an additional property which leads to a proof of Theorem �����

We will assume that the cut requirement function f in LP ������ is an arbitrary weakly super�
modular function� Given a solution x to this LP� we will say that an inequality is tight if it holds
with equality� If this inequality corresponds to the cut requirement of a set S� then we will say
that set S is tight� Let us make some simplifying assumptions� If xe � for some edge e� this
edge can be removed from the graph� and if xe � �� bxec copies of edge e can be picked and the
cut requirement function be updated accordingly� So� we may assume without loss of generality
that an extreme solution x satis�es � xe � �� for each edge e in graph G� Therefore� each tight
inequality corresponds to a tight set� Let the number of edges in G be m�

!� Steiner network

We will say that a collection� L� of subsets of V forms a laminar family if no two sets in this
collection cross� The inequality corresponding to a set S de�nes a vector in Rm	 the vector has a
� corresponding to each edge e � �G�S�� and otherwise� We will call this the incidence vector of
set S� and will denote it by AS �

Theorem ��
�� Corresponding to any extreme solution to LP ������ there is a collection of m
tight sets such that

� their incidence vectors are linearly independent� and

� collection of sets forms a laminar family�

Example ��
�� The extreme solution for the Peterson graph given in Figure ���� assigns non�
zero values to �� of the �� edges� By Theorem ������ there should be �� tight sets whose incidence
vectors are linearly independent� These are marked in Figure ����� �

Fix an extreme solution� x� to LP ������� Let L be a laminar family of tight sets whose incidence
vectors are linearly independent� Denote by span�L� the vector space generated by the set of vectors
fAS jS � Lg� Since x is an extreme solution� the span of the collection of all tight sets is m� We
will show that if span�L� � m� then there is a tight set S whose addition to L does not violate
laminarity and also increases the span� Continuing in this manner� we will obtain m tight sets as
required in Theorem ������

We begin by studying properties of crossing tight sets�

Lemma ��
�� Let A and B be two crossing tight sets� Then� one of the following must hold�

� A�B and B � A are both tight and AA �AB � AA�B �AB�A

� A �B and A 	B are both tight and AA �AB � AA	B �AA�B�

Proof � Since f is weakly supermodular� either f�A� � f�B� � f�A � B� � f�B � A� or
f�A� � f�B� � f�A � B� � f�A 	 B�� Let us assume the former holds� the proof for the latter is
similar� Since A and B are tight� we have

�x�A� � �x�B� � f�A� � f�B��

Since A�B and B � A are not violated�

�x�A� B� � �x�B �A� � f�A�B� � f�B �A��

Therefore�

�x�A� � �x�B� � �x�A�B� � �x�B �A��

As argued in Lemma ���� �which established the submodularity of function j�G���j�� edges
having one endpoint in A � B and the other in A 	 B can contribute only to the l�h�s� of this
inequality� The rest of the edges must contribute equally to both sides� So� this inequality must be
satis�ed with equality� Furthermore� since xe � for each edge e� G cannot have any edge having
one endpoint in A �B and the other in A 	B� Therefore� AA �AB � AA�B �AB�A� �

For any set S � V � de�ne its crossing number to be the number of sets of L that S crosses�

!�

Lemma ��
�� Let S be a set that crosses set T � L� Then� each of the sets S � T� T � S� S � T
and S 	 T has a smaller crossing number than S�

Proof � The �gure below illustrates the three ways in which a set T � � L can cross one of
these four sets without crossing T itself �T � is shown dotted�� In all cases� T � crosses S as well� In
addition� T crosses S but not any of the four sets� �

T

S

Lemma ��
�� Let S be a tight set such that AS �� span�L� and S crosses some set in L� Then�
there is a tight set S� having a smaller crossing number than S� and such that AS� �� span�L��

Proof � Let S cross T � L� Suppose the �rst possibility established in Lemma ����� holds�
the proof of the second possibility is similar� Then� S � T and T � S are both tight sets and
AS � AT � AS�T � AT�S � This linear dependence implies that AS�T and AT�S cannot both be
in span�L�� since otherwise AS � span�L�� By Lemma ������ S �T and T �S both have a smaller
crossing number than S� The lemma follows� �

Corollary ��
�	 If span�L� �� Rm� then there is a tight set S such that AS �� span�L� and L�fSg
is a laminar family�

By Corollary ������ if L is a maximal laminar family of tight sets with linearly independent
incidence vectors� then jLj � m� This establishes Theorem ������

A counting argument

The characterization of extreme solutions given in Theorem ����� will yield Theorem ���� via a
counting argument� Let x be an extreme solution and L be the collection of tight sets established
in Theorem ������ The number of sets in L equals the number of edges in G� i�e�� m� The proof
is by contradiction� Suppose that for each edge e� xe � ���� Then� we will show that G has more
than m edges�

Since L is a laminar family� it can be viewed as a forest of trees if its elements are ordered by
inclusion� Let us make this precise� For S � L� if S is not contained in any other set of L� then we
will say that S is a root set� If S is not a root set� we will say that T is the parent of S if T is a
minimal set in L containing S� by laminarity of L� T is unique� Further� S will be called a child
of T � Let the relation descendent be the re�exive transitive closure of the relation
child�� Sets
that have no children will be called leaves� In this manner� L can be partitioned into a forest of

!� Steiner network

trees� each rooted at a root set� For any set S� by the subtree rooted at S we mean the set of all
descendents of S�

Edge e is incident at set S if e � �G�S�� The degree of S is de�ned to be j�G�S�j� Set S owns
endpoint v of edge e � �u� v� if S is the smallest set of L containing v� The subtree rooted at set
S owns endpoint v of edge e � �u� v� if some descendent of S owns v�

Since G has m edges� it has �m endpoints� Under the assumption that �e� xe � ���� we will
prove that the for any set S� the endpoints owned by the subtree rooted at S can be redistributed
in such a way that S gets at least � endpoints� and each of its proper descendents gets � endpoints�
Carrying out this procedure for each of the root sets of the forest� we get that the total number of
endpoints in the graph must exceed �m� leading to a contradiction�

We have assumed that �e 	 � xe � ���� For edge e� de�ne ye � ��� � xe� the halves
complement of e� Clearly� � ye � ���� For S � L de�ne its co�requirement to be

coreq�S� �
X

e���S�

ye �
�

�
j�G�S�j � f�S��

Clearly� � coreq�S� � j�G�S�j��� Furthermore� since j�G�S�j and f�S� are both integral� coreq�S�
is half integral� Let us say that coreq�S� is semi�integral if it is not integral� i�e�� if coreq�S� �
f���� ���� ���� � � �g� Since f�S� is integral� coreq�S� is semi�integral i� j�G�S�j is odd�

Sets having co�requirement of ��� play a special role in this argument� The following lemma
will be useful in establishing that certain sets have this co�requirement�

Lemma ��
�
 Suppose S has � children and owns � endpoints� where � � � � �� Furthermore�
each child of S� if any� has a co�requirement of ���� Then� coreq�S� � ����

Proof � Since each child of S has co�requirement of ���� it has odd degree� Using this and the
fact that ��� � �� one can show that S must have odd degree �see Exercise ������� Therefore the
co�requirement of S is semi�integral� Next� we show that coreq�S� is strictly smaller than � ����
thereby proving the lemma� Clearly�

coreq�S� �
X

e���S�

ye �
X
S�

coreq�S�� �
X
e

ye�

where the �rst sum is over all children S� of S� and the second sum is over all edges e having an
endpoint in S� Since ye is strictly smaller than ���� if � � � then coreq�S� � ���� If � � �
all edges incident at the children of S cannot also be incident at S� since otherwise the incidence
vectors of these four sets will be linearly dependent� Therefore�

coreq�S� �
X
S�

coreq�S�� � ����

�

The next two lemmas place lower bounds on the number of endpoints owned by certain sets�

Lemma ��
�� If set S has only one child� then it must own at least two endpoints�

Proof � Let S� be the child of S� If S has no end point incident at it� the set of edges incident at
S and S� must be the same� But then AS � AS� � leading to a contradiction� S cannot own exactly

!�

one endpoint� because then �x�S� and �x�S
�� will di�er by a fraction� contradicting the fact that

both these sets are tight and have integral requirements� The lemma follows� �

Lemma ��
�� If set S has two children� one of which has co�requirement of ���� then it must own
at least one endpoint�

Proof � Let S� and S�� be the two children of S� with coreq�S�� � ���� Suppose S does not own
any endpoints� Since the three vectors AS �AS� and AS�� are linearly independent� the set of edges
incident at S� cannot all be incident at S� or all be incident at S��� Let a denote the sum of ye$s of
all edges incident at S� and S� and let b denote the sum of ye$s of all edges incident at S� and S���
Thus� a � � b � � and a� b � coreq�S� � ����

Since S� has semi�integral co�requirement� it must have odd degree� Therefore� the degrees of S
and S�� have di�erent parities� and so these two sets have di�erent co�requirements� Furthermore�
coreq�S� � coreq�S��� � a � b� Therefore� coreq�S�� coreq�S��� � a � b� But ���� � a � b � ����
Therefore� S and S�� must have the same co�requirement� leading to a contradiction� �

Lemma ��
�� Consider a tree T rooted at set S� Under the assumption that �e� xe � ���� the
endpoints owned by T can be redistributed in such a way that the S gets at least
 endpoints� and
each of its proper descendents gets � endpoints� Furthermore� if coreq�S� �� ���� then S must get
at least
 endpoints�

Proof � The proof is by induction on the height of tree T � For base case� consider a leaf set
S� S must have degree at least �� because otherwise an edge e incident at it will have xe � ����
If it has degree exactly �� coreq�S� is semi�integral� Further� since coreq�S� � j�G�S�j�� � ����
the co�requirement of S is ���� Since S is a leaf� it owns an endpoint of each edge incident at it�
Therefore� S has the required number of endpoints�

Let us say that a set has a surplus of � if � endpoints have been assigned to it and a surplus
of � if � endpoints have been assigned to it� For the induction step� consider a non�leaf set S� We
will prove that by moving the surplus of the children of S and considering the endpoints owned by
S itself� we can assign the required number of endpoints to S� There are four cases	

�� If S has � or more children� we can assign the surplus of each child to S� thus assigning at
least � endpoints to S�

�� Suppose S has � children� If at least one of them has a surplus of �� or if S owns an endpoint�
we can assign � endpoints to S� Otherwise� each child must have a co�requirement of half�
and by Lemma ����!� coreq�S� � ��� as well� So� assigning S the surplus of its children
su�ces�

�� Suppose S has two children� If each has a surplus of �� we can assign � endpoints to S� If
one of them has surplus �� then by Lemma ������ S must own at least one endpoint� If each
child has a surplus of � and S owns exactly one endpoint� then we can assign � endpoints to
S� and this su�ces by Lemma ����!� Otherwise� we can assign � endpoints to S�

�� If S has one child� say S�� then by Lemma ���� � S owns at least � endpoints� If S owns
exactly � endpoints and S� has surplus of exactly �� then we can assign � endpoints to S� by
Lemma ����!� coreq�S� � ���� so this su�ces� In all other cases� we can assign � endpoints
to S�

!� Steiner network

�

Exercise ��
�� Prove that set S in Lemma ����! must have odd degree� �Consider the following
possibilities	 S owns endpoint v of edge �u� v� that is incident at S� S owns endpoint v of edge
�u� v� that is incident at a child of S� and an edge is incident at two children of S��

Exercise ��
�� Prove that there must be a set in L that has degree at most �� and so some
edge must have xe � ���� The counting argument required for this is much simpler� Notice that
this fact leads to a factor � algorithm� �The counting argument requires the use of Lemma ���� ��

Chapter ��

Multicut in general graphs

The importance of min�max relations to combinatorial optimization was mentioned in Chapter � �
Perhaps the most useful of these has been the celebrated max��ow min�cut theorem � indeed� much
of �ow theory� and the theory of cuts in graphs� has been built around this theorem� It is not
surprising� therefore� that a concerted e�ort was made to obtain generalizations of this theorem to
the case of multiple commodities�

There are two di�erent natural generalizations of the maximum �ow problem to multiple com�
modities� In the �rst generalization� the objective is to maximize the sum of the commodities
routed� subject to �ow conservation and capacity constraints� In the second generalization� we
are also speci�ed a demand Di for each commodity i� and the objective is to maximize f � called
throughput� such that for each i� f �Di amount of commodity i can be routed simultaneously� We
will call these sum multicommodity �ow and demands multicommodity �ow problems respectively�
Clearly� for the case of a single commodity� both problems are same as the maximum �ow problem�

Each of these generalizations is associated with a fundamental NP�hard cut problem� the �rst
with the minimum multicut problem� Problem ����� and the second with the sparsest cut problem�
Problem ����� In each case� an approximation algorithm for the cut problem gives� as a corollary�
an approximate max��ow min�cut theorem� In this chapter� we will study the �rst generalization�
the second is presented in Chapter ��� We will obtain an O�log k� factor approximation algorithm
for the minimum multicut problem� where k is the number of commodities� a factor � algorithm
for the special case of trees was presented in Chapter ���

Problem ��
� �Sum multicommodity �ow� Let G � �V�E� be an undirected graph with
non�negative capacity ce for each edge e � E� Let f�s�� t��� � � � � �sk� tk�g be a speci�ed set of pairs of
vertices� where each pair is distinct� but vertices in di�erent pairs are not required to be distinct� A
separate commodity is de�ned for each �si� ti� pair� for convenience� we will think of si as the source
and ti as the sink of this commodity� The objective is to maximize the sum of the commodities
routed� Each commodity must satisfy �ow conservation at each vertex other than its own source
and sink� Also� the sum of �ows routed through an edge� in both directions combined� should not
exceed the capacity of this edge�

Let us �rst give a linear programming formulation for this problem� For each commodity i� let
Pi denote the set of all paths from si to ti in G� and let P �

Sk
i�� Pi� The LP will have a variable fp

for each p � P � which will denote the �ow along path p� the end points of this path uniquely specify
the commodity that �ows on this path� The objective is to maximize the sum of �ows routed on
these paths� subject to edge capacity constraints� �ow conservation constraints are automatically
satis�ed in this formulation� The program has exponentially many variables� however� that is not
a concern since we will use it primarily to obtain a clean formulation of the dual program�

!�

!� Multicut in general graphs

maximize
X
p�P

fp ������

subject to
X
p�e�p

fp � ce� e � E

fp � � p � P

Let us obtain the dual of this program� For this� let de be the dual variable associated with
edge e� we will interpret these variables as distance labels of edges�

minimize
X
e�E

cede ������

X
e�p

de � �� p � P

de � � e � E

The dual program is trying to �nd a distance label assignment to edges so that on each path
p � P � the distance labels of edges add up to at least �� Equivalently� a distance label assignment
is feasible i� for each commodity i� the shortest path from si to ti has length at least ��

Notice that the programs ������ and ������ are special cases of the two programs presented
above� for the restriction that G is a tree�

Exercise ��
� By de�ning for each edge e and commodity i a �ow variable fe�i� give an LP that
is equivalent to LP ������ and has polynomially many variables� Obtain the dual of this program�
and show that it is equivalent to LP ������� however� unlike LP ������� it has only polynomially
many constraints�

The following remarks made in Chapter �� hold for the two programs presented above as well	
An optimal integral solution to LP ������ is a minimum multicut� and an optimal fractional solution
can be viewed as a minimum fractional multicut� By the LP�Duality Theorem� minimum fractional
multicut equals maximum multicommodity �ow� and as shown in Example ����� it may be strictly
smaller than minimum integral multicut�

This naturally raises the question whether the ratio of minimum multicut and maximum multi�
commodity �ow is bounded� Equivalently� is the integrality gap of LP ������ bounded� In the next
section� we present an algorithm for �nding a multicut within an O�log k� factor of the maximum
�ow� thereby showing that the gap is bounded by O�log k��

The algorithm

First notice that the dual program ������ can be solved in polynomial time using the ellipsoid
algorithm� since there is a simple way of obtaining a separation oracle for it	 Simply compute the
length of a minimum si�ti path� for each commodity i� w�r�t� the current distance labels� If all
these lengths are � �� we have a feasible solution� Otherwise� the shortest such path provides a
violated inequality� Alternatively� the LP obtained in Exercise ���� can be solved in polynomial
time� Let de be the distance label computed for each edge e� and let F �

P
e�E cede�

Our goal is to pick a set of edges of small capacity� compared to F � that is a multicut� Let D
be the set of edges with positive distance labels� i�e�� D � fe j de � g� Clearly� D is a multicut�
however� in general� its capacity may be very large compared to F � How do we pick a small capacity
subset of D that is still a multicut� Since the optimal fractional multicut is the most cost�e�ective

!!

way of disconnecting all source�sink pairs� edges with large distance labels are more important than
those with small distance labels for this purpose� The algorithm described below indirectly gives
preference to edges with large distance labels�

Exercise ��
� Intuitively� our goal in picking a multicut is picking edges that are bottlenecks for
multicommodity �ow� In this sense� D is a very good starting point	 Prove that D is precisely the
set of edges that are saturated in everymaximum multicommodity �ow� �Hint	 Use complementary
slackness conditions��

The algorithm will work on graph G � �V�E� with edge lengths given by de� Let dist�u� v�
denote the length of the shortest path from u to v in this graph� For a set of vertices S � V �
��S� denotes the set of edges in the cut �S� S�� c���S�� denotes the capacity of this cut� and wt�S�
denotes the weight of set S� which is roughly

P
cede� where the sum is over all edges that have at

least one end point in set S �a more precise de�nition is given below��
The algorithm will �nd disjoint sets of vertices� S�� � � � � Sl� in G� called regions� such that	

� No region contains any source�sink pair� and for each i� either si or ti is in one of the regions�

� For each region Si� c���Si�� � �wt�Si�� where � is a parameter that will be de�ned below�

By the �rst condition� the union of the cuts of these regions� i�e�� M � ��S�� � ��S�� � � � �� ��Sl��
is a multicut� and by the second condition� its capacity c�M� � ��F � �The factor of � appears
because an edge can contribute to the weight of at most two of the regions� later� we will argue
away this factor��

Growing a region� the continuous process

In this section� we will determine parameter � so that the two conditions stated above can be
made to hold� of course� we want to �nd the smallest � that su�ces� For this purpose� it will be
convenient to consider a continuous region growing process� the algorithm will use a discretized
version of this process�

Each region is found by growing a set� starting from one vertex� the source or sink of a pair�
for convenience� we will always start with a source� This will be called the root of the region� Let
us see how to �nd region S with root s�� For each radius r� de�ne S�r� to be the set of vertices
at a distance at most r from s�� i�e�� S�r� � fv j dist�s�� v� � rg� S� � � fs�g� and as r increases
continuously from � at discrete points� S�r� grows by adding vertices in increasing order of their
distance to s��

Lemma ��
� If the region growing process is terminated before the radius becomes �
� � then the set

S found contains no source�sink pair�

Proof � The distance between any pair of vertices in S�r� is � �r� Since for each commodity i�
dist�si� ti� � �� the lemma follows� �

For technical reasons that will become clear soon� we will assign a weight to the root� wt�s�� �
F
k �

For edges e having at least one end point in S�r�� qe denotes the fraction of edge e that is in S�r��
If both endpoints of e are in S�r�� then qe � �� Otherwise� suppose e � �u� v� with u � S�r� and
v �� S�r�� Then�

qe �
r � dist�s�� u�

dist�s�� v�� dist�s�� u�
�

� Multicut in general graphs

For the continuous process� the weight of a region is de�ned as

wt�S�r�� � wt�s�� �
X

cedeqe�

where the sum is over all edges having at least one end point in S�r�� We will modify this de�nition
slightly for the discrete process�

We want to guarantee that we will encounter the condition c�S�r�� � �wt�S�r�� for r � �
� �

Clearly� this can be guaranteed even for r � by picking � large enough� below we show how to
pick a small ��

Lemma ��
� Picking � � � ln�k��� su�ces to ensure that the condition c�S�r�� � �wt�S�r�� will
be encountered before the radius becomes �

� �

Proof � The proof is by contradiction� Suppose that throughout the region growing process�
starting with r � and ending at r � �

� � c�S�r�� � �wt�S�r��� At any point� the incremental
change in the weight of the region is

dwt�S�r�� �
X
e

cede dqe�

Clearly� only edges having one end point in S�r� will contribute to the sum� Consider such an edge
e � �u� v� such that u � S�r� and v �� S�r�� Then�

cede dqe � ce
de

dist�s�� v�� dist�s�� u�
dr�

Since dist�s�� v� � dist�s�� u� � de� we get de � dist�s�� v�� dist�s�� u�� and hence cede dqe � ce dr�
This gives

dwt�S�r��� c�S�r�� dr � �wt�S�r�� dr�

So� as long as the terminating condition is not encountered� the weight of the region increases
exponentially with the radius� The initial weight of the region is F

k and the �nal weight is at most
F � F

k � Integrating we get

Z F�F
k

F
k

�

wt�S�r��
dwt�S�r���

Z �

�

� dr�

Therefore� ln�k � �� � �
��� However� this contradicts the assumption that � � � ln�k � ��� thus

proving the lemma� �

The discrete process

The discrete process starts with S � fs�g� and adds vertices to S in increasing order of their
distance from s�� So� essentially� it involves executing a shortest path computation from the root�
Clearly� the sets of vertices found by both processes are the same�

The weight of region S is rede�ned for the discrete process as follows	

wt�S� � wt�s�� �
X
e

cede�

� �

where the sum is over all edges that have at least one end point in S� and wt�s�� � F
k � The

discrete process stops at the �rst point when c�S� � �wt�S�� where � is again � ln�k � ��� Notice
that for the same set S� wt�S� in the discrete process is at least as large as that in the continuous
process� Therefore� the discrete process cannot terminate with a larger set than that found by the
continuous process� Hence� the set S found contains no source�sink pair�

Finding successive regions

The �rst region is found in graph G� starting with any one of the sources as the root� Successive
regions are found iteratively� Let G� � G� and S� be the region found in G�� Consider a general
point in the algorithm when regions S�� � � � � Si�� have already been found� Now� Gi is de�ned to
be the graph obtained by removing vertices S�� � � ��Si��� together with all edges incident at them
from G�

If Gi does not contain a source�sink pair� we are done� Otherwise� we pick the source of such a
pair� say sj � as the root� de�ne its weight to be F

k � and grow a region in Gi� All de�ntions� such
as distance and weight are w�r�t� graph Gi� we will denote these with a subscript of Gi� As before�
the value of � is � ln�k � ��� and the terminating condition is c��Gi

�Si�� � �wtGi
�Si�� Notice that

in each iteration� the root is the only vertex that is de�ned to have non�zero weight�

t2

s4 1t

3

2G

t

(S)3

2

δ

δ (S)2

1G
δ (S)1

G

S 2S

3S

s2

1 t4

3s
1s

In this manner� we will �nd regions S�� � � � � Sl� l � k� and will output the set M � �G�
�S�� �

� � �� �Gl
�Sl�� Since edges of each cut are removed from the graph for successive iterations� the sets

in this union are disjoint� and c�M� �
P

i c��Gi
�Si��

The algorithm is summarized below� Notice that while a region is growing� edges with large
distance labels will remain in its cut for a longer time� and so are more likely to be included in
the multicut found� �Of course� the precise time that an edge remains in the cut is given by the
di�erence between the distances from the root to the two end points of the edge�� So� as promised�
the algorithm indirectly gives preference to edges with large distance labels�

� � Multicut in general graphs

Algorithm ��
� �Minimum multicut�

�� Find an optimal solution to the LP �����
� thus obtaining distance labels for edges of G�

�� �
 � ln �k � �� � H
 G� M
 ��
�� While � a source�sink pair in H do�

Pick such a source� say sj �

Grow a region S with root sj until c��H�S�� � �wtH�S��

M
M � �H�S��

H
 H with vertices of S removed�

�� Output M �

Lemma ��
� The set M found is a multicut�

Proof � We need to prove that no region contains a source�sink pair� In each iteration i� the
sum of weights of edges of the graph and the weight de�ned on the current root is bounded by
F � F

k � So� by the proof of Lemma ����� the continuous region growing process is guaranteed to
encounter the terminating condition before the radius of the region becomes �

� � Therefore� the
distance between a pair of vertices in the region� Si� found by the discrete process is also bounded
by �� Notice that we had de�ned these distances w�r�t� graph Gi� Since Gi is a subgraph of G� the
distance between a pair of vertices in G cannot be larger than that in Gi� Hence� Si contains no
source�sink pair� �

Lemma ��
	 c�M� � ��F � � ln�k � ��F �

Proof � In each iteration i� by the terminating condition� we have c��Gi
�Si�� � �wtGi

�Si�� Since
all edges contributing to wtGi

�Si� will be removed from the graph after this iteration� each edge of
G contributes to the weight of at most one region� The total weight of all edges of G is F � Since
each iteration helps disconnect at least one source�sink pair� the number of iterations is bounded
by k� Therefore� the total weight attributed to source vertices is at most F � Adding up we get�

c�M� �
X
i

c��Gi
�Si�� � �

�X
i

wtGi
�Si�

�
� �

�
k
F

k
�
X
e

cede

�
� ��F�

�

Theorem ��

 Algorithm �	�� achieves an approximation guarantee of O�log k� for the minimum
multicut problem�

Proof � The proof follows from Lemmas ���� and ����� and the fact that the value of the
fractional multicut� F � is a lower bound on the minimum multicut� �

� �

Corollary ��
�� In an undirected graph with k source�sink pairs�

max
m
c �ow F

jF j � min
multicut C

jCj � O�log k�

�
max

m
c �ow F
jF j

�
�

where jF j represents the value of multicommodity �ow F � and jCj represents the capacity of multicut
C�

Example ��
�� We will construct an in�nite family of graphs for which the integrality gap for
LP ������ is '�logk�� thereby showing that our analysis of Algorithm ���� and the approximate
max��ow min�multicut theorem presented in Corollary ���� are tight within constant factors�

The construction uses expander graphs� Graph G � �V�E� is said to be an expander graph if for

each set S � V with jSj � jV j
� � j��S�j � jSj� For an appropriate constant d� there exists an in�nite

family of expander graphs with each vertex having degree d� Let H be such a graph containing k
vertices�

Source�sink pairs are designated in H as follows� Consider a breadth �rst search tree rooted at
some vertex v� The number of vertices within distance � � � of vertex v is at most � � d� d� �
� � �� d	�� � d	� Picking � � blogd k

�c ensures that at least k
� vertices are at a distance � � of v�

Let us say that a pair of vertices are a source�sink pair if the distance between them is at least ��
So� we have chosen +�k�� pairs of vertices as source�sink pairs�

Each edge in H is of unit capacity� So� the total capacity of edges of H is O�k�� Since the
distance between each source�sink pair is '�log k�� any �ow path carrying a unit of �ow uses up
'�log k� units of capacity� Therefore� the value of maximum multicommodity �ow in H is bounded
by O� k

logk �� Next� we will prove that a minimum multicut in H � say M � has capacity '�k� thereby
proving the claimed integrality gap� Consider the connected components obtained by removing M
from H �

Claim ��
�� Each connected component has at most k
� vertices�

Proof � Suppose a connected component has � k
� vertices� Pick an arbitrary vertex v in this

component� By the argument given above� the number of vertices that are within distance � � �
of v in the entire graph H is � d	 � k

� � So� there is a vertex u in the component such that the
distance between u and v is at least �� i�e�� u and v form a source�sink pair� Thus removal of M
has failed to disconnect a source�sink pair� leading to a contradiction� �

By Claim ������ and the fact that H is an expander� each component S has j��S�j � jSj� Since
each vertex of H is in one of the components�

P
S j��S�j � k� where the sum is over all connected

components� Since an edge contributes to the cuts of at most two components� we get that the
number of edges crossing components is '�k�� This gives the desired lower bound on the minimum
multicut�

Next� let us ensure that the number of surce�sink pairs de�ned in the graph is not related to
the number of vertices in it� Notice that replacing an edge of H by a path of unit capacity edges
does not change the value of maximum �ow or minimum multicut� Using this operation� we can
construct from H a graph G having n vertices� for arbitrary n � k� The integrality gap of LP
������ for G is '�log k��

�

Some applications of multicut

� � Multicut in general graphs

In this section� we will obtain O�logn� factor approximation algorithms for some problems by
reducing to the minimum multicut problem�

Problem ��
�� �Minimum clause deletion in �CNF � formula� A �CNF � formula
consists of a set of clauses of the form �p � v�� where u and v are literals� Let F be such a formula�
and wt be a function assigning non�negative rational weights to its clauses� The problem is to
delete a minimum weight set of clauses of F so that the remaining formula is satis�able�

Given a �CNF� formula F on n Boolean variables� let us de�ne graphG�F � with edge capacities
as follows	 The graph has �n vertices� one corresponding to each literal� Corresponding to each
clause �p � q� we include the two edges �p� q� and �p� q�� each having capacity equal to the weight
of the clause �p � q��

Notice that the two clauses �p � q� and �p � q� are equivalent� W�l�o�g� we may assume that
F does not contain two such equivalent clauses� since we can merge their weights and drop one of
these clauses� With this assumption� each clause corresponds to two distinct edges in G�F ��

Lemma ��
�� Formula F is satis�able i� no connected component of G�F � contains a variable
and its negation�

Proof � If �p� q� is an edge in G�F � then the literals p and q must take the same truth value in
every satisfying truth assignment� So� all literals of a connected component of G�F � are forced to
take the same truth value� Therefore� if F is satis�able� no connected component in G�F � contains
a variable and its negation�

Conversely� notice that if literals p and q occur in the same connected component� then so do
their negations� So� if no connected component contains a variable and its negation� the components
can be paired� so that in each pair� one component contains a set of literals and the other contains
the complementary literals� For each pair� set the literals of one component to true and the other
to false� to obtain a satisfying truth assignment� �

For each variable and its negation� designate the corresponding vertices in G�F � to be a source�
sink pair� thus de�ning n source�sink pairs� Let M be a minimum multicut in G�F � and C be a
minimum weight set of clauses whose deletion makes F satis�able� In general� M may have only
one of the two edges corresponding to a clause�

Lemma ��
�� wt�C� � c�M� � �wt�C��

Proof � Delete clauses corresponding to edges of M from F to get formula F �� the weight of
clauses deleted is at most c�M�� Since G�F �� does not contain any edges of M � it does not have any
component containing a variable and its negation� By Lemma ������ F � is satis�able� thus proving
the �rst inequality�

Next� delete from G�F � the two edges corresponding to each clause in C� This will disconnect all
source�sink pairs� Since the capacity of edges deleted is �wt�C�� this proves the second inequality�
�

Since we can approximate minimum multicut to within an O�logn� factor� we get	

Theorem ��
�� There is an O�logn� factor approximation algorithm for Problem �	��
�

Next� consider the following problem� which has applications in VLSI design	

Problem ��
�� �Minimum edge deletion graph bipartization� Given an edge weighted
undirected graph G � �V�E�� remove a minimum weight set of edges to leave a bipartite graph�

� �

Exercise ��
�	 Obtain an O�logn� factor approximation algorithm for Problem ����� by
reducing it to Problem ������

Exercise ��
�
 In Chapter �� we had presented a ��� �
k � factor algorithm for the minimum

multiway cut problem by comparing the solution found to the integral optimal solution� In this
exercise� we develop an algorithm with the same guarantee using LP�duality�

Given terminals s�� � � � � sk� consider the multicommodity �ow problem in which each pair of ter�

minals can form a source�sink pair� Thus there are

�
k

�

�
commodities� Give an LP for maximizing

this multicommodity �ow� and obtain the dual LP� The dual seeks a distance label assignment for
edges satisfying the triangle inequality� and ensuring that the distance between any two terminals
is at least �� An optimal solution to the dual can be viewed as a fractional multiway cut�

The algorithm for �nding a multiway cut is	 Solve the dual LP to obtain an optimal fractional
multiway cut� this gives a distance label assignment� say d� Pick � at random in the interval � � �� ��
An edge �u� v� is picked i� for some terminal s� d�u� s� � � � d�v� s��

Prove that the expected capacity of cut picked is at most twice the optimal fractional multiway
cut� by showing that for each edge �u� v�� the probability that it is picked is bounded by �d�u� v��
Derandomize this algorithm� and give a modi�cation to make it a factor ��� �

k � algorithm�

Chapter �	

Sparsest cut

In this chapter� we will obtain an approximation algorithm for the sparsest cut problem using an
interesting LP�rounding procedure that employs results on low distortion embeddings of metrics
in �� spaces� As mentioned in Chapter ��� we will get� as a corollary� an approximate max��ow
min�cut theorem for the demands version of multicommodity �ow� Several important problems can
be viewed as special cases of the sparsest cut problem�

Problem �	
� �Demands multicommodity �ow� Let G � �V�E� be an undirected graph
with a non�negative capacity ce for each edge e � E� Let f�s�� t��� � � � � �sk� tk�g be a speci�ed set
of pairs of vertices� where each pair is distinct� but vertices in di�erent pairs are not required to
be distinct� A separate commodity is de�ned for each �si� ti� pair� for convenience� we will think
of si as the source and ti as the sink of this commodity� For each commodity i� a non�negative
demand� demi� is also speci�ed� The objective is to maximize f � called throughput� such that for
each commodity i� f � demi units of this commodity can be routed simultaneously� subject to �ow
conservation and capacity constraints� i�e�� each commodity must satisfy �ow conservation at each
vertex other than its own source and sink� and the sum of �ows routed through an edge� in both
directions combined� should not exceed the capacity of this edge� We will denote the optimal
throughput by f��

Consider a cut �S� S� in G� Let c�S� denote the capacity of edges in this cut� and dem�S� denote
the total demand separated by this cut� i�e�� dem�S� �

Pfdemi 	 jfsi� tig 	 Sgj � �g� Clearly�

the ratio of these quantities places an upper bound on the throughput� i�e�� f� � c�S�

dem�S�
� This

motivates	

Problem �	
� �Sparsest cut� Let G � �V�E� be an undirected graph� with capacities� source�

sink pairs and demands de�ned as in Problem ����� The sparsity of cut �S� S� is given by c�S�

dem�S�
�

The problem is to �nd a cut of minimum sparsity� We will denote the sparsity of this cut by ���

Among all cuts� �� puts the most stringent upper bound on f�� Is this upper bound tight�
Example ���� shows that it is not� However� minimum sparsity cannot be arbitrarily larger than
maximum throughput� we will show that their ratio is bounded by O�logk��

Example �	
� Consider the bipartite graph K��� with all edges of unit capacity� and a unit
demand between each pair of non�adjacent vertices� a total of four commodities�

� �

� �

1

1

1

1

1/2

1/2

1/2
1/2

1/2

1/2

It is easy to check that a sparsest cut of K��� has sparsity �� The �gure shows the unique way
of routing one unit of each of the three commodities having the source and the sink on the side
containing � vertices� However� this saturates all edges� making it impossible to route the fourth
commodity� Hence throughput is strictly smaller than �� �

Linear programming formulation

We start by giving a linear programming formulation of the demands multicommodity �ow
problem� Let Pi � fqijg denote the set of all paths between si and ti� Introduce variable f ij to

denote the �ow of commodity i sent along path qij �

maximize f ������

subject to
X
j

f ij � f � dem�i�� i � �� � � � � k

X
e�qi

j

f ij � ce� e � E

f �

f ij �

Let li and de be dual variables associated with the �rst and second set of inequalities respectively�
We will interpret de$s as distance label assignments to the edges of G� The �rst set of inequalities
are simply ensuring that for each commodity i� li is bounded by the length of a shortest path from
si to ti w�r�t� the distance label assignment�

minimize
X
e�E

cede ������

subject to
X
e�qi

j

de � li� qij � Pi

kX
i��

lidem�i� � �

de � � e � E

li � � i � �� � � � � k

Example �	
� For the instance given in Example ����� the optimal throughput is f� � �
	 � this

corresponds to routing the four commodities as follows	

� � Sparsest cut

3/8

3/8

3/8
3/8

1/4 1/4
1/4

3/8

3/8

The optimal dual solution is	 de �
�

 for each edge e� and li �

�
	 for each commodity i� It will be

instructive for the reader to verify feasibility and optimality of these solutions� �

Claim �	
� There is an optimal distance label assignment d for the dual program ������ that is a
metric on V � Furthermore� for each commodity i� li � d�si�ti�� and the second inequality holds with
equality� i�e��

P
i d�si�ti�dem�i� � ��

Proof � If for some three points u� v and w� duw � duv � dvw� then we can decrease duw to
duv � dvw� Since this does not decrease the shortest path between any si�ti pair� the solution still
remains feasible� Moreover� the objective function value cannot increase by this process� Continuing
in this manner� we will obtain a metric on V �

Now� the length of a shortest path from si to ti is given by the distance label d�si�ti�� Setting
li � d�si�ti� does not change the feasibility or the objective function value of the solution� Finally�
if the second inequality holds strictly� then we can scale down all distance labels without violating
feasibility� thus contradicting the optimality of d� �

De�ne the graph H with vertex set VH � fsi� tij� � i � kg and edge set EH � f�si� ti�j� � i �
kg to be the demand graph� By Claim ����� the dual program yields a metric �V�d� that minimizesP

e�G cedeP
e�H dem�e�de

�

By the LP�Duality Theorem� this equals the optimal throughput� Hence�

f� � min
metricd

P
e�G cedeP

e�H dem�e�de
�

Approximate cut packing

We will obtain a sparse cut from metric �V�d� obtained above� using the notion of approximate
cut packings� Let us think of this metric as de�ning the lengths of edges of the complete graph
on V � let En denote the set of all edges in the complete graph� Let y be a function assigning
non�negative values to subsets of V � i�e�� y 	 �V
 R�� we will denote the value of y on set S by
yS � As before� let us say that edge e feels yS if e is in the cut �S� S�� The amount of cut that edge
e feels is

P
S�e���S� y�S�� Function y is called a cut packing for metric �V� d� if no edge feels more

cut than its length� i�e�� for each edge e � En�
P

S�e���S� y�S� � de� If this inequality holds with
equality for each edge e � En� then y is said to be an exact cut packing� The reason for the name

cut packing� is that equivalently� we can think of y as assigning value yS � yS to each cut �S� S��

� !

As shown below� in general� there may not be an exact cut packing for metric �V�d�� Let us
relax this notion by allowing edges to be underpacked up to a speci�ed extent� For � � �� y is said
to be a ��approximate cut packing if the amount of cut felt by any edge is at least �

 fraction of its

length� i�e�� for each edge e � En�
de

 � P

S�e���S� y�S� � de� Clearly� the smaller � is� the better
is the cut packing� The following theorem shows the importance of �nding a good cut packing for
�V�d��

Theorem �	
� Let y be a ��approximate cut packing for metric �V�d�� Let �S�� S�� be the sparsest
cut with yS� �� � Then� the sparsity of this cut is at most �f��

Proof � Let y be a ��approximate cut packing for metric �V�d�� Then�

f� �

P
e�G cedeP

e�H dem�e�de
�

P
e�G ce

P
S�e���S� y�S�P

e�H dem�e�
P

S�e���S� �y�S�
�

P
S ySc�S�

�
P

S ySdem�S�
� �

�

�
c�S��

dem�S��

�
�

The �rst inequality follows using both the upper bound and the lower bound on the amount of
cut felt by an edge� the former in the numerator and the latter in the denominator� The equality
after that follows by changing the order of summation� The last inequality follows from the well
known Proposition ���� stated below� �

Proposition �	
� For any non�negative reals a�� � � � � an� and positive reals b�� � � � � bn�P
i aiP
i bi

� min
i

ai
bi
�

Moreover� this inequality holds with equality i� the n values ai�bi are all equal�

Corollary �	
	 If there is an exact cut packing for metric �V�d�� then every cut �S� S� with yS ��
has sparsity f�� and so is a sparsest cut in G�

Proof � By Theorem ����� the minimum sparsity cut with yS �� has sparsity at most f� �since
� � ��� Since the sparsity of any cut upper bounds f�� the sparsity of this cut equals f�� and this is
a sparsest cut in G� But then all inequalities in the proof of Theorem ���� must hold with equality�
Now� by the second statement in Proposition ����� we get that every cut �S� S� with yS �� has
sparsity f�� �

The sparsest cut in the instance speci�ed in Example ���� has sparsity strictly larger than f��
So� by Corollary ����� the optimal metric for this instance does not have an exact cut packing�
However� it turns out that every metric has an O�logn��approximate cut packing � we will show
this using the notion of ���embeddability of metrics�

���embeddability of metrics

A norm on the vector space Rm is a function k � k 	 Rm
 R�� such that for any x�y � Rm�
and � � R	

� kxk � if and only if x � �

� k�xk � j�j � kxk�

�� Sparsest cut

� kx� yk � kxk� kyk�
For p � �� the �p�norm is de�ned by

kxkp �
�
� X

�
k
m

jxkjp
�
A

�

p

�

The associated �p�metric� denoted by d�p � is de�ned by

d�p�x�y� � kx� ykp

for all x�y � Rm� In this chapter� we will only consider the ���norm�

Let 	 be a mapping� 	 	 V
 Rm for some m� Let us say that k	�u��	�v�k� is the �� length of
edge �u� v� under 	� We will say that 	 is an isometric ���embedding for metric �V�d� if it preseves
the �� lengths of all edges� i�e��

�u� v � V� d�u� v� � k	�u�� 	�v�k��

As shown below� in general� the metric computed by solving the dual program may not be
isometrically ���embeddable� So� we will relax this notion � we will ensure that the mapping does
not stretch any edge� but we will allow it to shrink edges up to a speci�ed factor� For � � �� we
will say that 	 is a ��distortion ���embedding for metric �V� d� if

�u� v � V 	
�

�
d�u� v�� k	�u�� 	�v�k� � d�u� v��

Next� we show that the question of �nding an approximate cut packing for a metric is intimately
related to that of �nding a low distortion �� embedding for it�

Lemma �	

 Given mapping 	 	 V
 Rm for some m� there is a cut packing y 	 �V
 R� such
that each edge feels as much cut under y as its �� length under 	� Moreover� the number of non�zero
yS �s is at most m�n� ���

Proof � First consider the case when m � �� Let the n vertices of V be mapped to u� �
u� � � � � � un� W�l�o�g� assume that the vertices are also numbered in this order� For each
i� � � i � n� �� let yfv������vig � ui�� � ui� Clearly� this cut packing satis�es the required condition�

For arbitrary m� we observe that since the �� norm is additive� we can de�ne a cut packing for
each dimension independently� and the sum of these packings satis�es the required condition� �

Lemma �	
�� Given a cut packing y 	 �V
 R� with m non�zero yS�s� there is a mapping
	 	 V
 Rm such that for each edge� its �� length under 	 is the same as the amount of cut it feels
under y�

Proof � We will have a dimension corresponding to each set S � V such that yS �� � For
vertices in S� this coordinate will be � and for vertices in S� this coordinate will be yS � Thus� this
dimension contributes exactly as much to the �� length of an edge as the amount of cut felt by this
edge due to yS � Hence this mapping satis�es the required condition� �

���

Lemmas ���! and ���� give	

Theorem �	
�� There exists a ��distortion ���embedding for metric �V�d� if and only if there
exists a ��approximate cut packing for it� Moreover� the number of non�zero cuts and the dimension
of the ���embedding are polynomially related�

Corollary �	
�� Metric �V�d� is isometrically ���embeddable i� there exists an exact cut packing
for it�

We have already shown that metric obtained for the instance in Example ���� does not have an
exact cut packing� so� it is not isometrically ���embeddable� However� we will show that any metric
has an O�logn��distortion ���embedding� this fact lies at the heart of the approximation algorithm
for the sparsest cut problem�

Low distortion ���embeddings for metrics

First consider the following one dimensional embedding for metric �V�d�	 pick a set S � V �
and de�ne the coordinate of vertex v to be 	�v� � mins�S d�s� v�� i�e�� the length of the shortest
edge from v to S� This mapping does not stretch any edge	

Lemma �	
�� For the one dimensional embedding given above�

�u� v � V� j	�u�� 	�v�j � d�u� v��

Proof � Let s� and s� be the closest vertices of S to u and v respectively� W�l�o�g� assume that
d�s�� u� � d�s�� v�� Then� j	�u��	�v�j � d�s�� v��d�s�� u� � d�s�� v��d�s�� u� � d�u� v�� The last
inequality follows by triangle inequality� �

More generally� consider the followingm�dimensional embedding	 Pickm subsets of V � S�� � � � � Sm�
and de�ne the ith coordinate of vertex v to be 	i�v� � �mins�Si d�s� v���m� notice the scaling factor
of m used� The additivity of �� metric� together with Lemma ������ imply that this mapping also
does not stretch any edge�

Ensuring that a single edge is not over�shrunk

The remaining task is to choose the sets in such a way that no edge shrinks by a factor of more
than O�logn�� It is natural to use randomization for picking the sets� Let us �rst ensure that a
single edge �u� v� is not over�shrunk� For this purpose� de�ne the expected contribution of set Si to
the �� length of edge �u� v� to be E�j	i�u�� 	i�v�j��

For simplicity� assume that n is a power of �� let n � �l� For � � i � l � �� set Si is formed by
picking each vertex of V with probability ���i� The embedding w�r�t� these sets works for the single
edge �u� v�� with high probability� The proof of this fact involves cleverly taking into consideration
the expected contribution of each set� For di�erent metrics� di�erent sets have large contribution�
In order to develop intuition for the proof� we �rst illustrate this through a series of examples�

Example �	
�� In the following three metrics� d�u� v� � �� Relative to u and v� the remaining
�n� �� vertices are placed as shown in the �gure below�

��� Sparsest cut

s s su v

s s su v

s s

n�� n��

� n� � �

u v

p
n

p
nn� �

p
n

For each metric� the expected contribution of one of the sets is '�d�u� v��l�� For the �rst metric�
this set is Sl� since it will be a singleton with constant probability� For the second metric� this set is
S�� since it will contain exactly one of u and v with constant probability� For the third metric� this
set is Sdl��e� since with constant probability� it will contain exactly one vertex of the �

p
n vertices

bunched up with u and v� �

In the next lemma� we encapsulate the basic mechanism for establishing a lower bound on the
expected contribution of a set Si� For any vertex x and non�negative real r� let B�x� r� denote the
ball of radius r around x� i�e�� B�x� r� � fs � V jd�x� s�� rg�

Lemma �	
�� If for some choice of r� � r� � � and constant c�

Pr��Si 	B�u� r�� � �� and �Si 	 B�v� r�� �� ��� � c�

then the expected contribution of Si is � c�r�� r���l�

Proof � Under the event described� d�u� Si� � r� and d�v� Si� � r�� If so� 	i�u� � r��l and
	i�v� � r��l� Therefore� j	i�u�� 	i�v�j � �r� � r���l� and the lemma follows� �

The remaining task is to de�ne suitable radii r� and r� for each set Si such that the probabilistic
statement of Lemma ����� holds� We will need the following simple probabilistic fact	

Lemma �	
�� For � � t � l � �� let A and B be disjoint subsets of V � such that jAj � �t and
jBj � �t��� Form set S by picking each vertex of V independently with probability p � ����t����
Then�

Pr��S 	A � �� and �S 	B �� ��� � �

��
�

Proof �

Pr�S 	A � �� � ��� p�jAj � ��� pjAj� � �

�
�

where the �rst inequality follows by taking the �rst two terms of the binomial expansion�

Pr�S 	B � �� � ��� p�jBj � �� pjBj� p�
�
jBj�
�

�
�

this time around� we used the �rst three terms of the binomial expansion� Therefore�

Pr�S 	B �� �� � �� ��� p�jBj � pjBj��� pjBj
�

� �
�

�
��� �

�
� �

�

��
�

���

Finally observe that since A and B are disjoint� the two events �S 	 A � �� and �S 	 B �� �� are
independent� The lemma follows� �

For � t � l� de�ne �t � minf� � 	 jB�u� ��j � �t and jB�v� ��j � �tg� i�e�� �t is the
smallest radius such that the ball around u and the ball around v each has at least �t vertices�
Clearly� �
 � and �l � d�u� v�� Let *t � maxft 	 �t � d�u� v���g� clearly� *t � l � �� Finally� for
any vertex x and non�negative real r� let B��x� r� denote the open ball of radius r around x� i�e��
B��x� r� � fs � V jd�x� s�� rg�
Lemma �	
�� For � � t � *t� the expected contribution of St�� is

� �

��

��t � �t���

l
�

and for t � *t� �� the expected contribution of St�� is

� �

��l
�
d�u� v�

�
� �t����

Proof � First consider t such that � � t � *t� By the de�nition of �t� for at least one of the
two vertices u and v� the open ball of radius �t contains fewer than �t vertices� W�l�o�g� assume
this happens for vertex u� i�e�� jB��u� �t�j � �t� Again� by de�nition� jB�v� �t���j � �t��� Since
�t�� � �t � d�u� v���� the two sets B��u� �t� and B�v� �t��� are disjoint� So� by Lemma ������ the
probability that St�� is disjoint from the �rst set and intersects the second is least ����� Now� the
�rst claim follows from Lemma ������

Next� let t � *t� �� By the de�nition of *t� for at least one of the two vertices u and v� the open
ball of radius d�u� v��� contains fewer than �t vertices� As before� w�l�o�g� assume this happens for
vertex u� i�e�� jB��u� d�u� v����j � �t� Clearly� jB�v� �t���j � �t��� Since �t�� � d�u� v���� the two
sets B��u� d�u� v���� and B�v� �t��� are disjoint� The rest of the reasoning is same as before� �

Lemma �	
�	 The expected contribution of all sets S�� � � � � Sl�� is

� �

���

d�u� v�

l
�

Proof � By Lemma ������ the expected contribution of all sets S�� � � � � Sl�� is at least the
following telescoping sum	

�

��l

�
��� � �
� � ��� � ��� � � � �� �

d�u� v�

�
� ��t�

�
�

�

���

d�u� v�

l
�

�

For convenience� let c � ������

Lemma �	
�
 Pr�contribution of all sets is � cd�u�v�
�l � � c

�� c
�

Proof � Denote the probability in question by p� Clearly� the total contribution of all sets
S�� � � � � Sl�� to the �� length of edge �u� v� is at most d�u� v���l� This fact and Lemma ����� give	

p
d�u� v�

l
� ��� p�

cd�u� v�

�l
� d�u� v�

l
�

��� Sparsest cut

Therefore� p � c���� c�� �

Exercise �	
�� For each of the three metrics given in Example ������ one of the sets S�� � � � � Sl��

has an expected contribution of '�d�u� v��l�� Give a metric for which each set has an expected
contribution of +�d�u� v��l���

Ensuring that no edge is over�shrunk

The above embedding does not over�shrink edge �u� v� with constant probability� In order
to ensure that no edge is over�shrunk� we will �rst enhance this probability� The key idea is
to repeat the entire process several times independently and use Cherno� bounds to bound the
error probability� We will use the following statement of the Cherno� bound	 Let X�� � � � � Xn be
independent Bernoulli trials with Pr�Xi� � p� � p � �� and let X �

Pn
i��Xi� clearly� E�X� � np�

Then� for � � � ��

Pr�X � ��� ��np� � exp����np����

Pick sets S�� � � � � Sl��� using probabilities speci�ed above� independently N � O�logn� times
each� Call the sets so obtained Sji � � � i � l � �� � � j � N � Consider the Nl � O�log� n�
dimensional embedding of metric �V�d� w�r�t� these Nl sets� We will prove that this is an O�logn��
distortion ���embedding for metric �V� d��

Lemma �	
�� For N � O�logn�� this embedding satis�es�

Pr�k	�u�� 	�v�k�� � pcd�u� v�

�l
� � ��� �

�n�
��

where p � c���� c��

Proof � We will think of the process of picking sets S�� � � � � Sl�� once as a single Bernoulli trial�
thus we have N such trials� A trial succeeds if the contribution of all its sets is � �cd�u� v����l�
By Lemma ����!� the probability of success is at least p� Using the Cherno� bound with � � ����
the probability that at most Np�� of these trials succeed is at most exp�pN���� Clearly� this is
bounded by ���n� for N � O�logn�� If at least Np�� trials succeed� the �� length of edge �u� v�
will be at least �pcd�u� v����l� d�u� v��O�logn�� The lemma follows� �

Adding the error probabilities for all n�n� ���� edges� we get	

Theorem �	
�� The Nl � O�log� n� dimensional embedding given above is an O�logn��distortion
���embedding for metric �V� d�� with probability at least ����

The algorithm

The reader can verify that Claim ���� and Theorems ����� ����� and ����� lead to an O�logn�
factor approximation algorithm for the sparsest cut problem� In this section� we will improve the
approximation guarantee to O�log k� where k is the number of source�sink pairs speci�ed�

For this purpose� notice that Theorem ���� holds even for the following less stringent approx�
imate cut packing	 no edge is allowed to be over�packed� and the edges of the demand graph are

���

not under�packed by more than a � factor �the rest of the edges are allowed to be under�packed
to any extent�� In turn� such a cut packing can be obtained from an ���embedding that does not
over�shrink edges of the demand graph only� Since these are only O�k�� in number� where k is the
number of source�sink pairs� we can ensure that these edges are not shrunk by a factor of more
than O�log k�� thus enabling an improvement in the approximation guarantee�

Let V � � V be the set of vertices that are sources or sinks� jV �j � �k� For simplicity� assume jV �j
is a power of �� let jV �j � �l� The sets S�� � � � � Sl�� will be picked from V �� and it is easy to verify
from the proof of Lemma ����� that N � O�logk� will su�ce to ensure that none of the O�k��
edges of the demand graph is shrunk by more than a factor of O�log k�� The complete algorithm
is	

Algorithm �	
�� �Sparsest cut�

�� Solve the dual LP �����
 to obtain metric �V�d��

�� Pick sets Sji � � � i � l� �� � � j � N � where set Sji is formed by picking each vertex of V �

independently with probability ���i�

�� Obtain an ���embedding of �V�d� in O�log� k� dimensional space w�r�t� these sets�

�� Obtain an approximate cut packing for �V�d� from the ���embedding�

� Output the sparsest cut used by the cut packing�

Theorem �	
�� Algorithm ����
 achieves an approximation guarantee of O�log k� for the sparsest
cut problem�

Corollary �	
�� For a demands multicommodity �ow instance with k source�sink pairs�

�

O�log k�

�
min
S � V

c�S�

dem�S�

�
� max

throughput f
f � min

S � V

c�S�

dem�S�
�

Applications

We present below a number of applications of the sparsest cut problem�

Edge expansion

Expander graphs have numerous applications� for instance� see Example ������ We will obtain
an O�logn� factor algorithm for the problem of determining the edge expansion of a graph	

Problem �	
�� �Edge expansion� Given an undirected graph G � �V�E�� the edge expansion
of a set S � V with jSj � n��� is de�ned to be j��S�j� i�e�� the number of edges in the cut �S� S��
The problem is to �nd a minimum expansion set�

Consider the special case of demands multicommodity �ow in which we have n�n����� distinct
commodities� one for each pair of vertices� This is called the uniform multicommodity �ow problem�
For this problem� the sparsity of any cut �S� S� is given by

c�S�

jSjjSj�

��� Sparsest cut

Let �S� S�� with jSj � jSj� be the cut found by Algorithm ����� when run on G with uniform
demands� Notice that jSj is known within a factor of �� since n�� � jSj � n� So� S has expansion
within an O�logn� factor of the minimum expansion set in G� Clearly� the generalization of this
problem to arbitrary edge costs also has an O�logn� factor approximation algorithm�

Conductance

The conductance of a Markov chain characterizes its mixing rate� i�e�� the number of steps
needed to ensure that the probability distribution over states is su�ciently close to its stationary
distribution� Let P be the transition matrix of a discrete�time Markov chain on a �nite state space
X � and let
 denote the stationary probability distribution of this chain� We will assume that the
chain is aperiodic� connected� and that it satis�es the detailed balance condition

�x�P �x� y� �
�y�P �y� x� �x� y � X�

De�ne undirected graph G � �X�E� on vertex set X � �x� y� � E i�
�x�P �x� y� �� � The edge
weights are de�ned to be w�x� y� �
�x�P �x� y�� The conductance of this chain is given by

, � min
S�X�
�
�S�
���

w�S� S�

�S�
�

where w�S� S� is the sum of weights of all edges in the cut �S� S�� For any set S� the numerator of
the quotient de�ned above is the probability that the chain in equilibrium escapes from set S to
S in one step� So the quotient gives the conditional probability of escape� given that the chain is
initially in S� and , measures the ability of the chain to not get trapped in any small region of the
state space�

Theorem ����� leads to an O�logn� factor approximation algorithm for computing conductance�
First� observe that it su�ces to approximate the following symmetrized variant of ,	

,� � min
S�X�
�
�S�
�

w�S� S�

�S�
�S�
� ������

since , and ,� are within a factor of � of each other �notice that if �
�S� � ���� then
��� �
�S� � ���

Next� let us show that computing ,� is really a special case of the sparsest cut problem� Consider
graph G � �X�E� with edge weights as de�ned above� For each pair of vertices x� y � X � de�ne a
distinct commodity with a demand of
�x�
�y�� It is easy to see that the sparsity of a cut �S� S�
for this instance is simply the quotient de�ned in ������� Hence� the sparsity of the sparsest cut is
,��

Balanced cut

The following problem �nds applications in partitioning problems� such as circuit partitioning in
VLSI design� Furthermore� it can be used to perform the
divide� of a divide�and�conquer strategy
on certain problems� for instance� see the algorithm for Problem ���� below�

Problem �	
�� �Minimum b�balanced cut� Given an undirected graph G � �V�E� with
non�negative edge costs� and a rational b� � b � ���� �nd a minimum capacity cut �S� S� such
that bn � jSj � ��� b�n�

���

A b�balanced cut for b � ��� is called a bisection cut� and the problem of �nding a minimum
capacity such cut is called the minimum bisection problem� No approximation algorithms are
known for Problem ������ However� we can use Theorem ����� to obtain the following pseudo�
approximation algorithm	 we will �nd a ����balanced cut whose capacity is within an O�logn�
factor of the capacity of a minimum bisection cut�

For V � � V � let GV � denote the subgraph of G induced by V �� The algorithm is	 Initialize U
 �
and V �
 V � Until jU j � n�� do	 �nd a minimum expansion set in GV � � say W � U
 U �W and
V �
 V � �W � Finally� let S
 U � and output the cut �S� V � S��

Claim �	
�	 The cut output be the algorithm is a ����balanced cut whose capacity is within an
O�logn� factor of the capacity of a minimum bisection cut in G�

Proof � At the end of the penultimate iteration� jU j � n��� So� at the beginning of the last
iteration� jV �j � �n��� At most half of these vertices are added to U in the last iteration� Therefore�
jV � Sj � n��� and so n�� � jSj � n��� Hence �S� V � S� is a ����balance cut�

Let �T� T� be a minimum bisection cut in G� Since at the beginning of each iteration� jV �j �
�n��� each of the sets T 	V � and T 	V � has at least n�� vertices� So� the expansion of a minimum

expansion set in GV � in each iteration is at most c�T �
�n��� � Since the algorithm �nds a set having

expansion within a factor of O�logn� of optimal� in any iteration� the set U found satis�es	

c�U�

jU j � O�logn�
c�T �

n��
�

Since the �nal set S has at most �n�� vertices� summing up we get

c�S� � O�logn�
c�T ���n���

n��
�

thereby giving c�S� � O�logn�c�T �� �

Exercise �	
�
 Why can$t the algorithm given above be converted to a true approximation
algorithm� i�e�� so that in the end� we compare the ����balance cut found to the optimal ����balance
cut� Construct graphs for which the capacity of a minimum bisection cut is arbitrarily higher than
that of a ����balanced cut� Show that the algorithm given above extends to �nding a b�balanced
cut that is within an O�logn� factor of the best b��balanced cut for b � ��� and b � b�� Where in
the argument is the restriction b � ��� used�

Minimum cut linear arrangement

Problem �	
�� �Minimum cut linear arrangement� Given an undirected graphG � �V�E�
with non�negative edge costs� for a numbering of its vertices from � to n� de�ne Si to be the set
of vertices numbered at most i� for � � i � n � �� this de�nes n � � cuts� The problem is to
�nd a numbering that minimizes the capacity of the largest of these n � � cuts� i�e�� it minimizes
maxfc�Si�j � � i � �n� ��g�

Using the pseudo�approximation algorithm obtained above for the ����balanced cut problem�
we will obtain a true O�log� n� factor approximation algorithm for this problem� A key observation
is that in any arrangement� Sn�� is a bisection cut� and so the capacity of a minimum bisection cut

��� Sparsest cut

in G� say �� is a lower bound on the optimal arrangement� The reason we get a true approximation
algorithm is that the ����balanced cut algorithm compares the cut found to ��

The algorithm is recursive	 Find a ����balanced cut in GV � say �S� S�� and recursively �nd a
numbering of S in GS using numbers from � to jSj� and a numbering of S in GS using numbers
from jSj � � to n� Of course� the recursion ends when the set is a singleton� in which case the
prescribed number is assigned to this vertex�

Claim �	
�� The algorithm given above achieves an O�log� n� factor for the minimum cut linear
arrangement problem�

Proof � The following binary tree T �not necessarily complete� encodes the outcomes of the
recursive calls made by the algorithm	 Each recursive call corresponds to a node of the tree�
Suppose recursive call � ends with two further calls� �� and ��� where the �rst call assigns smaller
numbers and the second assigns larger numbers� Then� �� will be made the left child of � in T �
and �� will be made the right child of �� If recursive call � was made with a singleton� then � will
be a leaf of the tree�

To each non�leaf� we will assign the set of edges in the cut found during this call� and to each
leaf we will assign its singleton vertex� Thus� the left to right ordering of leaves gives the numbering
assigned by the algorithm to the vertices� Furthermore� the edge sets associated with non�leaf nodes
de�ne a partitioning of all edges of G� The cost of edges associated with any non�leaf is O�logn��
by Claim ������ Since each recursive call �nds a ����balanced cut� the depth of recursion� and
hence the depth of T � is O�logn��

Following is a crucial observation	 Consider any edge �u� v� in G� Let � be the lowest common
ancestor of leaves corresponding to u and v in T � Then� �u� v� belongs to the set of edges associated
with node ��

With respect to the numbering found by the algorithm� consider a cut �Si� Si�� � � i � n � ��
Any edge in this cut connects vertices numbered j and k with j � i and k � i � �� So� such an
edge must be associated with a node that is a common ancestor of the leaves numbered i and i���
Since the depth of T is O�logn�� there are O�logn� such common ancestors� Since the cost of edges
associated with any node in T is O�logn��� the cost of cut �Si� Si� is bounded by O�log� n��� The
claim follows� since we have already argued that � is a lower bound on the optimal arrangement�
�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

