Assignment I

1. Four bins B_{1}, B_{2}, B_{3} and B_{4} are placed on a table. The bin B_{i} has i RED and $i+1$ BLUE balls for $1 \leq i \leq 3$. A bin is drawn at random with the following probabilities: $\bar{p}\left(B_{1}\right)=1 / 2, p\left(B_{2}\right)=1 / 4, p\left(B_{3}\right)=$ $p\left(B_{4}\right)=1 / 8$. Then a ball is drawn from the bin selected. Suppose the ball received is $B L U E$, what is the probability (conditioned on this fact) that the bin was B_{1} ?
2. Use Jensen's inequality (and the concavity of \log function) to prove Gibbs' inequality.
3. Consider a Binary Symmetric Channel (BSC) with error parameter ϵ called $B S C(\epsilon)$. The channel takes $X \in\{0,1\}$ as input and output $Y \in\{0,1\}$ with the following probabilities: $p(Y=0 \mid X=0)=p(Y=$ $1 \mid X=1)=1-\epsilon$. where $0<\epsilon<1 / 2$. Suppose $p(X=0)=p$, find: (a) $H(X \mid Y=0)$, (b) $H(Y \mid X=0)$, (c) $I(X, Y)$. (d) For what value of $p(X=0)$ is X, Y independent?
4. Let X, Y be random variable. Let $Z=f(Y)$ be a random variable that depends only on Y. Show that $I(X, Y) \geq I(X, Z)$. This shows that applying a deterministic function on Y (or data processing done on Y) cannot increase mutual information. When does equality hold?
5. Let X, Y be random variables and $Z=X \oplus Y$. Is there any relation between $I(X, Y)$ and $I(X, Z)$? Note that given X, all "information" about Z is revealed if Y is known and conversely. Is it true that $H(X \mid Y, Z)=0$?
6. Suppose we want to have a ternary compression scheme (three symbols 0,1 and 2) instead of binary. What will be the revised expression for Kraft's inequality?
7. Suppose a source emits three symbols X_{1}, X_{2}, X_{3} from $\Sigma=\{a, b\}$ such that $p\left(X_{0}=a\right)=1 / 4, p\left(X_{0}=b\right)=3 / 4$ and $p\left(X_{i+1}=a \mid X_{i}=a\right)=$ $p\left(X_{i+1}=b \mid X_{i}=b\right)=3 / 4$. What is the (joint) entropy of X_{1}, X_{2}, X_{3} ? Show that $H\left(X_{3} \mid X_{1}, X_{2}\right)=H\left(X_{3} \mid X_{2}\right)$. What is the reason for this? Find the probability distribution for X_{1} that would make the sequence stationary.
