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Lecture 1: Basic Algebraic Structures

Prepared by: K Murali Krishnan

These notes assume that the reader is not totally unfamiliar with the notions of groups,
rings fields and vector spaces. The definitions are stated here only for fixing the notation and
exercises list out elementary facts which the reader is expected to know before proceeding
further. Standard facts about matrices and determinants will be used without explanation.

Notation

Let Z, Q, R and C denote the set of integers, rationals, reals and complex numbers respec-
tively. Let N = {0, 1, 2, ..}. We will use the notation Mn(R), Mn(Q), Mn(C) to denote
the set of n× n matrices with real, rational and complex entries.

Groups

Definition 1. A monoid (G, .) is a (non empty) set G together with an associative binary
operator “.′′ on G having an identity element (denoted by 1 or sometimes e). If “.′′ is
commutative, G will be called a commutative monoid. A monoid G is a group if every
element in G has an inverse. A commutative group is called an Abelian group.

Exercise 1. Find the category to which (Z,+), (Z, .), (Q,+), (Q, .), (N,+), (N, .) belong to
where, “+′′ and “.′′ represent standard addition and multiplication. What about (Q\{0}, .)?
and (N \ {0}, .)?

Example 1. (Mn(X),+) for X ∈ {Q,R or C } and “+′′ the standard matrix addition is
an Abelian group with zero matrix 0 as identity. (Mn(X), .) for X ∈ {Q,R and C} and “.′′

the standard matrix multiplication is a (non-commutative) monoid with the n × n identity
matrix In as identity. However the set GLn(X) consisting of non-singular n× n matrices
over X forms a (non-Abelian) group with respect to multiplication.

Example 2. The set Xn, consisting of n− tuples where X ∈ {Q,R or C } is an Abelian
group with standard vector addition. Let T be any arbitrary set. If we consider the set of
functions from the set T to X (denoted by XT ), these functions form an Abelian group with
(f + g)(t) defined as f(t) + g(t) for each t ∈ T . The identity is the function 0 (0(t) = 0
for all t ∈ T ). Note that Xn is a special case of this example where T = {1, 2, ..n}. (why?
understand this example carefully).

Example 3. The set Zn is used to denote the set {0, 1, 2, .., n − 1} with “+′′ denoting
addition modulo n. We will see later that (Zn,+) is an Abelian group.

Exercise 2. If (G, .) is a group with a, b ∈ G.

1. Show that a group can have at most one identity element.

2. Show that an element has at most one inverse in a group.
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Rings and Fields

Definition 2. A set (R,+, .) with two operators is a ring (with unity) if (R,+) is an
Abelian group, (R, .) is a monoid and “.′′ distributes over “+′′. A ring R is a commutative
if (R, .) is a commutative monoid. A commutative ring R is a field if (R \ {0}, .) is an
Abelian group. Normally 0 and 1 are used to represent the additive and multiplicative
identities.

Exercise 3. Which among (Z,+, .), (N,+, .), (Q,+, .) are rings?. Which among them are
fields?

Example 4. (Mn(R),+, .) is a non-commutative ring with unity (identity matrix In).

Example 5. The set (Zn,+, .) is used to denote the set {0, 1, 2, .., n−1} with “+′′ denoting
addition modulo n and “.′′ denoting multiplication modulo n. We will see later that (Zn,+)
is a commutative ring with unity.

Example 6. Let R be any commutative ring with unity. Let R[x] denote the set of polyno-
mials with coefficients in R. Then R[x] forms a commutative ring with unity with standard
polynomial addition and multiplication.

Exercise 4. Let (R,+, .) be a ring. Let a, b, c be elements in R. Let −a,−b,−c and
a−1, b−1, c−1 respectively denote the additive and multiplicative inverses (whenever they ex-
ist) of a, b and c. Prove the following facts:

1. a + 0 = a for all a ∈ R.

2. −(ab) = (−a)b = a(−b).

3. 0 does not have a multiplicative inverse.

4. If a has an inverse and ab = ac then b = c. Show an example (in M2(R) to show
that this fails if a is not invertible.) This property is called cancellation law.

5. Show that ab = ac implies b = c (cancellation) may hold for all a, b, c ∈ R, a 6= 0 even
though R is not a field. However, show that if R is finite, and R satisfies cancellation
law, then R is a field.

6. Show that invertible elements in R, called R∗ forms a group (w.r.t multiplication).
This group is called the unit group of R. Thus a field is a commutative ring with
R∗ = R \ {0}.

7. Show that if R is a field then R[x] satisfies cancellation law.

Vector Spaces

Definition 3. Let F be a field an (V,+) an Abelian group. (V,+) is a vector space over the
field F if there is a scalar multiplication “.′′ defined from F × V to V satisfying (a + b)v =
av + bv, a(bv) = (ab)v, 1v = v, a(v +w) = av +aw for all a, b ∈ F and v, w ∈ V . Normally
we write V (F ) to denote a vector space V over field F .
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Example 7. Rn(R) and Rn(Q) are vector spaces with addition and scalar multiplication
defined in the standard way (but not Rn(C) - why?). What about Cn over R, Q or C?

Example 8. If F is any field, the set Fn consisting of n tuples over F is a vector space
over F where multiplication of a vector with a scalar is defined (in the standard way) as
component-wise multiplication. Mn(X) is a vector space over X for X ∈ {Q,R,C}. In
general, if T is any set and F any field, then the set of functions from T to F (denoted
by F T ) is a vector space over F with scalar multiplication defined in the standard way as
(αf)(x) = αf(x). The previous examples are special cases of this general case (how?).

Subgroups, Subrings and Subspaces

Definition 4. A subset H or a group (G, .) is called a subgroup if (H, .) is a group. A
subset S or a ring (R, .) is called a subring if (S, +, .) is a ring. A subset W of a vector
space V (F ) is called a subspace if W (F ) is a vector space.

Example 9. (Q,+) is a subgroup of (R,+) and the set of even numbers (2Z,+) is a
subgroup of (Z,+). (In fact, kZ consisting of integer multiples of k is an additive subgroup
of Z for any positive integer k.) (Q,+, .) is a subring (and a subfield) of (R,+, .). Q(R)
is not a subspace of R(R) (why?).

Example 10. Consider F [x] consisting of polynomials with coefficients in F . Note that
F [x] is a ring. F [x] is also a vector space over F (why?). Consider xF [x] which is the
set of polynomials with no constant term. It is easy to see that xF [x] is a subring and a
subspace of F [x] (why?). In general x may be replaced in this example with any g(x) ∈ F [x]
to yield the subring (and subspace) g(x)F [x] (why?).

Example 11. Consider R2 the two dimensional Cartesian plane. Any line through the
origin {(x, y) ∈ R2 : (ax + by = 0)} for any a, b ∈ R is a subspace. This subspace
consists of the line through the origin perpendicular to the vector (a, b). The whole plane
R2 and the single point {(0, 0)} are trivial subspaces. In general, in Rn, the (hyper) plane
through the origin perpendicular to the vector (a1, a2, ...an) will be the subspace defined by
a1x1 + a2x2 + ... + anxn = 0.

Example 12. The set of all n× n real matrices with determinant ±1 denoted by SLn(R)
(called orthogonal matrices) is a subgroup of GLn(R) with respect to multiplication.

Exercise 5. Suppose V (F ) is a vector space, show that V ′ ⊆ V is a subspace if and only if
for each v, w ∈ V ′, av + bw ∈ V ′ for any a, b ∈ F .

Exercise 6. If G is a group, then S ⊆ G is a subgroup if and only if for all a, b ∈ S,
ab−1 ∈ S. Moreover, if G is finite, then if 1 ∈ S and if G is closed under the group
operation (i.e., ab ∈ S whenever a, b ∈ S), then S is a subgroup.

Exercise 7. Let S = {v1, v2, ..vm} be vectors in a vector space V (F ). Define span(S) =
{a1v1 + a2v2 + ... + amvm : a1, a2, ..am ∈ F}. Show that span(S) is a subspace of V . Show
that a span of a non-zero vector (x, y, z) in R3(R) is a line through the origin. Show that
two points (x, y, z) and (x′, y′, z′) spans a plane if and only if (0, 0, 0), (x, y, z) and (x′, y′, z′)
are not on the same line.
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Lecture 2: Quotient Spaces

Prepared by: K Murali Krishnan

We focus on properties of cosets (to be defined below) defined by a subgroup of a
group. Since (commutative) rings and vector spaces contain an Abelian group within, these
properties hold for subrings and subspaces as well.

Definition 5. Let H be a subgroup of a group G and let a ∈ G. Define the (left) coset of
H, aH = {ax : x ∈ H}. (the notation a + H will be used if the group operation is +).

Example 13. In the group (Z,+), consider the subgroup nZ consisting of all integer mul-
tiples of n. The cosets are 0 + Z = Z, 1 + Z = {1 ± tn, t ∈ Z} etc. The coset defined by
the number k, k + Z = {k ± tn, t ∈ Z}. Show that if k and k′ differ by a multiple of n,
then k + Z = k′ + Z. Thus there are exactly n cosets, each one non-empty and disjoint.
Moreover, every integer belongs to exactly one of the cosets. That is, the cosets partition
the group.

Example 14. In (C \ {0}, .), consider the (subgroup defined by) the unit circle H = {z ∈
C : |z| = 1}. The cosets are rings of radius r for each positive real r > 0 around the origin
in the Argand plane. Show that if a, b are complex numbers with |a| = |b|, then aH = bH.
Note that here too, the cosets partition the group.

Example 15. In R2, consider the subspace defined by the line ax + by = 0 perpendicular
to the point (a, b) through the origin. The coset defined by the point (p, q) is the line pass-
ing through (p, q) parallel to the line above. In this case as well, the cosets partition R2.
Generalize this example to Rn.

Exercise 8. Consider the subgroup Z of Q. When are the cosets defined by rationals r and
s the same? Can two different cosets have an non-empty intersection?

We will now show that cosets equipartition the group.

Lagrange’s Theorem

Let H be a subgroup of a group G.

Exercise 9. If a ∈ H. Show that aH = H.

Exercise 10. Let a, b ∈ G. Define the map f : aH −→ bH by f(ah) = bh for each h ∈ H.
Show that the map is bijective.

The last two exercises show that every coset has the same size and H itself is one of the
cosets (why?). The following lemma show that cosets are disjoint.

Lemma 1. if aH 6= bH then aH ∩ bH = ∅.
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Proof. Let z ∈ aH ∩ bH. Then ∃h1, h2 ∈ H such that z = ah1 = bh2. Multiplying on the
right with h−1

1 , we have a = bh2h
−1
1 . Thus we see that a ∈ bH. If now x ∈ aH – i.e.,

x = ah3 for some h3 ∈ H, then x = bh2h
−1
1 h3 and thus x ∈ bH as well. We have thus

aH ⊆ bH. Similarly bH ⊆ aH.

We that the cosets of H partition G into equal sized disjoint subsets, one of which is H
itself. The following theorem is immediate (why?):

Theorem 1 (Lagrange’s Theorem). The size of any subgroup of a finite group G must
divide the size of G.

Corollary 1. If G is a group with prime number of elements, then only {1} and G are the
subgroups of G.

Quotient Groups

Let G be a group and H be a subgroup. Consider the collection of cosets of H denoted by
G/H. That is G/H = {aH : a ∈ G}. Note that each element in G/H is a coset containing
many elements in G. We will show that we can define a multiplication operation between
elements in G/H if H satisfies certain normality condition. In this case, G/H will form a
group with the multiplication operation essentially “inherited” from G.

Definition 6. H is a normal subgroup of G if for any a ∈ G and h ∈ H aha−1 ∈ H.

Example 16. If G is Abelian, all subgroups and normal (why?).

Exercise 11. Show that GLn(R) and SLn(R) are normal subgroups of Mn(R).

These notes will be dealing with mostly Abelian groups and hence almost all examples in
will involve only normal subgroups. In the following, assume that H is a normal subgroup
of G.

Exercise 12. Let a ∈ G and h ∈ H. Show that there exists h′ ∈ H such that ah = h′a.
Hence conclude that aH = Ha. i.e., shifting all elements of H by multiplying with a on the
left yields the same set as one obtained by shifting H with a on the right when H is normal.
(Note that aH = Ha does not mean that ah = ha for each h ∈ H.)

Exercise 13. Let x ∈ aH and y ∈ bH. Show that xy ∈ abH. (Hint: Use previous exercise.
Note that normality of H is crucial here).

Lemma 2. If a′H = aH and b′H = bH, then a′b′H = abH.

Proof. Since a′H = aH and b′H = bH, we have a′ = ah1 and b′ = bh2 for for some
h1, h2 ∈ H. Now, Let z ∈ a′b′H. Then z = a′b′h3 for some h3 ∈ H. Thus z = ah1bh2h3.
By normality of H, there is an h′1 ∈ H such that h1b = bh′1. (Why?) Hence z = abh′1h2h3.
Thus a′b′H ⊆ abH. Similary the reverse inclusion may be proved.

The lemma above allows us to define a multiplication between cosets. Simply define the
product of aH and bH to be abH and the definition is consistent by the lemma. (Why do
we need the lemma to make the definition consistent?).
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Theorem 2. (G/H, .) where multiplication in G/H is defined by aH.bH = abH is a group

Proof. Show that H = 1H is the identity and the inverse of aH is a−1H. The rest follow
from associativity of G and the previous lemma.

Example 17. If we consider group (Z,+) and the subgroup 3Z of multiples of 3 in Z, in
the group Z/3Z the inverse of 1 + Z is 2 + Z etc.

The quotient group construction can be extended to rings and vector spaces as well.
The analogue of normal subgroup in a ring is an ideal.

Definition 7. A subset I of a ring R is an ideal if (I,+) is a subgroup of (R,+) and for
all a ∈ I and x ∈ R, ax ∈ I.

Example 18. nZ is an ideal in Z. The set of all polynomials in R[x] which are multiples
of f(x) ∈ R[x] is an ideal.

Exercise 14. If F is a field, show that the only ideals in F are {0} and F itself.

Exercise 15. Let I be an ideal in a ring (R,+, .). If a′ ∈ a + I and b′ ∈ b + I, then
a′b′ ∈ ab + I.

Exercise 16. Show that the set R/I with addition defined by (a+ I)+ (b+ I) = (a+ b)+ I
and multiplication defined by (a+ I)(b+ I) = ab+ I for any a, b ∈ R forms a ring This ring
is called the quotient ring in R defined by the ideal I. (where did you use the fact that I
is an ideal and not merely a subring?).

Definition 8. In the ring (Z,+, .), nZ is an ideal for any positive integer n. The ring
Z/nZ is a commutative ring with unity where the unity is 1 + nZ and zero 0 + nZ = nZ.
Note that this is essentially the formal way of defining the ring Zn where we identify the
coset i + nZ with the number i for i ∈ {0, 1, 2.., n− 1}.

Definition 9. Let F be a field and let f(x) ∈ F [x] of degree n. Consider the ideal I con-
sisting of all polynomials that are multiples of f(x). Then F [x]/I is a commutative ring
with unity with one coset per polynomial of degree at most n− 1 with addition and multipli-
cation performed modulo f(x). This ring is denoted by F [x]/f(x) and can be identified with
the ring of polynomials of degree atmost n − 1 with addition and multiplication performed
modulo f(x).

Exercise 17. Let V (F ) is a vector space and W a subspace of F . Let u ∈ V and α ∈ F .
Show that α(u+W ) = αu+W . (i.e., shifting W with αu gives the same set as first adding
u to each element of W and then left multiplying this set with α.) Argue that V/W is a
vector space over F . This vector space is called the quotient space (in V ) defined by W .

Example 19. Consider the subspace W defined by the line x + y = 0 in V = R2. For
each real number r, the line parallel to x + y = 0 passing through (r, 0) is an element in the
quotient space.
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Lecture 3: Euclidian Domains

Prepared by: K Murali Krishnan

The primary object of study in this lecture are the rings Z and the ring of polynomials
with coefficiants in a field F denoted by F [x]. Both these rings share the common Euclidian
property that division with remainder is possible. We will show that the existance of unique
factorization of elements in these rings into prime factors is a consequence of the Euclidian
property of these rings.

Definition 10. A ring R is an integral domain if for any a, b ∈ R, whenever ab = 0,
either a = 0 or b = 0.

Exercise 18. Show that a ring is an integral domain if and only if whenever ab = ac, a 6= 0
b = c for all a, b, c ∈ R.

Exercise 19. Show that every field is an integral domain. If F is a field, show that F [x],
is an integral domain. Thus R[x], Q[x] etc. are integral domains.

Example 20. Note: F [x] may not an integral domain when F is not a field. For instance,
in Z4[x] the product of 2x with itself is 0 though 2x 6= 0.

Exercise 20. Is Z is an integral domain? Show that Zn[x] is not integral domain if n is
composite. Later we will see that Zn[x] is an integral domain if and only if n is prime.

Recall that Exercise 4 asks you to show that the set of invertible elements in a ring R
forms a group called the unit group R∗ of R. We assume that (R,+, .) is an integral domain
in the rest of this lecture. The following definitions are fundamental.

Definition 11. Let (R,+, .) be an integral domain.

1. u ∈ R is called a unit if u ∈ R∗.

2. a ∈ R is said to divide b ∈ R if ∃ c ∈ R such that b = ac. In this case we write a|b.

3. a, b ∈ R are called associates if b = au for some unit u ∈ R∗.

Exercise 21. Show that divisability is a reflexive, anti-symmetric and transitive relation
in R.

Exercise 22. Suppose we define the following relation in R: a ' b if a, b are associates.
Show that ' is an equivalance relation on R. Show that a, b are associates if and only if
both a|b and b|a.

Exercise 23. What is Z∗? What are the associates of a number k in Z? Show that a
polynomial a(x) ∈ F [x] is a unit if and only if a ∈ F . Hence units in F [x] are precisely
constant polynomials. What are the associates of (x2 + 1) in R[x]?
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Definition 12. A Euclidian function on an integral domain R is a map that assigns for
each a ∈ R \ {0} a positive integer |a| satisfying the following property:
Whenever a, b ∈ R satisfying |b| < |a| then there exists q, r in R such that a = bq + r with
either r = 0 or |r| < |b|. A Euclidian Domain is a ring with a Euclidian function. Any q, r
satisfying above are called a quotient and a remainder obtained by dividing a with b.

Note that neither q nor r needs to be unique. If r = 0, clearly a|b.

Example 21. Z is a Euclidan domain with Eucldian valuation of a number equal to its
absolute value. In F [x] the degree function is a Euclidian valuation. Note that 7 = 3.2+1 =
3.3− 2 in Z. Hence there are two possible q, r pairs (2, 1) and (3,−2) for a = 7 and b = 3.

Exercise 24. Suppose a, b, d ∈ R such that d|a and d|b, show that for any x, y ∈ R,
d|(ax + by). Hence a common divisor of a, b divides every linear combination of a and b in
R. Hence if d|a, d|b then if r is a remainder obtained by dividing a by b, then d|r as well.

Exercise 25. Let d ∈ R. Denote by < d >= {x ∈ R : d|x}. Thus < d > is the set of
multiples of d. Show that < d > is an ideal in R. Moreover if I ′ is any ideal in R with
d ∈ I ′ then show that I ⊆ I ′. Thus < d > is the smallest ideal in R containg d and is called
the ideal generated by d.

Exercise 26. Suppose a, b ∈ R, show that the set < a, b >= {ax+ by : x, y ∈ R} is an ideal
and is the smallest ideal containing a and b in R in the sense of exercise above.

Definition 13. An ideal I in a ring R is a principal ideal if there exists some d ∈ R such
that I =< d >. An integral domain R is Principal Ideal Domain (PID) if every ideal
in R is principal.

Theorem 3. Every Euclidian domain R is a Principal Ideal domain.

Proof. Let I be an ideal in R. Let d ∈ I be a non-zero element of smallest valuation in I.
(i.e., |d| ≤ |e| for every e ∈ I \ {0}). Let a ∈ I \ {0}. Then, |a| ≥ |d|. Let q, r be such that
a = qd + r. But as d, a ∈ I, r ∈ I (why?). since |r| < |d| cannot hold, r = 0. But then
a = qd. Moreover, every mulitple of d must be in I. (why). Hence proved.

Euclidian Algorithm

Throughout this section, R will be a Euclidian domain with valuaton ||. If you find ab-
straction difficult, assume R is either Z or R[x] with the appropriate Euclidian function.

Definition 14. d ∈ R is a greatest common divisor (GCD) of a, b ∈ R if d|a, d|b and
whenever e|a and e|b for some e ∈ R, then e|d. We denoted by GCD(a, b) = {d ∈ R such
that d is a GCD of a and b}.

Exercise 27. Find all d ∈ Z that satisfies d = GCD(4, 9).

Exercise 28. Suppose d, d′ ∈ GCD(a, b) then show that d ' d′. i.e., d, d′ are associates.
This shows that GCD(a, b) is unique upto multiplication by units.
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Next we show that when R is a Euclidian domain then GCD(a, b) 6= ∅ for all a, b ∈ R.
Moreover, we can express every d ∈ GCD(a, b) in the form ax + by for some x, y ∈ R. We
begin with the following simple cases:

Exercise 29. Show that a ∈ GCD(a, 0) if a 6= 0. Show that b ∈ GCD(a, b) if b|a. In the
above two cases, for each d ∈ GCD(a, b), show that we can find Find x, y ∈ R such that
d = xa + yb.

Exercise 30. Let a, b ∈ R such that |a| ≥ |b|. Suppose a = bq + r with r 6= 0. Show that
if d ∈ R satisfies d ∈ GCD(a, b), then d ∈ GCD(b, r) (Hint: Show that any divisor a, b
must also be divsor or b, r and conversely. Hence if d ∈ GCD(a, b) then d ∈ GCD(b, r) and
conversely).

Theorem 4 (Euclidian Algorithm). Let a 6= 0, b ∈ R where R is Euclidian domain with
valuation ||. Then there exists d ∈ R such that d ∈ GCD(a, b). Moreover, d is a linear
combination of a and b. i.e., d = xa + yb for some x, y ∈ R.

Proof. Assume a 6= 0, b 6= 0 (see exercises above) Let |a| ≥ |b| and let a = bq + r. Assume
r 6= 0 (see exercises above). Since |r| < |b|, using induction assume that there exists
x, y, d ∈ R such that d ∈ GCD(b, r) and d = xb + yr = xb + y(a − bq) = ya + (x − yq)b.
Now d ∈ GCD(a, b) (see exercises above) and the theorem is proved.

Exercise 31. Show that if d ∈ GCD(a, b) then < a, b >=< d >.

Exercise 32. In Z find GCD(35, 55) using Euclid’s algorithm-. For each d ∈ GCD(35, 55)
Find x, y ∈ Z such that d = 35x + 55y.

Exercise 33 (Modular Linear Equations). Let R = Zn. Let a, b, n ∈ R. Let d ∈ GCD(a, n).
Show that the equation ax = b mod n has a solution if and only if d|b. In paricular, ax = 1
mod n if and only if GCD(a, n) = {±1}. Hence conclude that a ∈ R∗ if and only if
GCD(a, n) = {±1}.

Exercise 34. Use the previous exercise to show that for any positive integer n, Zn is a
field if and only if n is prime.

Exercise 35. Show that Zn[x] is an integral domain if and only if n is prime.

Definition 15 (Euler’s Tautient Function:). For n positive intger, denote by φ(n) the
number of elements in Z∗

n. In particular if p is prime, φ(p) = p− 1 (why?)

Exercise 36. Find GCD(x3 − 1, x2 + x + 1) in Q[x] using the Euclidian algorithm.

Exercise 37. Let G be a finite group. Let a ∈ G. Show that there is a positive integer k
such that ak = 1. Let k be the smallest such integer. Show that the set {a, a2, a3, ..., ak} is
a subgroup of G. Use Lagrange’s theorem to show that k|n. Hence conclude that a|G| = 1

Exercise 38 (Euler and Fermat Theorems). For n positive integer and a ∈ Z such
that 1 ∈ GCD(a, n) show that aφ(n) = 1 mod n. (Use previous exercise) This result is
called Euler’s theorem. In paricular, show that if p is prime and p does not divide a, then
ap−1 = 1 mod p This result is called Fermat’s little Theorem.
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Lecture 4: Factorization

Prepared by: K Murali Krishnan

Definition 16. A non-zero, non-unit element a in an ring R is irreducible if whenever
a = bc, either b or c must be a unit (and hence the other an associate of a).

Definition 17. A non-zero, non-unit element a in an ring R is prime if whenever a|(bc)
either a|b or a|c.

Note that elements in R∗ are neither irreducible nor prime by definition.

Example 22. In Z12[x] (x − 5)(x − 7) = x2 − 1 = (x − 1)(x − 11). Here all among
(x + 5), (x + 11), (x + 7) and (x + 1) are irreducible as they cannot be split into non unit,
non associate factors. However none among them is a prime (why?).

The above example shows that an element Z12[x] can have multiple factorziation into
irreducible elements and also a polynomial (x2 − 1) has more roots (here four) than his
degree etc. Our objective in this lecture is to show that Euclidian domains are well behaved
with respect to factorization into irreducibles.

In the rest of this lecture we assume R is a Euclidian domain with valuation ||.

Exercise 39. If a ∈ R is prime, then a must be irreducible.

Theorem 5. a ∈ R is irreducible if and only if a is prime.

Proof. Let a be irreducible. Let a|bc. It is enough to show that either a|b or b|c. Let a - b.
Hence 1 ∈ GCD(a, b) (why?). Thus, by the Euclidian algorithm there exists x, y ∈ R such
that 1 = ax + by. Multiply by c to yield c = acx + bcy. Now a divides the LHS. Hence a
must divide c. The converse follows from the previous exercise.

We now show that every a ∈ R can be written as a finite product of primes (equivalently
irreducibles) essentially in a unique way (provided we treat associate elements equivalent).
We first establish certain key properties of the Eucldian valuation before proving the Unique
Factorizability Theorem.

Exercise 40. Let I be any ideal in a Euclidian domain R. Show that I =< d > for some
a ∈ R if and only if d is a non-zero element of smallest Euclidian valuation in R. Hence
any two generators of the ideal must have the same Euclidian valuation.

Exercise 41. Let a ' b, then show that |a| = |b|.

Lemma 3. Let a, b, c ∈ R be all non-zero. Let a|bc then |a| ≤ |bc|.

Proof. Enough to show that |a| ≤ |ax| for any x ∈ R, x 6= 0. But since ax ∈< a >, by the
previous exercise, |a| ≤ |ax|.
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Exercise 42. Let u ∈ R∗, show that |u| ≤ |a| for all a ∈ R, a 6= 0. Moreover, show that if
u, w ∈ R∗, |u| = |w|. Thus units have least Euclidian valuation among all non-zero elements
in R.

Lemma 4. If a, b, c are non-zero non-unit elements in R with a = bc then |b| < |a| and
|c| < |b|.

Proof. By exercises above, |b| ≤ |a|. Suppose |b| = |a|, then < a >=< b > (why?). Hence
a, b must be associates (why?) and c ∈ R∗, a contradiction. Similarly |c| < |a|.

Corollary 2. If p|a for prime p and a 6= 0 then |ap | < |a|.

Theorem 6 (Factorizability). Every non-zero, non-unit a ∈ R can be expressed as a finite
product of (not necessarily distinct) primes (equivalently irreducibles).

Proof. If a is irreducible, there is nothing to prove. Otherwise, let a = bc with b, c non-
unit, non-associates of a. By previous Lemma, |b| < |a| and |c| < |a|. Inductively b,c have
finite factorization into primes and the product of these factorizations yeild the required
factorization of a.

Example 23. In Z, 6 = 3.2 = (−3)(−2). These are not “two different” prime factor-
izations because 2 and −2 are associates and so are 3 and −3. Similarly we can factorize
(x2 − 1 = a(x + 1). 1a(x− 1) for any a ∈ R \ {0} in the Euclidian domain R[x]. This shows
that prime factorization need not be be unique in a Euclidian domain if we do not treat
associates as equivalent.

Theorem 7 (Unique Factorizability). Every non-zero, non-unit a ∈ R has a unique fac-
torization into a finite number of primes upto units and associates.

Proof. Let k be the smallest number such that there is a non-zero, non-unit element a ∈ R
that has two factorizations with one of the factorizations containing k (not necessarily
distinct) prime factors. Let a = p1p2...pk = q1q2...qn be two prime factorizations of a with
n ≥ k. Since p1 is prime and divides the RHS of the product, there must be some element
in the product on the RHS (say q1) which p1 divides. Since q1 is prime, p1, q1 must be
associates. Let q1 = up1 for some u ∈ R∗. Cancelling p1 we have a

p1
= p2p3...pk = uq2q3..qn.

But this contradicts the minimality of k.

An integral domain is called a Unique Factorization Domain (UFD) if every non-
zero, non-unit element can be written uniquely (except for associates) as a product of
irreducibles. The above theorem shows that Euclidian domains are UFDs.

Corollary 3 (Fundamental Theorem of Arithmetic). Z is a UFD.

Exercise 43. Show that R[x] is a UFD if and only if R is an integral domain.

Exercise 44. Let (R,+, .) be a UFD. show that for every a, b ∈ R, each d ∈ GCD(a, b) is
a product of irreducible common factors (not necessarily distinct) to both a and b

Exercise 45 (Least Common Multiple (LCM)). Let (R,+, .) be a ring. Let a, b ∈ R.
d ∈ R is an LCM(a, b) if a|d, b|d and whenever a|e and b|e then d|e. Show that in a UFD,
d ∈ LCM(a, b) if and only if d = ab/d′ for some d′ ∈ GCD(a, b).
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Exercise 46. Show that a PID must be a UFD.

Exercise 47. Show that an integral domain is a UFD if every non-zero, non-unit has a
finite factorization into irreducibles and all irreducibles are primes. (Hint: The proof in the
lecture required only that irreducibles are primes).

The following exercises develop some consequences of Euclidian algorithm. Here for any
natural numbers a, b, GCD(a, b) shall denote the positive GCD of a and b.

Exercise 48. Given integers a, b, c, the linear Diophantine equation ax+by = c has integral
solutions x, y if and only if GCD(a, b) divides c.

Exercise 49. Let a, b, n be integers. Let d = GCD(a, n).

1. Show that the equation ax = d mod n has a solution if and only if d|b.

2. Show that if x0 ∈ Zn is a solution to ax = b mod n, then for any 0 ≤ t ≤ d − 1
(x0 + tn

d ) is also a solution.

3. if x0 and y0 are integers satisfying ax = b mod n then x0 = y0 mod n
d .

Exercise 50. Let I ⊆ Zn be an ideal in Zn. Then show that there is a unique d ∈ Zn such
that d|n and I =< d >. Hence Zn is a PID. What can you conclude similarly about ideals
in F [x]/f(x) for f(x) ∈ F [x] for any field F?

Definition 18. An Ideal I of a ring (R,+, .) is a maximal ideal if there is no ideal I ′

such that I ⊆ I ′ other than I ′ = R.

Exercise 51. Show that if I is an ideal in R and u ∈ R∗ be a unit element. If u ∈ I, then
I = R. Hence no proper ideal of R can contain a unit. Show that R is a field if and only if
R has no proper ideals other than {0}.

Exercise 52. In this following exercise, R is assumed to be a Euclidian domain.

1. Show that an ideal I in R is maximal if and only if I =< p > for some irreducible
(prime) element p ∈ R.

2. Let I =< p > be the maximal ideal generated by a prime p ∈ R. Show that for
any a ∈ R, there exists s, t ∈ R such that as + tp = 1. Hence in the quotient ring
R/I, show that for every coset a + I, there is a corresponding coset s + I such that
(a + I)(s + I) = (1 + I). Hence argue that when I is a maximal ideal, R/I is a field.

3. Show that if I is not a maximal ideal and I 6= {0}, then there exist a, b ∈ R neither
of which is a unit such that ab ∈ I but a /∈ I and b /∈ I Hence argue that when I is
not a maximal ideal R/I is not a field.
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Lecture 5: Polynomials

Prepared by: K Murali Krishnan

We first develp a structure theorem for finite cyclic groups and then proceed to study
properties of polynomials with coefficiants in a field.

Definition 19. A group (G, .) is cyclic if there is an a ∈ G such that G = {ai : i ∈ Z}.
Such an element a is called a generator for the group G. We use the notation < a > to
denote the fact that a generates G.

Note: The same notation < a > is used to denote the ideal generated by a in a ring and
subgroup generated by a in a group.

Example 24. The cyclic additive group (Z,+) is generated by 1. (Zn,+) also has 1 as a
generator. Show that generators of Zn are precisely elements in Z∗

n.

Example 25. Let G be any group and a ∈ G. The set {ai : i ∈ Z} is a cyclic subgroup
called the cyclic subgroup generated by a. The size of the subgroup is called the order
of a in G denoted by o(a). Note that the order may be infinite.

Example 26. In (Z10,+), {0, 2, 4, 6, 8} is the cyclic subgroup generated by 2. In Z, the
cyclic subgroup generated by 2 is 2Z = {0,±2,±4...}

Recall that for each positive integer n, φ(n) denotes the number of integers between 1
and n which are co-prime to n. Note that |Z∗

n| = φ(n).

Exercise 53. Let a, b ∈ Z. Show that GCD(a, b) = d if and only if GCD(a/d, b/d) = 1.

Exercise 54. Let d|n. Define the map g : Z∗
n
d
−→ Zn as follows: g(k) = kd for each

k ∈ Z∗
n
d
. Show that Img(g) = {1 ≤ i ≤ n : GCD(i, n) = d}. Hence argue that |{i : 1 ≤

i ≤ n, GCD(n, i) = d}| = φ(n
d ). That is, there are precisely φ(n

d ) elements between 1 and n
whose GCD with n is d.

Exercise 55. If G is a finite group and a ∈ G, show that o(a) is the least positive integer
k such that ak = 1 and < a >= {1, a, a2, ..., ak = 1}.

For the rest of this section, assume G be a cyclic group n elements generated by a of
order n. i.e., G = {a, a2, a3, ..., an = 1} Let b ∈ G. Note that n must be a multiple of o(b)
by Lagrange’s theorem (why?).

Exercise 56. Consider b = ai, where 1 ≤ i ≤ n. Let d = GCD(n, i) and t = n/d.

1. Show that at = 1.

2. If bt′ = 1, then argue that t|t′. Hence we have o(b) = t = n
d .
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Exercise 57. For each d|n, let Gd = |{ai : o(ai) = d}|. Thus Gd denotes the number of
elements of order d in G. By the previous exercise, |Gd| = |{1 ≤ i ≤ n : n/(GCD(n, i) =
d}| = |{1 ≤ i ≤ n : GCD(n, i) = n/d}|. Hence conclude that |Gd| = φ(d)

Exercise 58 (Tautient Formula). The above exercise show that there are exactly φ(d) el-
ements of order d in any cyclic group G of order n for each d|n. Hence conclude that∑

d|n φ(d) = n. Note that this formula is a number-theoretic result and does not depend on
groups.

Exercise 59. Let G and H be cyclic groups of order n. Let a ∈ G and b ∈ H be generators
of G and H respectively. Show that the map f : G −→ H defined by f(ai) = bi is a bijective
map satisfying f(xy) = f(x)f(y) for all x, y ∈ G. Such a map shows that the two groups
are essentially the same except for a re-labelling of elements with f and is called a group
isomorphism. Thus two cyclic groups of the same finite order are isomorphic.

The sequence of exercises above estabilish the following theorem:

Theorem 8 (Structure Theorem for Cyclic Groups). Let G be any cyclic group of order
n. Then there are exactly φ(d) elements of order d in G for each d|n. Moreover, if a is a
generator of G, then o(ai) = n/GCD(n, i).

Corollary 4. There are exactly φ(n) generators for a cyclic group of order n (why?)

Exercise 60. Show that for each n there exists a group of order n.

Now we turn our attention to finite fields. Note that the simplest finite fields are Zp for
prime p. To understand finite fields better, we need to develop properties of polynomials.
In the following, F will be assumed to be an arbitrary field. Recall that F [x] is a Euclidian
domain (and hence a UFD). Note that (x− α) is a prime (irreducible) polynomial for each
α ∈ F . The following is a central theorem about the complex field whose proof is beyond
the scope of these lectures.

Definition 20. Let F be a field and f(x) ∈ F [x]. α ∈ F is called a root of f(x) if f(α) = 0.

Lemma 5 (Remainder Theorem). The reminder of dividing f(x) ∈ F [x] with (x − α) for
any α ∈ F is f(α), the evaluation of f at α.

Proof. Let f(x) = q(x)(x−α) + r by Euclidian algorithm, with r ∈ F . evaluating the LHS
and RHS at x = α yields the desired result.

Corollary 5 (Factor thereom). α is a root of f(x) if and only if (x− α)|f(α) = 0

Exercise 61. Show that if α1 6= α2, then GCD(x−α1), (x−α2)) = 1 in F [x] for α1, α2 ∈ F .

Exercise 62 (Fundamental Theorem of Polynomials). If α1, α2....αn are roots of f(x), then
show that (x−α1)(x−α2)...(x−αn)|f(x). Hence conclude that a if f(x) has degree n then
f(x) has at most n roots in F .

Note that the result in the above exercise may fail to hold if F is not a field. For instance
in Z12[x], x2 − 1 has four roots, {1, 5, 7, 11}.

We shall now prove the fact that if F is a finite field, then F ∗ = F \ 0 is a cyclic group.
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Theorem 9 (Gauss Theorem). If F is a finite field, then F ∗ is cyclic.

Proof. Let F be a finite field of field of n elements. Let m = |F ∗| = n − 1. Let d|(n − 1).
Suppose a ∈ F ∗ has o(a) = d. By Corollary 4, there are exactly φ(d) elements of order d in
the set < a >= {a, a2, a3, .., ad}. Note that all d elements in < a > satisfies the polynomial
xd− 1. Since a polynomial of degree d can have atmost d roots in F , no element in F other
than those in < a > satisfies this polynomial.

Suppose now o(b) = d in F ∗, then b must satisfy xd − 1 = 0. Hence b = ai for some
i. It follows that there are no more than φ(d) elements of order d in F ∗ (why?). But by
Exercise 58,

∑
d|m φ(d) = m. Hence the number of elements of order d must be exactly φ(d)

for each d|m (why?). In particular, there must be φ(n− 1) elements of order n− 1 and F ∗

must be cyclic.

Corollary 6. Z∗
p is cyclic.

We now take up a multivariate generalization of the fundamental theorem for polynomi-
als. Note that if F is an integral domain, so is F [x]. Let F [x, y] denote the set of polynomials
in variables x and y with coefficiants in F . Let F ′ = F [x]. Since F [x, y] = F ′[y] (why?),
F [x, y] is an integral domain. Extending the argument, the set F [x1, x2, ..., xn] of polyno-
mials in n variables over a field F is an integral domain. A monomial is a term of the form
xi1

1 xi2
2 ..xin

n . The degree of this monomial is defined to be i1 + i2 + ...+ in. Since a polynomial
is an F linear combination of monomials, define the degree of a multivariate polynomial |f |
as the maximum degree over all monomials in f .

Theorem 10 (Schwartz-Zippel Lemma). Let f(x1, x2, .., xn) ∈ F [x1, x2, .., xn] with |f | = d.
Let S ⊆ Fn with |S| = t. Then |{(a1, a2, ..an) ∈ Sn : f(a1, a2, .., an) = 0}| ≤ dtn−1.

Proof. By induction. If n = 1, Fundamental theorem of polynomials proves. Assume n >
1, d > 0 and factor out variable x1 from each term of f to write f =

∑k
i=0 xi

1fi(x2, x3, ..xn),
where fk is the largest index for which fi is non-zero. Clearly 0 ≤ k ≤ d. If k = 0, induction
hypothesis suffices (why?). If 1 ≤ k ≤ d, We consider two cases:

Case 1 - values in Sn on which xk
1fk(x2, x3, ..xn) = 0: Let S′ = {(a2, a3, ..., an) ∈ Sn−1 :

fk(a2, a3, ...an) = 0}. Since fk is a polynomial in n − 1 variables with |fk| = d − k, by
induction hypothesis, we have |S′| ≤ (d− k)tn−1. Hence xk

1fk(x2, x3, ..xn) evaluates to zero
on at most (d− k)tn−1 values in Sn.

Case 2 - values in Sn on which f evaluates to zero, but xk
1fk(x2, x3, ..xn) 6= 0: Consider

each a = (a2, a3, ..., an) ∈ Sn−1, Let fa(x1) =
∑k

i=0 xi
1fi(a). Since fa is a univariate

polynomial in variable x1 of degree k, there are at most k roots for fa(x1). Counting
over all possible a ∈ Sn−1, there are at most ktn−1 values in Sn on which f = 0 but
xk

1fk(x2, x3, ..xn) 6= 0
Any point in Sn on which f evaluates to 0 must fall into one of the two above cases

(why?). However, there at most (d − k)tn−1 + ktn−1 = dtn−1 values in Sn that satisfies
either or both of these cases.

Corollary 7. Let F be a finite filed and let f(x1, x2, ..xn) ∈ F [x1, x2, .., xn] satisfy |f | = d,
then f has at most d|F |n−1 roots in Fn.
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Lecture 5: Finite Dimensional Vector Spaces
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In this lecture we will develop some elementary theory about vector spaces. Let V (F )
be a vector space over field F .

Definition 21. A Set of vectors S is linearly dependent if there are distinct vectors
v1, v2..., vn in S and scalars a1, a2, ..., an in F , not all zero satisfying a1v1+a2v2+...+anvn =
0. We follow the convention that ∅ is linearly independent and {0} linearly dependent.

A set of vectors S is linearly dependent if S is not linearly independent. That is,
whenever a1v1 + a2v2 + ... + anv=0 for distinct v1, v2..., vn ∈ S then a1 = a2 = ... = an = 0.

Example 27. The vectors v1

[
1
1

]
and v2

[
2
2

]
are linearly dependent in R2 as 2v1 − v2 = 0.

The vectors e1 =
[
1
0

]
and e2 =

[
0
1

]
are linearly independent. In general

Example 28. In general, the vectors e1 = [1, 0, ..., 0]T , e2 = [0, 1, 0, ..., 0]T en[0, 0, ..., 1]T

are linearly independent in Rn. Moreover, span({e1, e2, ..., en}) = Rn.

Example 29. {1, x, x2, ..., xn...} forms a linearly independent set in vector space F [x] for
any field F . The span of the set is the whole F [x].

Let S = {v1, v2, ..vm} be vectors in a vector space V (F ). Recall from Lecture 1 (last
exercise) that span(S) = {a1v1 + a2v2 + ... + amvm : a1, a2, ..am ∈ F} is a subspace of V .
Span(S) is essentially the set of vectors expressible as finite linear combinations of vectors
in S. The following lemma says that a set of vectors in linearly dependent if and only if
one of the vectors is the span of the remaining.

Lemma 6. A set of vectors v1, v2, ..., vn in a vector space V (F ) is linearly dependent if and
only if for some k ≤ n, vk ∈ span(v1, v2, ..vk−1).

Proof. Let k be the smallest index such that v1, v2, ..vk are linearly dependent (why should
such k exist?). Then, there exist a1, a2, ..., ak such that a1v1+a2v2+...+akvk = 0. Moreover,
ak 6= 0 (why?). Hence vk = −(a1/ak)v1 − (a2/ak)v2 + ...− (ak−1/ak)vk−1. Converse is easy
(why?).

The next definition is very central to the study of vector spaces.

Definition 22. A set S of vectors in V (F ) forms a basis for V if S is linearly independent
and span(S) = V .

Example 30. It is easy to see that v1 = [x, y]T and v2 = [x′, y′]T forms a basis of R2

whenever they do not fall on a line passing through the origin.
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Lemma 7. If {x1, x2, ..., xn} spans V and {y1, y2, .., ym} is a linearly independent set, the
m ≤ n. That is, the size of the largest independent set cannot exceed the size of the smallest
spanning set for V (whenever there exists a finite set of vectors that span V ).

Proof. Since ym ∈ span{x1, x2, ..., xn}, the set {ym, x1, x2, ..., xn} is linearly dependent. By
previous lemma, there must be some xi such that xi ∈ span{ym, x1, x2, .., xi−1}. Hence
we can eliminate xi from the set and {ym, x1, x2, .., xi−1, xi+1, ...xn} will be a spanning set.
Now we add ym−1 to this set and remove another xi′ from the resultant set and still get a
spanning set. If we continue this process, xis cannot be finished before all yjs are added
for otherwise we will have yk, yk+1, ..., ym will be a spanning set for some k > 1 and this
will be contradiction as then y1 will be in the span of yk, yk+1, ..., ym. Hence n ≥ m.

We are ready to prove the main theorem:

Theorem 11. If V has a finite basis, then any two basis of V the same number of elements.
This number is called the dimension of V . V is said to be a finite

Proof. Let S and T be two (finite) basis for V . Since S is spanning and T linearly indepen-
dent, we have |S| ≥ |T | by lemma above. Since T is spanning and S linearly independent,
|T | ≥ |S|. Hence |S| = |T |.

Theorem 12. Let {v1, v2, ..., vn} be a basis for a FDVS V (F ). Then for each v ∈ V , there
exists unique a1, a2, ..., an ∈ F such that v = a1v1 +a2v2 + ...+anvn. a1, a2, ..., an are called
the coordinates of v with respect to basis v1, v2, ..., vn.

Proof. Clearly a1, a2, ..., an must exist as {v1, v2, ..., vn} spans V . Suppose v = a1v1+a2v2+
... + anvn = b1v1 + b2v2 + ... + bnvn, then (a1 − b1)v1 + (a2 − b2)v2 + ... + (an − bn)vn = 0.
It follows from linear independence of {v1, v2, ..., vn} that ai = bi for each i.

To construct a basis for a FDVS V (F ), we can start with any vector v1, pick v2 outside
span(v1), pick v3 outside span(v1, v2) and so forth. The process must terminate in finite
number of steps as otherwise v1, v2, ...vn will be an infinite linearly independent set contra-
dicting the finite dimensionality of V . (why?). Similarly, if W is a subspace of V , we can
extend a basis of W to a basis of V exactly as above. (how?). Essentially we have proved
the following:

Theorem 13. Every finite dimensional vector space V (F ) has a basis. Moreover, basis for
a subspace may be extended to a basis for V .

The facts that every vector space has a basis and that any two basis have the same
cardinality hold for arbitrary vector spaces - finite or infinite dimensional. The proofs will
involve Zorn’s Lemma.

Quotient Space

Recall from the previous chapter that if W is a subspace of a finite dimensional vector space
V (F ) then the quotient space V/W itself is a vector space over F . We will now establish
the relation between dim(V ), dim(W ) and dim(V/W ).
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Theorem 14. Let V (F ) be of dimension n. Let W be a subspace with dim(W ) = k. Then
dim(V/W ) = n− k.

Proof. Let w1, w2, ..., wk be a basis of W . extend the set with v1, v2, .., vn−k to a basis of V .
Consider the cosets v1 + W, v2 + W, ..., vn−k + W in V/W . It is enough to show a basis of
V/W . Note that W is the zero element in V/W .

Suppose a1(v1 + W ) + a2(v2 + W ) + ... + an(vn + W ) = 0 in V/W for ai ∈ F for all i.
This means a1v1 + a2v2 + ... + an−kvn−k + W = 0 in V/W . (why?). In turn this implies,
a1v1 + a2v2 + ... + an−kvn−k ∈ W and consequently there must elements b1, b2, ..., bk in F
such that a1v1 + a2v2 + ... + an−kvn−k = b1w1 + b2w2 + ... + bkwk. Now linear independence
of {w1, .., wk, v1, .., vn−k} ensures that all as

i and bs
j are zero showing linear independence of

v1 + W, v2 + W, ..., vn−k + W . It remains now that they span V/W .
Consider any element v + W in V/W . If v ∈ W , then v + W = W and there is nothing

to prove (why?). Otherwise, let v = a1v1 + a2v2 + ... + an−kvn−k + b1w1 + b2w2 + ... + bkwk

(why must such expression exist?). Let b1w1+b2w2+ ...+bkwk = w. Clearly w ∈ W . Hence
v+W = (a1v1+a2v2+...+an−kvn−k+w)+W = (a1v1+a2v2+...+an−kvn−k+W )+(w+W ) =
(a1v1 + a2v2 + ... + an−kvn−k + W ) = a1(v1 + W ) + a2(v2 + W ) + ... + an−k(vn−k + W ).

Exercise 63. Let U,W be subspaces of a space V (F ). Define U +W = {u+w : u ∈ U,w ∈
W}. Show that U + W is a subspace of V . This is called the sum of U and W . Show that
U ∩W is a subspace of V .

Exercise 64. Show that every v ∈ U + W expressible as v = u + w for unique u ∈ U and
w ∈ W if and only if U ∩W = ∅. In this case, we way the sum of U and W is a direct
sum and write U ⊕W .

Exercise 65. Let dim(U) = p and dim(W ) = q. Let u1, w2, .., wk be a basis for U ∩ W .
Let u1, u2, .., up−k extend this to a basis of U and w1, w2, ..., wq−k extend this set to a basis
of W . Show that all these vectors together is a basis of U + W . Hence conclude that
dim(U + W ) = dim(U) + dim(W )− dim(U ∩W ). In particular, U + W is a direct sum of
U and W , then dim(U ⊕W ) = dim(U) + dim(W ).

Exercise 66. Let W be a subspace of a vector space V (F ). Let w1, w2, .., wk be a basis of
W and let wk+1, wk+2, ..., wn extend this to a basis of V . Let U = span(wk+1, wk+2, ..., wn).
Show that V = W ⊕ U .

Definition 23. Let W is a subspace of V (F ). We way U is a complement of W in V if
V = U ⊕W .

Exercise 67. In R2 find two different complements to the subspace defined by x + y = 0.

Exercise 68. Consider the vector space V = RR over R consisting of all real functions
over R. Let W = {f : f(−x) = f(x)} and U = {f : f(−x) = −f(x)} consist of all even
and odd functions. Show that V = W ⊕ U .
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A homomorphism is a map between two similar algebraic structures that preserve the
structure. Two such structures can be identified (that is considered to be the same) there
is an isomorphism between them. Rings will remain commutative unless stated otherwise.

Definition 24. A map f between two groups (G, .) and (G′, .) is a group homomorphism
if for all a, b ∈ G, f(ab) = f(a)f(b). Similarly a map g between two rings (R,+, .) and
(R′,+, .) is a ring homomorphism if g(1) = 1, g(a + b) = g(a) + g(b) and g(ab) = g(a)g(b)
for all a, b in R. A map h from a vector space V (F ) to another V ′(F ) (the field must be
the same) is a homomorphism (or a linear transformation) if h(v + v′) = h(v) + h(v′)
and h(av) = ah(v) for all v, v′ ∈ V and a ∈ F . A bijective homomorphism is called an
isomorphism.

A isomorphism between two structures indicate that the two are identical except for a
re-naming of elements (via the map).

Definition 25. Let f be a homomorphism between two groups G and G′. The image of
the map in G′ is f(G) is sometimes denoted by img(f). The kernel of the map denoted
by ker(f) is the collection of elements in G that gets mapped to the identity element in G′.
These definitions extend to rings and vector spaces with identify referring to the identify 0
of the respective additive group.

Example 31. The map from R3 to R defined by f(x, y, z) = x+y+z is a linear transforma-
tion. The map from R2 to itself which rotates each vector by θ degrees is a homomorphism.

The action of the map on the point
[
x
y

]
is left multiplication by the matrix

[
cosθ −sinθ
sinθ cosθ

]
Exercise 69. Find the kernel and image of the maps above. (The answer will depend on
the value of θ.)

Example 32. The map from Z toZn sending number k to k( mod n) is a ring homomor-
phism (why?). What is the kernel and image?

Exercise 70. Let F be any field and let α ∈ F . The map Φ from F [x] to F defined by
Φ(f) = f(α) is a ring homomorphism and is called the “evaluation map at α”. This map
is a vector space homomorphism as well (prove). If F = R and α = 1, what is the kernel
and image? What if α = 0? What if α = π? (Hint: For the last part, you need to know the
fact that there is no polynomial with real (in fact even complex) coefficients which has π as
a root).

Exercise 71. Let G, H be cyclic groups of order n generated by a and b respectively. Show
that the map f : G −→ H defined by f(a) = b is a group isomorphism. Hence there is only
one cyclic group of order n upto isomorphism.
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Example 33. The map from the group of positive reals, (R+, .) to (R,+) sending x to log x
(to any base) is a group homomorphism. In fact, this is an isomorphism and allows us to
uniquely retrieve a positive real number from its logarithm. Note that the homomorphism
property precisely ensures that addition of logarithms suffices to do multiplication on positive
reals. Find the kernel and image of the map.

Exercise 72. Show that the kernel and image of a homomorphism between two groups (rings
or vector spaces) must be a subgroups (subrings or subspaces) of the respective spaces.

Exercise 73. Let f be a homomorphism from group G to G′. Show that ker(f) is a normal
subgroup. If f is a homomorphism from a ring R to R′, show that ker(f) is an ideal.

The exercise gives hints about the connection between homomorphism and normal sub-
groups/ideals.

Exercise 74. Show that a homomorphism is injective if and only if ker(f) = {0} (or
identity element for group homomorphisms). This is important as proving injectivity at
zero suffices to prove injectivity of the map.

Exercise 75. Let f be a ring homomorphism from a field F to a ring R. Show that either
ker(f) = 0 in which case the map is injective or ker(f) = F making the map trivial (zero
map).

Homomorphism Theorems

In this section we will prove the fundamental homomorphism theorem for groups. The
result will be extended to ring and vector space homomorphism through exercises. The
theorem show that the image of a homomorphism is isomorphic to the quotient group (ring
or space) defined by the kernel.

In the following theorem, let f be an surjective homomorphism from a group G to G′.
(If f is not surjective, take G′ to be img(f).). Let H = ker(f). We have seen that G′ is a
subgroup and H is normal.

Theorem 15. G′ and G/H are isomorphic.

Proof. First note that f maps every element in the coset aH gets to the same element
f(a). (why?). This allows us to define the map Φ : G/H −→ G′ as Φ(aH) = f(a). To
prove the theorem, it suffices to show that Φ is an isomorphism. Clearly Φ(abH) = f(ab) =
f(a)f(b) = Φ(aH).Φ(bH). This shows that Φ is structure preserving. Suppose Φ(aH) = 1.
Then f(aH) = 1 or aH = H. This proves injectivity (why?). Finally, since f is surjective,
for any y ∈ G′, y = f(a) for some a ∈ G. Hence Φ(aH) = y and this proves surjectivity.

The following exercises develop the corresponding isomorphism theorems for rings and
vector spaces.

Exercise 76. Let f be an surjective homomorphism between rings R and R′. Let ker(f) =
I. We have seen I is an ideal in R. Define the map Φ : R/I −→ R′ as Φ(a + I) = f(a) for
each a ∈ R. The map is well defined (why?). Show that Φ((a+I)(b+I)) = Φ(a+I)Φ(b+I).
Show that Φ is an isomorphism between R/I and R′.
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Exercise 77. Let T be a surjective linear transformation between vector spaces V (F ) and
V ′(F ). Let W = ker(T ). Define the map Φ : V/W −→ V ′ as Φ(u + W ) = T (u) for each
u ∈ V . Show that Φ is an isomorphism between spaces V/W to V ′.

Exercise 78. Let T be a bijective linear transformation (isomorphism) between vector
spaces V (F ) and W (F ). Let b1, b2, ..., bn be a basis of V . Show that T (b1), T (b2), ..., T (bn)
is a basis of W . In particular, dim(V ) = dim(W ).

Let T be a linear transformation from vector space V (F ) to W (F ). define Rank(T ) to
be dim(Img(T )) and Nullity(T ) to be dim(ker(T )). In view of the two previous exercises,
dim(V/ker(T )) = dim(V ) −Nullity(T ) = dim(Img(T )) = Rank(T ) or We have thus the
following Rank-Nullity Theorem:

Theorem 16. Rank(T ) + Nullity(T ) = dim(V ) for any linear transformation T .

Exercise 79. Let α be a real number. Consider the map Φα defined from R[x] to R defined
by Φα(f) = f(α). For various values of α, what can you say about ker(Φα) and img(Φα)?
What can you say about Rank(Φα) and Nullity(Φα) for various values of Φ?

Exercise 80. Let b1, b2, .., bn be a basis for V (F ). Suppose T is a linear map from V to
W (F ) of dimension m.. Show that for each choice of (not necessarily distinct vectors)
w1, w2, ..., wn in W and setting T (b1) = w1, T (b2) = w2, ..., T (bn) = wn we get a distinct
linear transformation from V to W . Show that each linear transformation from V to W
corresponds to a unique assignment of values for T (b1), t(b2), ..., T (bn) in W . This result is
often stated as “fixing the image of the basis fixes the linear map”.

Exercise 81. Let V (F ) be a vector space of dimension. Let e1 = [1, 0, .., 0]T , e2 =
[0, 1, ..., 0]T , en = [0, 0, ..., 1]T be the standard basis of the vector space Fn. Let b1, b2, .., bn

be any basis for V (F ). Define the map T (b1) = e1, T (b2) = e2,...,T (bn) = en. Show that T
is an isomorphism. It follows that every vector space of dimension n over F is isomorphic
to Fn.

A linear transformation from a space V (F ) to itself is called a projection if P 2 = P .
That is, P (P (v)) = P (v) for each v ∈ V .

Exercise 82. If P is a projection, show that I − P defined by (I − P )(v) = v − P (v) for
all v ∈ V is a projection.

Exercise 83. If P is a projection, show that V = ker(P )⊕ Img(P ).

Exercise 84. If V = U ⊕W . Then, for each vector v ∈ V can be written uniquely as u+w
with u ∈ U and w ∈ W . Show that the map P (u + w) = u is a projection. Show that the
map P ′(u + w) = w is also a projection and satisfies P ′ = I − P .

Exercise 85. For what values of t can we say that R2 is a direct sum of points on the line
x + y = 0 and x− ty = 0? Define the corresponding projection maps.
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Matrices

Let V (F ) have basis b1, b2, ..., bn and W (F ) have basis c1, c2, ..., cm. Let T be a linear
transformation from V to W . Let T (b1) = a11c1 + a12c2 + ... + a1mcm. In dot prod-
uct notation we write T (b1) = [c1, c2, ..., cm][a11, a12, ..., a1m]T . Similarly, let T (b2) =
[c1, c2, ..., cm][a21, a22, ..., a2m]T ,....., T (bn) = [c1, c2, ..., cm][an1, an2, ..., anm]T .

Let v = x1, b1 + x2b2 + ... + xnbn. for some scalars x1, x2, .., xn. By linearity of T ,,
T (v) = x1T (b1) + x2T (b2) + ... + xnT (bn) = [T (b1), T (b2), ..., T (bn)][x1, x2, ..., xn]T in dot
product notation.

Noting that in dot product notation T (bi) = [c1, c2, ..., cm][ai1, ai2, ..., aim]T , we have in
matrix notation:

[
T (b1) ... T (bn)

] 
x1

x2

..
xn

 =
[
c1 ... cm

] 
a11 a21 ... an1

a12 a22 ... an2

.. .. ... ..
a1m a2m ... anm




x1

x2

..
xn

.

Suppose [y1, y2, ..., ym] are the coordinates of T (v) with respect to basis c1, c2, ..., cm,
then we have the relation:

y1

y2

..
ym

 =


a11 a21 ... an1

a12 a22 ... an2

.. .. ... ..
a1m a2m ... anm




x1

x2

..
xn

. Thus the matrix A =


a11 a21 ... an1

a12 a22 ... an2

.. .. ... ..
a1m a2m ... anm


is called the matrix of the linear transformation with respect to basis b1, b2, ..., bn and
c1, c2, .., cm. Conversely, it is easy to see that any m × n matrix will define a linear trans-
formation for the basis of particular choice. Thus we see a correspondence between m× n
matrices over the field F and linear transformations from V to W .

We have already seen that any n dimensional vector space over F is isomorphic to
Fn. Hence, once we fix a basis for V and W , vectors from V correspond to elements in
Fn, vectors in W correspond to elements in Fm and linear transformation from V to W
correspond to m × n matrices over F . This correspondence draws matrices into the study
of linear transformations.

In these lectures, we will be specific to the following special class of linear transforma-
tions.

Definition 26. A (linear) operator on a vector space V (F ) is a linear transformation
from V to itself.

Once a(ny) basis for an n dimensional vector space V is fixed, each linear operator on
V corresponds to a n × n square matrix. Thus, the set of operators on an n dimensional
space V corresponds precisely to Mn(F ).
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Exercise 86. Let b1, b2, ..., bn be a basis for V (F ). Show that an operator T on V is bijective
if and only if T is injective if and only if T (b1), T (b2), ..., T (bn) are linearly independent.
Note that a linear transformation T is invertible if and only if T is bijective. Show that
T−1 is also a linear operator from V to V . (why?).

Let b1, b2, ..., bn be a basis of V (F ). We have already seen that the map f : V −→ Fn

defined by f(b1) = e1, ..., f(bn) = en is an isomorphism. With this identification, a vector
v = x1b1 + x2b2 + ... + xnbn may be identified with [x1, x2, ..., xn]T ∈ Fn Now, let T be
an operator in V . Then the matrix A of the map has coordinate vectors corresponding to
T (e1), T (e2), ...T (e1) as columns (with our identification of ei with bi). In view of the above
exercise, we see that T is invertible if and only if the columns of T are linearly independent.
This in turn happens if and only if the space spanned by the columns of T is the whole of
V (why?). This observation motivates the following definition:

Definition 27. Let A ∈ Fn×n be an n × n matrix. ColumnSpan(A) is defined as the
subsace spanned by the columns of A. RowSpan(A) is defined as the subspace spanned by
the rows of A. The dimensions of the column and row space are called RowRank(A) and
ColumnRank(A) of A.

It follows from the previous discussion that an n×n matrix A over a field F is invertible
if and only if ColumnSpan(A) = Fn. Since we A is invertible if and only if det(A) 6= 0, we
have a correspondance between bijective linear operators and matrices in GLn(F ).

Corollary 8. T : V −→ V is bijective (invertible) if and only if the matrix of T (with
respect to any basis b1, b2, .., bn) is non-singular.

Basis Transformations

We study the effect of basis change on the coordinates of a vector. The matrix of an operator
also changes when basis changes.

Let B = b1, b2, ..., bn and C = c1, c2, ..., cn be two basis for V (F ). Suppose we know
the coordinates of vectors in S′ wrt. those in S. i.e., let c1 = α11b1 + α12b2 + ... + α1nbn,
c2 = α21b1 + α22b2 + ... + α2nbn,..., cn = αn1b1 + αn2b2 + ... + αnnbn. In matrix notation,

[c1, c2, ..., cn] = [b1, b2, ..., bn]Q where, Q =


α11 α21 ... αn1

α12 α22 ... αn2

.. .. ... ..
α1n α2n ... αnn


Since basis transformation is an isomorphism, Q must be invertible (why?). Thus we

have [b1, b2, .., bn] = Q−1[c1, c2, ..., cn]. Suppose now v = x1b1 + x2b2 + ... + xnbn be a
vector with coordinates [x1, x2, ..., xn]T with respect to basis B. What will be the co-
ordinates of v with respect to basis C? That is, we want to find out [y1, y2, ..., yn] ∈
Fn such that v = [c1, c2, ..., cn][y1, y2, ..., yn]T . But v = [b1, b2, ..., bn][x1, x2, ..., xn]T =
[c1, c2, ..., cn]Q−1[x1, x2, ..., xn]T . Hence we have [y1, y2, ..., yn]T = Q−1[x1, x2, ..., xn]T giving
the required relation between coordinate vectors. Q is called the matrix of basis change
from B to C.
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Example 34. In R2, let v have coordinates [1, 1]T w.r.t. the standard basis. To find its
coordinates w.r.t. basis c1 = [1, 1]T and c2 = [1, 0]T , we can see that [c1, c2] = [e1, e2]Q

where Q =
[
1 1
1 0

]
. Thus the new coordinates will be Q−1

[
1
1

]
.

Now we take up the effect of basis change on the matrix of a linear operator on a
FDVS. Let B = {b1, b2, ..., bn} and C = {c1, c2, ..., cn} be two basis for an FDVS V (F ). Let
[c1, c2, ..., cn] = [b1, b2, ..., bn]Q. Let A be the matrix of a linear operator with respect to
basis B. Let v be a vector in V whose coordinate vector w.r.t. basis B is x = [x1, x2, .., xn]T .
It follows that the coordinates of v w.r.t. basis C will be Q−1x.

Since A is the matrix of T w.r.t. basis B, coordinate vector of T (v) w.r.t. basis B will
be Ax. Hence the coordinate vector for T (v) w.r.t. basis C will be Q−1Ax.

Let A′ be the matrix of T w.r.t. basis C. As v has coordinates Q−1x w.r.t. C and
T (v) has coordinates Q−1Ax w.r.t. C, action of A′ on Q−1x must give Q−1Ax. That is, we
must have A′Q−1x = Q−1Ax. Hence we have A′x = Q−1AQx. Since this must hold for all
x ∈ Fn as v was chosen arbitrary, we have A′ = Q−1AQ as the matrix of T for the basis C.

Example 35. T be the linear operator in R2 such that T (
[
1
0

]
) =

[
2
1

]
T (

[
0
1

]
) =

[
0
1

]
The

matrix of T w.r.t. the standard basis is
[
2 0
1 1

]
. If we change the basis to {

[
1
1

]
,

[
0
1

]
} then

the matrix of basis change Q =
[
1 0
1 1

]
. Hence the matrix of T w.r.t this basis will be

Q−1AQ=

[
2 0
0 1

]
Exercise 87. Consider the operator T in R3 given by T (e1) = e1, T (e2) = e1 +e2, T (e3) =
e1 + e2 + e3. What is the matrix of this map w.r.t. the basis b1 = e1 + e2, b2 = e2 + e3 and
b3 = e1 + e3. (Hint, work with the relationship between the basis vectors directly instead of
going for matrix manipulation and note that coordinate vectors of T (b1), T (b2) and T (b3)
in the basis {b1, b2, b3} forms the columns of the matrix to be computed).

Exercise 88. Consider the set Fn[x] consisting of all polynomials of degree less than n
over a field F . Let α1, α2, ..., αn be elements in F . Consider the map T (p(x)) = p(α1) +
p(α2)x + ..., +p(αn)xn in Fn[x]. What is the matrix of the map with respect to the basis
{1, x, x2, ..., xn}? This matrix is called a Vandermone’s matrix. Find the expression for the
determinant of the matrix and show that the map is invertible if and only if α1, α2, ..., αn

are distinct elements in F . This means that interpolation of a degree n − 1 polynomial is
possible only if evaluation at n distinct points are given. Moreover interpolation problem
reduces to matrix inversion.
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