Information Theory

Assignment II

1. Suppose X is a random variable taking values in $\{1,2, \ldots, n\}$. Let p be a permutation from the set $\{1,2, . ., n\}$ chosen uniformly at random. Show that $H(p(X)) \geq H(X)$. Thus, "shuffling" increases the entropy of a set.
2. Three random variables X, Y, Z forms a Markov Chain if $\operatorname{Pr}(Z=z \mid Y=y, X=x)=\operatorname{Pr}(Z=$ $z \mid Y=y$). This intutively means that given Y, Z does not depend on X. Confirm the intution by showing that for a Markov chain $\operatorname{Pr}(X=x ; Z=z \mid Y=y)=\operatorname{Pr}(X=x \mid Y=y) \cdot \operatorname{Pr}(Z=$ $z \mid Y=y)$. Hence conclude that $I(X, Z \mid Y)=0$.
3. Let X, Y, Z be random variables. Define $I(X, Z \mid Y)$. Show that $I(X, Z \mid Y)=0$ if X, Y, Z forms a Markov chain.
4. If X, Y, Z are random variables, prove that $I(X ; Y Z)=I(X: Y)+I(X ; Z \mid Y)$. If X, Y, Z forms a Markov chain, expand $I(X ; Y Z)$ the above equality in two different ways to prove that $I(X, Z) \leq$ $I(X, Y)$. This is called the Data Processing Inequality because this tells that processing the received Y "further" at the receiving end to get a "refined" Z does not yield any additional Information.
5. Suppose random variable X is transmitted and Y received. We would like to estimate X at the receiver applying some function g on X (g can even be a random function) to obtain Z. Show that $\operatorname{Pr}(X \neq Z) \geq \frac{H(X \mid Y)-1}{\log (|X|-1)}$ where $|X|$ denotes the size of the ensemble X. (Note that this is a slightly stronger version of the Fano's inequality proved in the class).
6. Suppose a noisy discrete communication channel has an input alphabet X and output alphabet Y. Suppose M is the set of messages distributed according to some probability distribution. Suppose M is encoded with coding scheme to produce a codeword in the ensemble X^{n}, which is transmitted across a noisy communication channel to yield a receiver ensemble Y^{n}. Show that $I\left(M ; Y^{n}\right) \leq$ $\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \leq n C$ where X_{i}, Y_{i} indicates the ensembles corresponding to the $i^{t h}$ transmission and C the capacity of the channel. Hence show that $H(M) \leq H\left(M \mid Y^{n}\right)+n C$.
7. In the above question, Suppose g is an estimater that tries to recover $m \in M$ from $y \in Y^{n}$ received at the receiver, use Fano bound to dervice a condition on the entropy of the source necessary to ensure that the probability of error in estimation is stricly bounded away from zero irrespective of the value of n.
