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Lecture 1: Propositional Calculus

Prepared by: K. Murali Krishnan

In this lecture, we will study the logic of propositions. A proposition is a statement
which takes value true or false. We will use propositional variables like p, q, r to denote
propositions. Propositional formulas are constructed from variables using the logical con-
nectives ∧,∨,→ and ¬. Once the truth values of the variables of a formula are known, the
truth value of the formula can be evaluated. These notions are formalized below.

Syntax of Propositional Calculus

Let V be a collection of propositional variables. The set of Boolean (or propositional)
formulas over V denoted by FV are inductively defined as follows:

• if φ ∈ V then φ ∈ FV .

• if φ, ψ ∈ V , then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ), (¬φ), (¬ψ) are in FV .

Example 1. If V = {p, q, r} the (p ∧ (q → r)), (¬q → (p ∨ q)) etc. are formulas.

The normal convention is that ¬ has the highest precedence among the connectors ∨,
∧, →, ↔ and ¬. ∧ has higher precedence over ∨, which in turn has higher precedence over
→ and ↔. ∧ and ∨ are left associative, whereas, ¬, ↔ and → are right associative. This
allows parenthesis to be omitted. For instance p∨ q → ¬r ∧ p denotes (p∨ q) → ((¬r)∧ p).

Formulas must be given “life” by assigning truth values. This is our next objective. We
will use 1 and 0 instead of true and false.

Semantics of Propositional Calculus

Given a variable set V . A Truth assignment for V is a map τ : V −→ {0, 1} We can extend
τ inductively into a function from FV to {0, 1} (with a little abuse of notation) as follows:

• τ(φ) is already defined if φ ∈ V .

• τ(φ ∧ ψ) = 1 if both τ(φ) = 1 and τ(ψ) = 1, 0 otherwise.

• τ(φ ∨ ψ) = 1 if either τ(φ) = 1 or τ(ψ) = 1, 0 otherwise

• τ(φ→ ψ) = 0 if τ(φ) = 1 or τ(ψ) = 0, 1 otherwise

• τ(φ↔ ψ) = 1 if τ(φ) = τ(ψ), 0 otherwise

• τ(¬φ) = 1 if τ(φ) = 0, 1 otherwise.

Example 2. Let V = {p, q, r}. Let τ(p) = τ(q) = 1 and τ(r) = 0. Then τ(q → r) = 0,
τ(p ∧ (q → r)) = 0 τ(p↔ q) = 1 etc.
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Definition 1. A formula is said to be satisfiable if there is a truth assignment to its variables
that makes the formula evaluate to true. A set of formulas is satisfiable if there is a truth
assignment that satisfies every formula in the set. These notions and some other related
ones are formalized below.

• For φ ∈ FV , We say τ ∈ {0, 1}V satisfies φ if τ(φ) = 1. Define Mφ = {τ ∈ {0, 1}V :
τ(φ) = 1}. This is the collection of all truth assignments to V that satisfies φ.

• φ ∈ FV is said to be satisfiable if Mφ 6= ∅. A formula is satisfiable if there is at least
one truth assignment that satisfies it.

• For A ⊆ FV , M(A) =
⋂

φ∈AMφ. This the collection of truth assignments that
satisfies all formulas in A. Each τ ∈M(A) is called a model for A.

• A ⊆ FV is said to be satisfiable or consistent if M(A) 6= ∅. Thus a set is consistent
iff there is at least one truth assignment that satisfies every formula in the set. A is
said to be inconsistent if it is not consistent.

• A ⊆ FV is said to be categorical (or sometimes complete) if |M(A)| ≤ 1. That is,
either A is inconsistent or there is a unique τ : V −→ {0, 1} that satisfies A.

• φ ∈ FV is said to be independent of A ⊆ F if both A ∪ {φ} and A ∪ {¬φ} are
consistent. That is, there exists truth assignments τ1, τ2 ∈ M(A) such that τ1(φ) =
τ2(¬φ) = 1 and τ1(¬φ) = τ2(φ) = 0.

• ψ ∈ FV is said to be a logical consequence of φ if every τ ∈Mφ satisfies ψ. That
is, whenever a truth assignment makes φ true, it should make ψ also true. In this
case we write φ⇒ ψ.

• ψ ∈ FV is said to be logically equivalent to φ ∈ FV if for every τ ∈ {0, 1}V ,
τ(φ) = τ(ψ). That is, every truth assignment to the variables give the same truth
value to both ψ and φ. In this case, we write φ⇔ ψ.

• φ ∈ FV is said to be a logical consequence of A ⊆ FV if every τ ∈ M(A) satisfies ψ.
In this case we write A |= ψ.

• A,A′ ⊆ FV are said to be logically equivalent if M(A) = M(A′). That is, the set of
truth assignments (models) that satisfy all formulas in A and A′ are exactly the same.

• φ ∈ FV is a tautology if Mφ = FV . That is, τ(φ) = 1 all truth assignments
τ ∈ {0, 1}V .

• φ is contradictory if Mφ = ∅. That is φ is always false. Note that φ is a tautology
if and only if ¬φ is contradictory.

Note that the sets A and A′ in these definitions could contain infinitely many formulas
from F .

Example 3. Let V = {p, q, r} and A = {p → q, q → r,¬r ∨ ¬q q ∨ r}. The set A is
consistent as τ(p) = τ(q) = 0, τ(r) = 1 satisfies A. The set is categorical as no other truth
assignment satisfies the set. ¬p, is an example of a logical consequence of A. Since the set
is categorical, there is no formula in FV that is independent of A (why?).
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Example 4. The set A = {p1 ∨ p2, p2 ∨ p3, p3 ∨ p4, ...} over V = {p1, p2, ...} is consistent.
τ(pi) = 1 for all i satisfies A. A is not categorical (why?). ¬p2 → (p1 ∨ p3) is a logical
consequence of A (why?). For each i, the formula pi ∈ FV is independent of A (why?).

Exercise 1. Show that if A ⊆ FV is categorical, then for every φ ∈ FV either A ∪ {φ} is
inconsistent or A ∪ {¬φ} is inconsistent. Hence there is no φ ∈ FV that is independent of
a complete set A ⊆ FV

Exercise 2. Let V = {p, q, r} Give an example for an consistent and complete set A ⊆ FV

and formula φ ∈ FV such that both A ∪ {φ} and A ∪ {¬φ} are inconsistent.

Definition 2. Let φ, ψ ∈ FV .

• φ tautologically implies ψ if the formula φ→ ψ is a tautology.

• φ is tautologically equivalent to ψ if φ↔ ψ is a tautology.

Exercise 3. Show that a ψ is a logical consequence of φ if and only if φ tautologically
implies ψ. Hence the notation for logical consequence φ⇒ ψ will be used whenever φ→ ψ
is a tautology.

Exercise 4. Show that a ψ is logically equivalent to φ if and only if φ ↔ ψ is a tautology
(that is φ is tautologically equivalent to ψ). Hence we write φ ⇔ ψ whenever when φ ↔ ψ
is a tautology.

The notions of tautological implication and logical consequence mean exactly the same
concept in view of the exercises above. This notion has central importance in deductions
which we will see as we proceed further through these notes.

It might appear strange as to why two different definitions were given for the same idea.
The reasons are somewhat subtle.

In modelling a real system, we start typically with a set A of formulas which we know are
true for the system (called axioms or postulates for the system) and try to find out what other
formulas are true in the system - i.e., find out the formulas which are logical consequences
of the axioms. However, this requires working with all possible truth assignments to the
variables - an impossible task when there are infinitely many variables. Even with finitely
many variables, trying out all possible truth assignments is a brute force approach and not
practically useful.

Instead a practical way to solve the problem is to do the following. Suppose we want to
prove that A |= φ. We try to identify a formula ψ for which we already know that A |= ψ
(for example ψ could be an axiom in A). Now, if we can show that ψ ⇒ φ, then it will
follow (will be shown soon) that φ ∈ M(A). This is essentially the fundamental notion
of deduction commonly found in mathematical reasoning and deduction algorithms. Note
that the deduction step involves only two formulas φ and ψ. They would have only a few
variables and hence would be simpler to handle. All known theorem proving techniques
essentially use the technique of deduction in one form or the other to discover new truths
about the system from what is already proved.

To execute this plan, one needs a good database of “standard” tautological implications.
Some of them are developed in the following exercises. The following section formalizes the
notions of axiomatic systems, deduction, theoremhood etc.
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Example 5. The formulas p ∨ ¬p, p ∧ (p → q) ⇒ q (called Modus Ponens), (p →
q) ∧ ¬q ⇒ ¬p (called Modus Tollens), (p ∨ q) ∧ ¬p ⇒ q (disjunctive syllogism) (p →
q) ∧ (q → r) ⇒ (p → r) (hypothetical syllogism), (p → q) ⇔ (¬q → ¬p) (Law of
counter positive), ¬(p ∨ q) ⇔ (¬p ∧ ¬q), ¬(p ∧ q) ⇔ (¬p ∨ ¬q) (De-Morgan’s Laws),
(p → q) ⇔ (¬p ∨ q), ¬¬p ⇔ p (Law of double negation) etc. are standard examples of
tautologies. ∧, ∨ are associative, commutative and distribute over each other. The
following properties: (p∧ p) ⇔ (p∨ p) ⇔ p, (p∧ q) ⇒ p, (p∧ q) ⇒ q and may be collectively
be called the absorption properties.

As an example, to verify modus ponens, suppose τ(p∧ (p→ q) → q) = 0 Then τ(q) = 0
and τ(p ∧ (p → q)) = 1. The latter requires τ(p) = 1 and τ((p → q)) = 1. But as
τ(q) = 0, for τ((p→ q)) = 1, we need τ(p) = 0 which is a contradiction. (Another standard
verification method is using truth tables) The other formulas may be verified similarly.

Another important technique is substitution Suppose you replace a variable with any
formula uniformly in a tautology φ, then the resultant formula is also a tautology. For
instance in the tautology p ∨ ¬p, if we substitute p everywhere with (p → (q ∨ r), we get
(p → (q ∨ r) ∨ ¬(p → (q ∨ r)) which also is a tautology. This is because φ evaluates to
1 under any values to the variables. Similarly, since equivalent formulas evaluate to the
same truth value, any formula in an expression can be substituted by a logically equivalent
formula without affecting truth values. These rules are called substitution laws and are
summarized below for easy reference.

Theorem 1 (Law of Substitution). 1. If φ ∈ FV is a tautology. Let p ∈ V be a variable
in φ. Let ψ ∈ FV . Then formula obtained by substitution of all occurrence of p with
ψ in φ also is a tautology.

2. Let φ, α.β ∈ FV , if α is a subformulas of φ and α⇔ β, Let φ′ be the formula obtained
by replacing of α with β in φ. Then for every τ ∈ {0, 1}V , τ(φ) = τ(φ′).

Classical Deduction

Definition 3. Let A ⊆ FV . Define the set V(A) = {φ ∈ FV : A |= φ}. This set is the
collection of all formulas which are logical consequences of A.

Definition 4. Let τ ∈ {0, 1}V . Define F(τ) = {φ ∈ FV : τ |= φ}. F(τ) is the collection
of all formulas which are satisfied by τ . Let T ⊆ {0, 1}V . Define F(T ) =

⋂
τ∈T F(τ) to be

the collection of all formulas satisfied by every truth assignment in T .

Axiomatic deduction methods were known right from the time of the ancient Greeks and
an treatment of geometry can be found in Euclid’s book “The Elements”. The assumptions
about the system under study were postulated as axioms for the system and logical conse-
quences of these axioms were derived using a set of “standard” deduction rules. The derived
consequences are called theorems. The notion of algorithmic (automated) deduction did not
exist during those times and deductions had to be done manually. In this section, we shall
discuss a few deduction methods well known from from the ancient times. φ, ψ ∈ FV

Theorem 2 (Laws of Deduction). Let A ⊆ FV and φ, ψ ∈ FV . Then:
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• (Deduction Theorem): A |= φ and (φ⇒ ψ) then A |= ψ.

• (Law of Implication): A |= (φ⇒ ψ) if and only if A ∪ {φ} |= ψ

• (Method of Contradiction): A ∪ {¬φ} is inconsistent, then A |= φ.

Proof. The first statement is proved here and the rest are left as exercises. Suppose A |= φ.
Suppose τ ∈ {0, 1}V satisfies τ |= A. Then, by hypothesis, τ |= φ. As φ⇒ ψ is a tautology,
τ(ψ) = 1 (why?). Hence τ |= ψ. This proves the first part. The other parts are proved
similarly.

Example 6. Let A = {p→ q, q → ¬(r → p),¬r ∨ ¬q}. Here is a deduction for ¬p:

1. q → ¬(r → p) (axiom)

2. q → ¬(¬r ∨ p) (Substitution: (r → p) ⇔ (¬r ∨ p)).

3. q → (r ∧ ¬p) (Substitution: De-Morgan’s equivalence).

4. p→ q (axiom)

5. p→ (r ∧ ¬p) (Hypothetical Syllogism from 4,3)

6. (¬p ∨ (r ∧ ¬p) (Substitution)

7. (¬p ∨ r) ∧ (¬p ∨ ¬p) (Distributive law).

8. ¬p ∨ ¬p (Absorption law)

9. ¬p. (Absorption law)

Exercise 5. It is true that Mike has a bike. If Mike has a bike, then Mike can’t have a car.
If mike does not have a car, then Mike can’t travel long distance. Either Mike travels long
distance or Mike is a sportsman. Formulate the above statements in propositional logic. Is
the statement “Mike is a sportsman” a valid consequence of these statements? If so, find a
deduction for the statement based on the above laws. Are these statements consistent? Do
they form a categorical set?

Exercise 6. Either cat fur or dog fur was found at the scene of the crime. If dog fur was
found at the scene of the crime, officer Thompson had an allergy attack. If cat fur was
found at the scene of the crime, then Macavity is responsible for the crime. But officer
Thompson didnt have an allergy attack, and so therefore Macavity must be responsible for
the crime. Is the conclusion correct?
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Department of Computer Science and Engineering, NIT Calicut

Lecture 2: First Order Logic for Graphs

Prepared by: K. Murali Krishnan

In this lecture, we will study first order logic for graphs (with equality) denoted by
FOLG(=). A graph G = (V,E) consists of a finite or countably infinite set of ver-
tices and a collection of (directed) edges E ⊆ V × V . Two graphs G1 = (V1, E1) and
G2 = (V2, E2) are isomorphic if there is a bijective map f : V1 −→ V2 such that
(v, v′) ∈ E1 if and only if (f(v), f(v′)) ∈ E2. For instance, G1 = ({1, 2}, {(1, 2), (2, 2)})
and G2 = ({a, b}, {(a, b), (b, b)}) are isomorphic via the map f(1) = a, f(2) = b from V1 to
V2. Isomorphic graphs are essentially copies of the same graph with a different labelling of
the vertices. We do not distinguish between isomorphic graphs and treat them as a single
graph.

Syntax of FOLG(=)

The vocabulary of FOLG(=) consists of variables X = {x, y, z, x1, y1, z1, x2, y2, z2, ...},
logical operators {∧,∨,¬,→,↔}, the quantifiers {∀,∃} and the two relations {G,=}.
The set F of formulas in FOLG(=) are defined as follows:

• R(x, y) and (x = y) are in F whenever x, y ∈ X.

• If φ, ψ ∈ V , then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ), (¬φ), (¬ψ) are in F .

• If x ∈ X and φ ∈ F , then (∀xφ), (∀xψ), (∃xφ), (∃xψ) are in F .

Example 7. ∀x(R(x, y) → ¬R(y, x)), ∃x(∀y(R(x, y) → (x = y)) ∧ (∃y¬R(x, y))) etc. are
syntactically correct formulas. In the second formula, note that the whole formula is within
the scope of the existential quantifier ∃x whereas each of the two subformulas contain the
variable y which is under the scope of different quantifiers. Normal rules of parenthesising
and scope resolution applies and we do not formally illustrate the scope rules here. The
variable y appearing in the first formula is not under the scope of any quantifier and is
called a free variable. A formula is said to be closed if it does not contain any free
variable. .

Semantics of FOLG(=)

Formulas come to life and gets true or false value when variables in X and the relation
G are interpreted over a graph. Let G = (V,E) be a graph. Let τ : X −→ V assign a
vertex in G to each variable in V . Let v ∈ V and x ∈ X. Denote by τx=v(y) = τ(y) for
all y ∈ X \ {x} and τx=v(y) = v if y = x. The function τx=v essentially is identical to τ
for each variable in X except for the variable x which is assigned value v. Let φ ∈ F . The
notation (G, τ) |= φ will mean that the formula φ is true in the graph G when the variables
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in X are assigned values according to τ (read as G with assignment τ satisfies φ). Here is
the formal definition:

Then for any x, y, z ∈ X, Define:

• (G, τ) |= R(x, y) if (τ(x), τ(y)) ∈ E, (G, τ) 2 R(x, y) otherwise.

• (G, τ) |= (x = y) if τ(x) = τ(y), (G, τ) 2 (x = y) otherwise.

• (G, τ) |= (φ ∨ ψ) if (G, τ) |= φ or (G, τ) |= ψ, (G, τ) 2 (φ ∨ ψ) otherwise.

• (G, τ) |= (φ ∧ ψ) if (G, τ) |= φ and (G, τ) |= ψ, (G, τ) 2 (φ ∧ ψ) otherwise.

• (G, τ) |= (∀xφ) if for each v ∈ V , (G, τx=v) |= φ, (G, τ) 2 (∀xφ) otherwise.

• (G, τ) |= (∃xφ) if for at least one v ∈ V , (G, τx=v) |= φ, (G, τ) 2 (∀xφ) otherwise.

A careful reflexion on the definition of satisfiability leads to the following observation
based on the fact the truth of a formula involving only quantified variables does not depend
any particular assignment of values to the variables:

Lemma 1. Let φ ∈ F is closed and let G = (V,E) be a graph, then (G, τ) |= φ for some
τ : X −→ V if and only if (G, τ) |= φ for every τ : X −→ V . Hence when φ is closed, we
simply write G |= φ or G 2 φ without referring to any assignment.

The notions of of satisiability, consistency, categoricalness, model, logical consequence
etc. in first order logic mirror the equivalent concepts in propositional logic.

Definition 5. The notation G will denote the collection of all graphs and for each G ∈ G,
V (G) and E(G) will represent its vertex and edge sets. The notation τ, τ ′ etc. will be used
to denote various assignments to variables in X with values in V (G). φ, ψ etc. will denote
formulas in F . We will assume here that all formulas are closed

• We say G satisfies or models φ if G |= φ. Define Mφ = {G ∈ G : G |= φ}. This
is the collection of models for φ. A closed formula φ is said to be satisfiable or
consistent if Mφ 6= ∅. Thus φ is satisfiable if it has at least one model.

• For A ⊆ FV , M(A) =
⋂

φ∈AMφ. This is the collection of all graphs that are satisfies
every formula in A. A is said to be satisfiable or consistent if M(A) 6= ∅.

• A ⊆ F is said to be categorical (or sometimes complete) if |M(A)| ≤ 1. That is,
either A is inconsistent or there is a unique graph G that satisfies A.

• φ ∈ F is said to be independent of A ⊆ F if both A ∪ {φ} and A ∪ {¬φ} are
consistent. That is, there exists graphs G1, G2 ∈ G such that G1 |= φ and G2 |= ¬φ

• ψ ∈ F is said to be a logical consequence of φ if every G ∈ Mφ also satisfies
G |= ψ. In this case we write φ⇒ ψ.

• ψ ∈ F is said to be logically equivalent to φ ∈ F if for every G ∈ G, G |= φ if and
only if G |= ψ. That is, the set of graphs on which φ is true is precisely the set of
graphs on which ψ is true. In this case, we write φ⇔ ψ.
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• φ ∈ F is said to be a logical consequence of A ⊆ F if every G ∈ M(A) satisfies
G |= ψ. In this case we write A |= ψ.

• A,A′ ⊆ F are said to be logically equivalent if M(A) = M(A′). That is, the set of
models for A and A′ are precisely the same.

• φ ∈ F is a tautology if Mφ = F . That is, G |= φ for all graphs G ∈ G.

• φ is contradictory if Mφ = ∅. That is φ is always false. Note that φ is a tautology
if and only if ¬φ is contradictory.

Note that the sets A and A′ in these definitions could contain infinitely many formulas
from F .

Example 8. Let A = {∀xR(x, x),∀x∀yR(x, y) =⇒ R(y, x),∀x∀y∀zR(x, y) ∧ R(y, z) →
R(y, z)} M(A) are graphs of equivalence relations. If the second formula is replaced with
∀x∀y(R(x, y) ∧ R(y, x) → (x = y)), the models are the collection of all graphs of partially
ordered sets. Note that these axioms are consistent and non-categorical (why?).

Exercise 7. Write down an axiom set A whose models are lattices.

Exercise 8. Let A = {∀x∀yR(x, y),∃x∃y∀z((z = x) ∨ (z = y))}. Find all non-isomorphic
graphs that satisfy A. Is A categorical?

The notions of tautological implication and tautological equivalence directly carries over
from propositional logic to predicate logic. Substitution also goes through without much
change. Further, in a formula ∀xφ or ∃xφ, we may substitute a variable x with another
variable y without affecting the semantics of the formula provided: (i) y does not occur in
φ and (ii) we replaces all occurrence os x in the scope of the quantifier ∀x (or ∃x) uniformly
with y. Suppose we define a primitive formula in FOLG(=) as follows: R(x, y), (x = y) are
primitive for all x, y ∈ X. If φ is primitive, then so is ∀xφ and ∃xφ for each x ∈ X. Essen-
tially a primitive formula is one which do not involve any connective from {∨,∧,¬,→,↔}.
Note that any formula in FOLG(=) can be broken down into a propositional formula involv-
ing primitive formulas. Clearly, if the propositional formula is a propositional tautology,
the given formula must be a tautology. These facts are easy to observe, but somewhat
cumbersome to formally state and prove. Instead, we will have a look at some examples
here.

Example 9. ∀x(∀yR(x, y) → ∃yR(y, x)) after substitution of x with z yields the logically
equivalent formula ∀z(∀yR(z, y) → ∃yR(y, z)). The formula is equivalent to ∀x(¬∃yR(y, x) →
¬∀yR(x, y)) by propositional equivalence.

First order logic yields additional tautological implications and equivalences involving
quantifiers, some of which are listed below.

Lemma 2. Let φ, ψ ∈ F , x, y ∈ X.

1. ∀x(φ ∧ ψ) ⇔ ∀xφ ∧ ∀xψ.

2. ∀xφ ∨ ∀xψ ⇒ ∀x(φ ∨ ψ).
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3. ∃xφ ∨ ∃xψ ⇔ ∃x(φ ∨ ψ)

4. ∃x(φ ∧ ψ) V ∃xφ ∧ ∃xψ

5. ¬∀xφ⇔ ∃¬φ

6. ¬∃xφ⇔ ∀¬φ

Proof. The proofs follow directly from the semantic definitions. To prove (1), Suppose
G |= ∀x(φ∧ψ). Then, for every τ : X → V , (G, τ) |= φ∧ψ. Thus for all τ , (G, τ) |= φ and
(G, τ) |= ψ. Hence G |= ∀xφ and G |= ∀xψ. Conversely, Suppose G |= ∀xφ and G |= ∀xψ.
Then, for each τ , (G, τ) |= φ and (G, τ) |= ψ. Hence, every τ must satisfy (G, τ) |= φ ∧ ψ.
Other results are proved similarly.

Definition 6. Let G be a graph. Define F(G) = {φ ∈ F : G |= φ} as the collection of all
formulas which are true in G. If G is a collection of graphs, define F(G) =

⋂
G∈G F(G) as

the collection of all formulas which hold for all graphs in G.

Example 10. Consider the graph G = (V,E) with V = {0, 1, 2, 3, ...} and E = {(i, i+ 1) :
i ≥ 0}. Each vertex in the graph has out degree exactly one. Hence, the following properties
are true in G. ∀x∃yG(x, y) (every vertex has an outgoing edge). ∀x∀y∀z(G(x, y)∧G(x, z) →
(y = z)) (a vertex has at most one out-going edge) ∀x∀y∀z(G(x, z)∧G(y, z) → (x = y)) (a
vertex has at most one in-coming edge). These formulas are in F(G). What can you say
about finite graphs satisfying these properties?

Exercise 9. Give a categorical collection of axioms A such that M(A) = {G} for the
following graph G = (V = {1, 2}, E = {(1, 2), (1, 1), (2, 2)}).

Exercise 10. Write down a collection of axioms to express the following properties: (i)
There is exactly one vertex with out-degree zero and in-degree one. (ii) There is exactly one
vertex with in-degree zero and out-degree one. (iii) Every other vertex has both in-degree
and out-degree exactly one. What can you conclude about finite graphs satisfying these
properties? Show that there are graphs with infinitely many vertices satisfying all these
properties.

Given a graph G and a formula φ ∈ F , the (algorithmic) problem of checking whether
G ∈ Mφ is called the model checking problem. An important fact about FOLG(=) is
that this problem is efficiently (polynomial time) solvable.
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