
Exercise Problems: Information Theory and Coding

Prerequisite courses: Mathematical Methods for CS; Probability

Overview and Historical Origins: Foundations and Uncertainty. Why the movements and
transformations of information, just like those of a fluid, are law-governed. How concepts of
randomness, redundancy, compressibility, noise, bandwidth, and uncertainty are intricately
connected to information. Origins of these ideas and the various forms that they take.

Mathematical Foundations; Probability Rules; Bayes’ Theorem. The meanings of proba-
bility. Ensembles, random variables, marginal and conditional probabilities. How the formal
concepts of information are grounded in the principles and rules of probability.

Entropies Defined, and Why They Are Measures of Information. Marginal entropy, joint
entropy, conditional entropy, and the Chain Rule for entropy. Mutual information between
ensembles of random variables. Why entropy is a fundamental measure of information content.

Source Coding Theorem; Prefix, Variable-, & Fixed-Length Codes. Symbol codes. Binary
symmetric channel. Capacity of a noiseless discrete channel. Error correcting codes.

Channel Types, Properties, Noise, and Channel Capacity. Perfect communication through
a noisy channel. Capacity of a discrete channel as the maximum of its mutual information over
all possible input distributions.

Continuous Information; Density; Noisy Channel Coding Theorem. Extensions of the dis-
crete entropies and measures to the continuous case. Signal-to-noise ratio; power spectral
density. Gaussian channels. Relative significance of bandwidth and noise limitations. The
Shannon rate limit and efficiency for noisy continuous channels.

Fourier Series, Convergence, Orthogonal Representation. Generalized signal expansions in
vector spaces. Independence. Representation of continuous or discrete data by complex expo-
nentials. The Fourier basis. Fourier series for periodic functions. Examples.

Useful Fourier Theorems; Transform Pairs. Sampling; Aliasing. The Fourier transform for
non-periodic functions. Properties of the transform, and examples. Nyquist’s Sampling Theo-
rem derived, and the cause (and removal) of aliasing.

Discrete Fourier Transform. Fast Fourier Transform Algorithms. Efficient algorithms for
computing Fourier transforms of discrete data. Computational complexity. Filters, correla-
tion, modulation, demodulation, coherence.

The Quantized Degrees-of-Freedom in a Continuous Signal. Why a continuous signal of fi-
nite bandwidth and duration has a fixed number of degrees-of-freedom. Diverse illustrations of
the principle that information, even in such a signal, comes in quantized, countable, packets.

Gabor-Heisenberg-Weyl Uncertainty Relation. Optimal “Logons.” Unification of the time-
domain and the frequency-domain as endpoints of a continuous deformation. The Uncertainty
Principle and its optimal solution by Gabor’s expansion basis of “logons.” Multi-resolution
wavelet codes. Extension to images, for analysis and compression.

Kolmogorov Complexity and Minimal Description Length. Definition of the algorithmic
complexity of a data sequence, and its relation to the entropy of the distribution from which
the data was drawn. Shortest possible description length, and fractals.

Recommended book:

Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory. New York: Wiley.
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Worked Example Problems

Information Theory and Coding: Example Problem Set 1

Let X and Y represent random variables with associated probability distributions p(x) and
p(y), respectively. They are not independent. Their conditional probability distributions are
p(x|y) and p(y|x), and their joint probability distribution is p(x, y).

1. What is the marginal entropy H(X) of variable X, and what is the mutual information
of X with itself?

2. In terms of the probability distributions, what are the conditional entropies H(X|Y ) and
H(Y |X)?

3. What is the joint entropy H(X,Y ), and what would it be if the random variables X and
Y were independent?

4. Give an alternative expression for H(Y ) − H(Y |X) in terms of the joint entropy and
both marginal entropies.

5. What is the mutual information I(X; Y )?

2



Model Answer – Example Problem Set 1

1. H(X) = −
∑

x

p(x) log2 p(x) is both the marginal entropy of X, and its mutual informa-

tion with itself.

2. H(X|Y ) = −
∑

y

p(y)
∑

x

p(x|y) log2 p(x|y) = −
∑

x

∑

y

p(x, y) log2 p(x|y)

H(Y |X) = −
∑

x

p(x)
∑

y

p(y|x) log2 p(y|x) = −
∑

x

∑

y

p(x, y) log2 p(y|x)

3. H(X,Y ) = −
∑

x

∑

y

p(x, y) log2 p(x, y).

If X and Y were independent random variables, then H(X,Y ) = H(X) + H(Y ).

4. H(Y ) − H(Y |X) = H(X) + H(Y ) − H(X,Y ).

5. I(X; Y ) =
∑

x

∑

y

p(x, y) log2

p(x, y)

p(x)p(y)

or:
∑

x

∑

y

p(x, y) log2

p(x|y)

p(x)

or: I(X; Y ) = H(X) − H(X|Y ) = H(X) + H(Y ) − H(X,Y )
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Information Theory and Coding: Example Problem Set 2

1. This is an exercise in manipulating conditional probabilities. Calculate the probability
that if somebody is “tall” (meaning taller than 6 ft or whatever), that person must be male.
Assume that the probability of being male is p(M) = 0.5 and so likewise for being female
p(F ) = 0.5. Suppose that 20% of males are T (i.e. tall): p(T |M) = 0.2; and that 6% of
females are tall: p(T |F ) = 0.06. So this exercise asks you to calculate p(M |T ).

If you know that somebody is male, how much information do you gain (in bits) by learning
that he is also tall? How much do you gain by learning that a female is tall? Finally, how
much information do you gain from learning that a tall person is female?

2. The input source to a noisy communication channel is a random variable X over the
four symbols a, b, c, d. The output from this channel is a random variable Y over these same
four symbols. The joint distribution of these two random variables is as follows:

x = a x = b x = c x = d

y = a 1
8

1
16

1
16

1
4

y = b 1
16

1
8

1
16

0

y = c 1
32

1
32

1
16

0

y = d 1
32

1
32

1
16

0

(a) Write down the marginal distribution for X and compute the marginal entropy H(X) in
bits.

(b) Write down the marginal distribution for Y and compute the marginal entropy H(Y ) in
bits.

(c) What is the joint entropy H(X,Y ) of the two random variables in bits?

(d) What is the conditional entropy H(Y |X) in bits?

(e) What is the mutual information I(X; Y ) between the two random variables in bits?

(f) Provide a lower bound estimate of the channel capacity C for this channel in bits.
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Model Answer – Example Problem Set 2

1. Bayes’ Rule, combined with the Product Rule and the Sum Rule for manipulating con-
ditional probabilities (see pages 7 - 9 of the Notes), enables us to solve this problem.
First we must calculate the marginal probability of someone being tall:

p(T ) = p(T |M)p(M) + p(T |F )p(F ) = (0.2)(0.5) + (0.06)(0.5) = 0.13

Now with Bayes’ Rule we can arrive at the answer that:

p(M |T ) =
p(T |M)p(M)

p(T )
=

(0.2)(0.5)

(0.13)
= 0.77

The information gained from an event is -log2 of its probability.

Thus the information gained from learning that a male is tall, since p(T |M) = 0.2,
is 2.32 bits.

The information gained from learning that a female is tall, since p(T |F ) = 0.06, is
4.06 bits.

Finally, the information gained from learning that a tall person is female, which requires
us to calculate the fact (again using Bayes’ Rule) that p(F |T ) = 0.231, is 2.116 bits.

2. (a) Marginal distribution for X is (1
4
, 1

4
, 1

4
, 1

4
).

Marginal entropy of X is 1/2 + 1/2 + 1/2 + 1/2 = 2 bits.

(b) Marginal distribution for Y is (1
2
, 1

4
, 1

8
, 1

8
).

Marginal entropy of Y is 1/2 + 1/2 + 3/8 + 3/8 = 7/4 bits.

(c) Joint Entropy: sum of −p log p over all 16 probabilities in the joint distribution
(of which only 4 different non-zero values appear, with the following frequencies):
(1)(2/4) + (2)(3/8) + (6)(4/16) + (4)(5/32) = 1/2 + 3/4 + 3/2 + 5/8 = 27/8 bits.

(d) Conditional entropy H(Y |X): (1/4)H(1/2, 1/4, 1/8, 1/8) + (1/4)H(1/4, 1/2, 1/8,
1/8) + (1/4)H(1/4, 1/4, 1/4, 1/4) + (1/4)H(1, 0, 0, 0) = (1/4)(1/2 + 2/4 + 3/8 +
3/8) + (1/4)(2/4 + 1/2 + 3/8 + 3/8) + (1/4)(2/4 + 2/4 + 2/4 + 2/4) + (1/4)(0)
= (1/4)(7/4) + (1/4)(7/4) + 1/2 + 0 = (7/8) + (1/2) = 11/8 bits.
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(e) There are three alternative ways to obtain the answer:
I(X; Y ) = H(Y ) − H(Y |X) = 7/4 - 11/8 = 3/8 bits. - Or,

I(X; Y ) = H(X) − H(X|Y ) = 2 - 13/8 = 3/8 bits. - Or,

I(X; Y ) = H(X) + H(Y ) − H(X,Y ) = 2 + 7/4 - 27/8 = (16+14-27)/8 = 3/8
bits.

(f) Channel capacity is the maximum, over all possible input distributions, of the mu-
tual information that the channel establishes between the input and the output.
So one lower bound estimate is simply any particular measurement of the mutual
information for this channel, such as the above measurement which was 3/8 bits.

6



Information Theory and Coding: Example Problem Set 3

A. Consider a binary symmetric communication channel, whose input source is the
alphabet X = {0, 1} with probabilities {0.5, 0.5}; whose output alphabet is Y = {0, 1};
and whose channel matrix is

(

1 − ǫ ǫ
ǫ 1 − ǫ

)

where ǫ is the probability of transmission error.

1. What is the entropy of the source, H(X)?

2. What is the probability distribution of the outputs, p(Y ), and the entropy of this out-
put distribution, H(Y )?

3. What is the joint probability distribution for the source and the output, p(X,Y ), and
what is the joint entropy, H(X,Y )?

4. What is the mutual information of this channel, I(X; Y )?

5. How many values are there for ǫ for which the mutual information of this channel is
maximal? What are those values, and what then is the capacity of such a channel in bits?

6. For what value of ǫ is the capacity of this channel minimal? What is the channel ca-
pacity in that case?

B. The Fourier transform (whether continuous or discrete) is defined in the general case
for complex-valued data, which gets mapped into a set of complex-valued Fourier coefficients.
But often we are concerned with purely real-valued data, such as sound waves or images, whose
Fourier transforms we would like to compute. What simplification occurs in the Fourier do-
main as a consequence of having real-valued, rather than complex-valued, data?
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Model Answer – Example Problem Set 3

A.
1. Entropy of the source, H(X), is 1 bit.

2. Output probabilities are p(y = 0) = (0.5)(1 − ǫ) + (0.5)ǫ = 0.5 and p(y = 1) =
(0.5)(1 − ǫ) + (0.5)ǫ = 0.5. Entropy of this distribution is H(Y ) = 1 bit, just as for the
entropy H(X) of the input distribution.

3. Joint probability distribution p(X,Y ) is

(

0.5(1 − ǫ) 0.5ǫ
0.5ǫ 0.5(1 − ǫ)

)

and the entropy of this joint distribution is H(X,Y ) = −
∑

x,y

p(x, y) log2 p(x, y)

= −(1 − ǫ) log(0.5(1 − ǫ)) − ǫ log(0.5ǫ) = (1 − ǫ) − (1 − ǫ) log(1 − ǫ) + ǫ − ǫ log(ǫ)

= 1 − ǫ log(ǫ) − (1 − ǫ) log(1 − ǫ)

4. The mutual information is I(X; Y ) = H(X) + H(Y ) − H(X,Y ), which we can evalu-
ate from the quantities above as: 1 + ǫ log(ǫ) + (1 − ǫ) log(1 − ǫ).

5. In the two cases of ǫ = 0 and ǫ = 1 (perfect transmission, and perfectly erroneous transmis-
sion), the mutual information reaches its maximum of 1 bit and this is also then the channel
capacity.

6. If ǫ = 0.5, the channel capacity is minimal and equal to 0.

B. Real-valued data produces a Fourier transform having Hermitian symmetry: the real-
part of the Fourier transform has even-symmetry, and the imaginary part has odd-symmetry.
Therefore we need only compute the coefficients associated with (say) the positive frequen-
cies, because then we automatically know the coefficients for the negative frequencies as well.
Hence the two-fold “reduction” in the input data by being real- rather than complex-valued,
is reflected by a corresponding two-fold “reduction” in the amount of data required in its
Fourier representation.
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Information Theory and Coding: Example Problem Set 4

1. Consider a noiseless analog communication channel whose bandwidth is 10,000 Hertz.
A signal of duration 1 second is received over such a channel. We wish to represent
this continuous signal exactly, at all points in its one-second duration, using just a finite
list of real numbers obtained by sampling the values of the signal at discrete, periodic
points in time. What is the length of the shortest list of such discrete samples required
in order to guarantee that we capture all of the information in the signal and can recover
it exactly from this list of samples?

2. Name, define algebraically, and sketch a plot of the function you would need to use in
order to recover completely the continuous signal transmitted, using just such a finite
list of discrete periodic samples of it.

3. Consider a noisy analog communication channel of bandwidth Ω, which is perturbed by
additive white Gaussian noise whose power spectral density is N0. Continuous signals are
transmitted across such a channel, with average transmitted power P (defined by their
expected variance). What is the channel capacity, in bits per second, of such a channel?

Model Answer – Example Problem Set 4

1. 2ωT = 20,000 discrete samples are required.

2. The sinc function is required to recover the signal from its discrete samples, defined as:

sinc(x) =
sin(πx)

πx
. Each sample point is replaced by scaled copies of this function.

3. The channel capacity is Ω log2

(

1 +
P

N0Ω

)

bits per second.
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Information Theory and Coding: Example Problem Set 5

A. Consider Shannon’s third theorem, the Channel Capacity Theorem, for a continuous com-
munication channel having bandwidth W Hertz, perturbed by additive white Gaussian noise
of power spectral density N0, and average transmitted power P .

1. Is there any limit to the capacity of such a channel if you increase its signal-to-noise

ratio
P

N0W
without limit? If so, what is that limit?

2. Is there any limit to the capacity of such a channel if you can increase its bandwidth
W in Hertz without limit, but while not changing N0 or P? If so, what is that limit?

B. Explain why smoothing a signal, by low-pass filtering it before sampling it, can prevent
aliasing. Explain aliasing by a picture in the Fourier domain, and also show in the picture
how smoothing solves the problem. What would be the most effective low-pass filter to use
for this purpose? Draw its spectral sensitivity.

C. Suppose that women who live beyond the age of 70 outnumber men in the same age
bracket by three to one. How much information, in bits, is gained by learning that a certain
person who lives beyond 70 happens to be male?
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Model Answer – Example Problem Set 5

A.
1. The capacity of such a channel, in bits per second, is

C = W log2

(

1 +
P

N0W

)

Increasing the quantity P
N0W

inside the logarithm without bounds causes the capacity to
increase monotonically and without bounds.

2. Increasing the bandwidth W alone causes a monotonic increase in capacity, but only up
to an asymptotic limit. That limit can be evaluated by observing that in the limit of small
α, the quantity ln(1 + α) approaches α. In this case, setting α = P

N0W
and allowing W to

become arbitrarily large, C approaches the limit P
N0

log2(e). Thus there are vanishing returns

from endless increase in bandwidth, unlike the unlimited returns enjoyed from improvement
in signal-to-noise ratio.

B.
The Nyquist Sampling Theorem tells us that aliasing results when the signal contains Fourier
components higher than one-half the sampling frequency. Thus aliasing can be avoided by
removing such frequency components from the signal, by low-pass filtering it, before sampling
the signal. The ideal low-pass filter for this task would have a strict cut-off at frequencies
starting at (and higher than) one-half the planned sampling rate.

C.
Since p(female|old)=3*p(male|old), and since p(female|old)+p(male|old)=1, it follows that
p(male|old) = 0.25. The information gained from an observation is − log2 of its probability.
Thus the information gained by such an observation is 2 bits.
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Information Theory and Coding: Example Problem Set 6

The information in continuous but bandlimited signals is quantized, in that such continu-
ous signals can be completely represented by a finite set of discrete numbers. Explain this
principle in each of the following four important contexts or theorems. Be as quantitative as
possible:

1. The Nyquist Sampling Theorem.

2. Logan’s Theorem.

3. Gabor Wavelet Logons and the Information Diagram.

4. The Noisy Channel Coding Theorem
(relation between channel bandwidth W , noise power spectral density N0, signal power
P or signal-to-noise ratio P/N0W , and channel capacity C in bits/second).
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Model Answer – Example Problem Set 6

1. Nyquist’s Sampling Theorem: If a signal f(x) is strictly bandlimited so that it contains
no frequency components higher than W , i.e. its Fourier Transform F (k) satisfies the
condition

F (k) = 0 for |k| > W (1)

then f(x) is completely determined just by sampling its values at a rate of at least
2W . The signal f(x) can be exactly recovered by using each sampled value to fix the
amplitude of a sinc(x) function,

sinc(x) =
sin(πx)

πx
(2)

whose width is scaled by the bandwidth parameter W and whose location corresponds
to each of the sample points. The continuous signal f(x) can be perfectly recovered
from its discrete samples fn(nπ

W
) just by adding all of those displaced sinc(x) functions

together, with their amplitudes equal to the samples taken:

f(x) =
∑

n

fn

(

nπ

W

)

sin(Wx − nπ)

(Wx − nπ)
(3)

Thus we see that any signal that is limited in its bandwidth to W , during some duration
T has at most 2WT degrees-of-freedom. It can be completely specified by just 2WT real
numbers.

2. Logan’s Theorem: If a signal f(x) is strictly bandlimited to one octave or less, so that the
highest frequency component it contains is no greater than twice the lowest frequency
component it contains

kmax ≤ 2kmin (4)

i.e. F (k) the Fourier Transform of f(x) obeys

F (|k| > kmax = 2kmin) = 0 (5)

and
F (|k| < kmin) = 0 (6)

and if it is also true that the signal f(x) contains no complex zeroes in common with
its Hilbert Transform, then the original signal f(x) can be perfectly recovered (up to
an amplitude scale constant) merely from knowledge of the set {xi} of zero-crossings of
f(x) alone.

{xi} such that f(xi) = 0 (7)

Obviously there is only a finite and countable number of zero-crossings in any given
length of the bandlimited signal, and yet these “quanta” suffice to recover the original
continuous signal completely (up to a scale constant).
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3. Gabor Wavelet Logons and the Information Diagram.
The Similarity Theorem of Fourier Analysis asserts that if a function becomes narrower
in one domain by a factor a, it necessarily becomes broader by the same factor a in the
other domain:

f(x) −→ F (k) (8)

f(ax) −→ |1
a
|F (

k

a
| (9)

An Information Diagram representation of signals in a plane defined by the axes of time
and frequency is fundamentally quantized. There is an irreducible, minimal, volume that
any signal can possibly occupy in this plane: its uncertainty (or spread) in frequency,
times its uncertainty (or duration) in time, has an inescapable lower bound. If we define
the “effective support” of a function f(x) by its normalized variance, or normalized
second-moment (∆x), and if we similarly define the effective support of the Fourier
Transform F (k) of the function by its normalized variance in the Fourier domain (∆k),
then it can be proven (by Schwartz Inequality arguments) that there exists a fundamental
lower bound on the product of these two “spreads,” regardless of the function f(x):

(∆x)(∆k) ≥ 1

4π
(10)

This is the Gabor-Heisenberg-Weyl Uncertainty Principle. It is another respect in which
the information in continuous signals is quantized, since they must occupy an area in
the Information Diagram (time - frequency axes) that is always greater than some irre-
ducible lower bound. Therefore any continuous signal can contain only a fixed number
of information “quanta” in the Information Diagram. Each such quantum constitutes
an independent datum, and their total number within a region of the Information Di-
agram represents the number of independent degrees-of-freedom enjoyed by the signal.
Dennis Gabor named such minimal areas “logons.” The unique family of signals that
actually achieve the lower bound in the Gabor-Heisenberg-Weyl Uncertainty Relation
are the complex exponentials multiplied by Gaussians. These are sometimes referred to
as “Gabor wavelets:”

f(x) = e−ik0xe−(x−x0)2/a2

(11)

localized at epoch x0, modulated by frequency k0, and with size constant a.

4. The Noisy Channel Coding Theorem asserts that for a channel with bandwidth W , and
a continuous input signal of average power P , added channel noise of power spectral
density N0, or a signal-to-noise ratio P/N0W , the capacity of the channel to communicate
information reliably is limited to a discrete number of “quanta” per second. Specifically,
its capacity C in bits/second is:

C = W log2

(

1 +
P

N0W

)

(12)

This capacity is clearly “quantized” into a finite number of bits per second, even though
the input signal is continuous.
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Information Theory and Coding: Example Problem Set 7

(a) What is the entropy H, in bits, of the following source alphabet whose letters have
the probabilities shown?

A B C D

1/4 1/8 1/2 1/8

(b) Why are fixed length codes inefficient for alphabets whose letters are not equiprob-
able? Discuss this in relation to Morse Code.

(c) Offer an example of a uniquely decodable prefix code for the above alphabet which
is optimally efficient. What features make it a uniquely decodable prefix code?

(d) What is the coding rate R of your code? How do you know whether it is optimally
efficient?

(e) What is the maximum possible entropy H of an alphabet consisting of N different
letters? In such a maximum entropy alphabet, what is the probability of its most
likely letter? What is the probability of its least likely letter?
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Model Answer – Example Problem Set 7

(a) The entropy of the source alphabet is

H = −
4
∑

i=1

pi log2 pi = (1/4)(2) + (1/8)(3) + (1/2)(1) + (1/8)(3)

= 1.75 bits.

(b) Fixed length codes are inefficient for alphabets whose letters are not equiprobable
because the cost of coding improbable letters is the same as that of coding more
probable ones. It is more efficient to allocate fewer bits to coding the more probable
letters, and to make up for the fact that this would cover only a few letters, by
making longer codes for the less probable letters. This is exploited in Morse Code,
in which (for example) the most probable English letter, e, is coded by a single dot.

(c) A uniquely decodable prefix code for the letters of this alphabet:
Code for A: 10
Code for B: 110
Code for C: 0
Code for D: 111 (the codes for B and D could also be interchanged)

This is a uniquely decodable prefix code because even though it has variable length,
each code corresponds to a unique letter rather than any possible combination of
letters; and the code for no letter could be confused as the prefix for another letter.

(d) Multiplying the bit length of the code for each letter times the probability of oc-
curence of that letter, and summing this over all letters, gives us a coding rate of:
R = (2 bits)(1/4)+(3 bits)(1/8)+(1 bit)(1/2)+(3 bits)(1/8) = 1.75 bits.

This code is optimally efficient because R = H : its coding rate equals the en-
tropy of the source alphabet. Shannon’s Source Coding Theorem tells us that this
is the lower bound for the coding rate of all possible codes for this alphabet.

(e) The maximum possible entropy of an alphabet consisting of N different letters is
H = log2 N . This is only achieved if the probability of every letter is 1/N . Thus
1/N is the probability of both the “most likely” and the “least likely” letter.

16



Information Theory and Coding: Example Problem Set 8

(a) What class of continuous signals has the greatest possible entropy for a given vari-
ance (or power level)? What probability density function describes the excursions
taken by such signals from their mean value?

(b) What does the Fourier power spectrum of this class of signals look like? How would
you describe the entropy of this distribution of spectral energy?

(c) An error-correcting Hamming code uses a 7 bit block size in order to guarantee the
detection, and hence the correction, of any single bit error in a 7 bit block. How
many bits are used for error correction, and how many bits for useful data? If the
probability of a single bit error within a block of 7 bits is p = 0.001, what is the
probability of an error correction failure, and what event would cause this?

(d) Suppose that a continuous communication channel of bandwidth W Hertz and a
high signal-to-noise ratio, which is perturbed by additive white Gaussian noise of
constant power spectral density, has a channel capacity of C bits per second. Ap-
proximately how much would C be degraded if suddenly the added noise power
became 8 times greater?

(e) You are comparing different image compression schemes for images of natural scenes.
Such images have strong statistical correlations among neighbouring pixels because
of the properties of natural objects. In an efficient compression scheme, would you
expect to find strong correlations in the compressed image code? What statistical
measure of the code for a compressed image determines the amount of compression
it achieves, and in what way is this statistic related to the compression factor?
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Model Answer – Example Problem Set 8

(a) The family of continuous signals having maximum entropy per variance (or power
level) are Gaussian signals. Their probability density function for excursions x
around a mean value µ, when the power level (or variance) is σ2, is:

p(x) =
1√
2πσ

e−(x−µ)2/2σ2

(b) The Fourier power spectrum of this class of signals is flat, or white. Hence these
signals correspond to “white noise.” The distribution of spectral energy has uniform
probability over all possible frequencies, and therefore this continuous distribution
has maximum entropy.

(c) An error-correcting Hamming code with a 7 bit block size uses 3 bits for error cor-
rection and 4 bits for data transmission. It would fail to correct errors that affected
more than one bit in a block of 7; but in the example given, with p = 0.001 for a
single bit error in a block of 7, the probability of two bits being corrupted in a block
would be about 1 in a million.

(d) The channel capacity C in bits per second would be reduced by about 3W , where
W is the channel’s bandwidth in Hertz, if the noise power level increased eight-fold.
This is because the channel capacity, in bits per second, is

C = W log2

(

1 +
P

N0W

)

If the signal-to-noise ratio (the term inside the logarithm) were degraded by a factor
of 8, then its logarithm is reduced by -3, and so the overall capacity C is reduced
by 3W . The new channel capacity C ′ could be expressed either as:

C ′ = C − 3W

or as a ratio that compares it with the original undegraded capacity C:

C ′

C
= 1 − 3W

C

(e) In an efficient compression scheme, there would be few correlations in the com-
pressed representations of the images. Compression depends upon decorrelation.
An efficient scheme would have low entropy; Shannon’s Source Coding Theorem
tells us a coding rate R as measured in bits per pixel can be found that is nearly
as small as the entropy of the image representation. The compression factor can
be estimated as the ratio of this entropy to the entropy of the uncompressed image
(i.e. the entropy of its pixel histogram).
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Information Theory and Coding: Example Problem Set 9

A. Prove that the information measure is additive: that the information gained from ob-
serving the combination of N independent events, whose probabilities are pi for i = 1....N , is
the sum of the information gained from observing each one of these events separately and in
any order.

B. What is the shortest possible code length, in bits per average symbol, that could be
achieved for a six-letter alphabet whose symbols have the following probability distribution?

{ 1
2
, 1

4
, 1

8
, 1

16
, 1

32
, 1

32
}.

C. Suppose that ravens are black with probability 0.6, that they are male with probability
0.5 and female with probability 0.5, but that male ravens are 3 times more likely to be black
than are female ravens.

If you see a non-black raven, what is the probability that it is male?

How many bits worth of information are contained in a report that a non-black raven is
male?

Rank-order for this problem, from greatest to least, the following uncertainties:
(i) uncertainty about colour;
(ii) uncertainty about gender;
(iii) uncertainty about colour, given only that a raven is male;
(iv) uncertainty about gender, given only that a raven is non-black.

D. If a continuous signal f(t) is modulated by multiplying it with a complex exponential
wave exp(iωt) whose frequency is ω, what happens to the Fourier spectrum of the signal?

Name a very important practical application of this principle, and explain why modulation is
a useful operation.

How can the original Fourier spectrum later be recovered?

E. Which part of the 2D Fourier Transform of an image, the amplitude spectrum or the
phase spectrum, is indispensable in order for the image to be intelligible?

Describe a demonstration that proves this.
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Model Answer – Example Problem Set 9

A. The information measure assigns log2(p) bits to the observation of an event whose prob-
ability is p. The probability of the combination of N independent events whose probabilities

are p1....pN is
N
∏

i=1

pi

Thus the information content of such a combination is:

log2(
N
∏

i=1

pi) = log2(p1) + log2(p2) + · · · + log2(pN)

which is the sum of the information content of all of the separate events.

B.
Shannon’s Source Coding Theorem tells us that the entropy of the distribution is the lower
bound on average code length, in bits per symbol. This alphabet has entropy

H = −
6
∑

i=1

pi log2 pi = (1/2)(1) + (1/4)(2) + (1/8)(3) + (1/16)(4) + (1/32)(5) + (1/32)(5) =

115
16

or 31
16

bits per average symbol (less than 2 bits to code 6 symbols!)

C.
Givens: p(B|m) = 3p(B|f), p(m) = p(f) = 0.5, p(B) = 0.6 and so p(NB) = 0.4 where m
means male, f means female, B means black and NB means non-black. From these givens plus
the Sum Rule fact that p(m)p(B|m) + p(f)p(B|f) = p(B) = 0.6, it follows that p(B|f) = 0.3
and p(B|m) = 0.9, and hence that p(NB|m) = 1 − 0.9 = 0.1

Now we may apply Bayes Rule to calculate that

p(m|NB) =
p(NB|m)p(m)

p(NB)
=

(0.1)(0.5)

(0.4)
= 0.125 = 1/8

From the information measure log2(p), there are 3 bits worth of information in discovering
that a non-black raven is male.

(i) The colour distribution is { 0.6, 0.4 }
(ii) The gender distribution is { 0.5, 0.5 }
(iii) The (colour | male) distribution is { 0.9, 0.1 }
(iv) The (gender | non-black) distribution is { 0.125, 0.875 }

Uncertainty of a random variable is greater, the closer its distribution is to uniformity. There-
fore the rank-order of uncertainty, from greatest to least, is: ii, i, iv, iii.

D. Modulation of the continuous signal by a complex exponential wave exp(iωt) will shift
its entire frequency spectrum upwards by an amount ω.

All of AM broadcasting is based on this principle. It allows many different communica-
tions channels to be multi-plexed into a single medium, like the electromagnetic spectrum, by
shifting different signals up into separate frequency bands.
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The original Fourier spectrum of each of these signals can then be recovered by demodulating
them down (this removes each AM carrier). This is equivalent to multiplying the transmitted
signal by the conjugate complex exponential, exp(−iωt).

E. The phase spectrum is the indispensable part. This is demonstrated by crossing the am-
plitude spectrum of one image with the phase spectrum of another one, and vice versa. The
new image that you see looks like the one whose phase spectrum you are using, and not at all
like the one whose amplitude spectrum you’ve got.
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Information Theory and Coding: Example Problem Set 10

1.
Consider n different discrete random variables, named X1, X2, ..., Xn, each of which has en-
tropy H(Xi).

Suppose that random variable Xj has the smallest entropy, and that random variable Xk

has the largest entropy.

What is the upper bound on the joint entropy H(X1, X2, ..., Xn) of all these random variables?

Under what condition will this upper bound be reached?

What is the lower bound on the joint entropy H(X1, X2, ..., Xn) of all these random vari-
ables?

Under what condition will the lower bound be reached?

2.
Define the Kolmogorov algorithmic complexity K of a string of data.

What relationship is to be expected between the Kolmogorov complexity K and the Shannon
entropy H for a given set of data?

Give a reasonable estimate of the Kolmogorov complexity K of a fractal, and explain why it
is reasonable.

3.
The signal-to-noise ratio SNR of a continuous communication channel might be different in
different parts of its frequency range. For example, the noise might be predominantly high
frequency hiss, or low frequency rumble. Explain how the information capacity C of a noisy
continuous communication channel, whose available bandwidth spans from frequency ω1 to
ω2, may be defined in terms of its signal-to-noise ratio as a function of frequency, SNR(ω).
Define the bit rate for such a channel’s information capacity, C, in bits/second, in terms of
the SNR(ω) function of frequency.

(Note: This question asks you to generalise beyond the material lectured.)
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Model Answer – Example Problem Set 10

1.
The upper bound on the joint entropy H(X1, X2, ..., Xn) of all the random variables is:

H(X1, X2, ..., Xn) ≤
n
∑

i=1

H(Xi)

This upper bound is reached only in the case that all the random variables are independent.

The lower bound on the joint entropy H(X1, X2, ..., Xn) is the largest of their individual
entropies:

H(X1, X2, ..., Xn) ≥ H(Xk)

(But note that if all the random variables are some deterministic function or mapping of each
other, so that if any one of them is known there is no uncertainty about any of the other
variables, then they all have the same entropy and so the lower bound is equal to H(Xj) or
H(Xk).)

2.
The Kolmogorov algorithmic complexity K of a string of data is defined as the length of the
shortest binary program that can generate the string. Thus the data’s Kolmogorov complexity
is its “Minimal Description Length.”

The expected relationship between the Kolmogorov complexity K of a set of data, and its
Shannon entropy H, is that approximately K ≈ H.
Because fractals can be generated by extremely short programs, namely iterations of a map-
ping, such patterns have Kolmogorov complexity of nearly K ≈ 0.
3.
The information capacity C of any tiny portion ∆ω of this noisy channel’s total frequency
band, near frequency ω where the signal-to-noise ratio happens to be SNR(ω), is:

C = ∆ω log2(1 + SNR(ω))

in bits/second. Integrating over all of these small ∆ω bands in the available range from ω1 to
ω2, the total capacity in bits/second of this variable-SNR channel is therefore:

C =
∫ ω2

ω1
log2(1 + SNR(ω))dω

23



Information Theory and Coding: Example Problem Set 11

1.
Construct an efficient, uniquely decodable binary code, having the prefix property and having
the shortest possible average code length per symbol, for an alphabet whose five letters appear
with these probabilities:

Letter Probability

A 1/2
B 1/4
C 1/8
D 1/16
E 1/16

How do you know that your code has the shortest possible average code length per symbol?

2.
For a string of data of length N bits, what is the upper bound for its Minimal Description
Length, and why?

Comment on how, or whether, you can know that you have truly determined the Minimal
Description Length for a set of data.

3.
Suppose you have sampled a strictly bandlimited signal at regular intervals more frequent
than the Nyquist rate; or suppose you have identified all of the zero-crossings of a bandpass
signal whose total bandwidth is less than one octave. In either of these situations, provide
some intuition for why you now also have knowledge about exactly what the signal must be
doing at all points between these observed points.

4.
Explain how autocorrelation can remove noise from a signal that is buried in noise, producing
a clean version of the signal. For what kinds of signals, and for what kinds of noise, will this
work best, and why? What class of signals will be completely unaffected by this operation
except that the added noise has been removed? Begin your answer by writing down the au-
tocorrelation integral that defines the autocorrelation of a signal f(x).

Some sources of noise are additive (the noise is just superimposed onto the signal), but other
sources of noise are multiplicative in their effect on the signal. For which type would the
autocorrelation clean-up strategy be more effective, and why?
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Model Answer – Example Problem Set 11

1.
Example of one such code (there are others as well):

Letter Code

A 1
B 01
C 001
D 0000
E 0001

This is a uniquely decodable code, and it also has the prefix property that no symbol’s code
is the beginning of a code for a different symbol.

The shortest possible average code length per symbol is equal to the entropy of the dis-
tribution of symbols, according to Shannon’s Source Coding Theorem. The entropy of this
symbol alphabet is:

H = −
∑

i

pi log2(pi) = 1/2 + 2/4 + 3/8 + 4/16 + 4/16 = 1(7/8)

bits, and the average code length per symbol for the above prefix code is also (just weighing
the length in bits of each of the above letter codes, by their associated probabilities of appear-
ance): 1/2 + 2/4 + 3/8 + 4/16 + 4/16 = 1(7/8) bits. Thus no code can be more efficient
than the above code.

2.
For a string of data of length N bits, the upper bound on its Minimal Description Length is
N . The reason is that this would correspond to the worst case in which the shortest program
that can generate the data is one that simply lists the string itself.

It is often impossible to know whether one has truly found the shortest possible descrip-
tion of a string of data. For example, the string:
011010100000100111100110011001111111001110...

passes most tests for randomness and reveals no simple rule which generates it, but it turns
out to be simply the binary expansion for the irrational number

√
2 − 1.

3.
The bandlimiting constraint (either just a highest frequency component in the case of Nyquist
sampling, or the bandwidth limitation to one octave in the case of Logan’s Theorem), is re-
markably severe. It ensures that the signal cannot vary unsmoothly between the sample points
(i.e. it must be everywhere a linear combination of shifted sinc functions in the Nyquist case),
and it cannot remain away from zero for very long in Logan’s case. Doing so would violate
the stated frequency bandwidth constraint.

4.
The autocorrelation integral for a (real-valued) signal f(x) is:

g(x) =
∫

f(y)f(x + y)dy
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i.e. f(x) is multiplied by a shifted copy of itself, and this product integrated, to generate a
new signal as a function of the amount of the shift.

Signals differ from noise by tending to have some coherent, or oscillatory, component whose
phase varies regularly; but noise tends to be incoherent, with randomly changing phase. The
autocorrelation integral shifts the coherent component systematically from being in-phase
with itself to being out-of-phase with itself. But this self-reinforcement does not happen for
the noise, because of its randomly changing phase. Therefore the noise tends to cancel out,
leaving the signal clean and reinforced. The process works best for purely coherent signals
(sinusoids) buried in completely incoherent noise. Sinusoids would be perfectly extracted from
the noise.

Autocorrelation as a noise removal strategy depends on the noise being just added to the
signal. It would not work at all for multiplicative noise.
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Information Theory and Coding: Example Problem Set 12

A.
State and explain (without proving) two different theorems about signal encoding that both
illustrate the following principle: strict bandlimiting (either lowpass or bandpass) of a continu-
ous signal reduces the information that it contains from potentially infinite to a finite discrete
set of data, and allows exact reconstruction of the signal from just a sparse set of sample
values. For both of your examples, explain what the sample data are, and why bandlimiting
a signal has such a dramatic effect on the amount of information required to represent it
completely.

B.
A variable length, uniquely decodable code which has the prefix property, and whose N binary
code word lengths are

n1 ≤ n2 ≤ n3 ≤ · · · ≤ nN

must satisfy what condition on these code word lengths?

(State both the condition on the code word lengths, and the name for this condition, but
do not attempt to prove it.)

C.
For a discrete data sequence consisting of the N uniformly-spaced samples

{gn} = {g0, g1, ..., gN−1}

define both the Discrete Fourier Transform {Gk} of this sequence, and its Inverse Transform,
which recovers {gn} from {Gk}.
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Model Answer – Example Problem Set 12

(Subject areas: Signal encoding; variable-length prefix codes; discrete FT.)

A.
1.
Nyquist’s Sampling Theorem: If a signal f(x) is strictly bandlimited so that it contains no
frequency components higher than W , i.e. its Fourier Transform F (k) satisfies the condition

F (k) = 0 for |k| > W

then f(x) is completely determined just by sampling its values at a rate of at least 2W . The
signal f(x) can be exactly recovered by using each sampled value to fix the amplitude of a
sinc(x) function,

sinc(x) =
sin(πx)

πx

whose width is scaled by the bandwidth parameter W and whose location corresponds to each
of the sample points. The continuous signal f(x) can be perfectly recovered from its discrete
samples fn(nπ

W
) just by adding all of those displaced sinc(x) functions together, with their

amplitudes equal to the samples taken:

f(x) =
∑

n

fn

(

nπ

W

)

sin(Wx − nπ)

(Wx − nπ)

Thus we see that any signal that is limited in its bandwidth to W , during some duration T has
at most 2WT degrees-of-freedom. It can be completely specified by just 2WT real numbers.

2.
Logan’s Theorem: If a signal f(x) is strictly bandlimited to one octave or less, so that the high-
est frequency component it contains is no greater than twice the lowest frequency component
it contains

kmax ≤ 2kmin

i.e. F (k) the Fourier Transform of f(x) obeys

F (|k| > kmax = 2kmin) = 0

and
F (|k| < kmin) = 0

and if it is also true that the signal f(x) contains no complex zeroes in common with its Hilbert
Transform, then the original signal f(x) can be perfectly recovered (up to an amplitude scale
constant) merely from knowledge of the set {xi} of zero-crossings of f(x) alone.

{xi} such that f(xi) = 0

Obviously there is only a finite and countable number of zero-crossings in any given length
of the bandlimited signal, and yet these “quanta” suffice to recover the original continuous
signal completely (up to a scale constant).

(continued...)
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B.
The N binary code word lengths n1 ≤ n2 ≤ n3 ≤ · · · ≤ nN must satisfy the Kraft-McMillan

Inequality if they are to constitute a uniquely decodable prefix code:

N
∑

i=1

1

2ni

≤ 1

C.
The Discrete Fourier Transform {Gk} of the regular sequence {gn} = {g0, g1, ..., gN−1} is:

{Gk} =
N−1
∑

n=0

gn exp
(

−2πi

N
kn
)

, (k = 0, 1, ..., N − 1)

The Inverse Transform (or synthesis equation) which recovers {gn} from {Gk} is:

{gn} =
1

N

N−1
∑

k=0

Gk exp
(

2πi

N
kn
)

, (n = 0, 1, ..., N − 1)
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Information Theory and Coding: Example Problem Set 13

A.
A Hamming Code allows reliable transmission of data over a noisy channel with guaranteed
error correction as long as no more than one bit in any block of 7 is corrupted. What is the
maximum possible rate of information transmission, in units of (data bits reliably received)
per (number of bits transmitted), when using such an error correcting code?

In such a code, what type of Boolean operator on the data bits is used to build the syn-
dromes? Is this operator applied before transmission, or upon reception?

B.
For each of the four classes of signals in the following table,

Class Signal Type

1. continuous, aperiodic
2. continuous, periodic
3. discrete, aperiodic
4. discrete, periodic

identify its characteristic spectrum from the following table:

Class Spectral Characteristic

A. continuous, aperiodic
B. continuous, periodic
C. discrete, aperiodic
D. discrete, periodic

(“Continuous” here means supported on the reals, i.e. at least piecewise continuous but not
necessarily everywhere differentiable. “Periodic” means that under multiples of some finite
shift the function remains unchanged.) Give your answer just in the form 1-A, 2-B, etc. Note
that you have 24 different possibilities.

For each case, name one example of such a function and its Fourier transform.

C.
Give two reasons why Logan’s Theorem about the richness of zero-crossings for encoding and
recovering all the information in a one-octave signal may not be applicable to images as it is
for one-dimensional signals.
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Model Answer – Example Problem Set 13

(Subject areas: Error correcting codes. Signals and spectra. Zero-crossings.)

A.
A Hamming Code transmits 7 bits in order to encode reliably 4 data bits; the 3 non-data bits
are added to guarantee detection and correction of 1 erroneous bit in any such block of 7 bits
transmitted. Thus the maximum rate of information transmission is 4/7ths of a bit per bit
transmitted.

Syndromes are constructed by taking the Exclusive-OR of three different subsets of 4 bits
from the 7 bits in a block. This Boolean operation is performed upon reception. (Before
transmission, the XOR operator is also used to build the three extra error-correcting bits
from the four actual data bits: each error-correcting bit is the XOR of a different triple of bits
among the four data bits.) Upon reception, if the three syndrome bits computed (by XORing
different subsets of 4 of the 7 bits received) are all 0, then there was no error; otherwise they
identify which bit was corrupted, so that it can be inverted.

B.

1-A. Example: a Gaussian function, whose Fourier transform is also Gaussian.
2-C. Example: a sinusoid, whose Fourier transform is two discrete delta functions.
3-B. Example: a delta function, whose Fourier transform is a complex exponential.
4-D. Example: a comb sampling function, whose Fourier Transform is also a comb function.

C.
1. The zero-crossings in a two- (or higher-) dimensional signal, such as an image, are not
denumerable. 2. The extension of the one-octave bandlimiting constraint to the Fourier plane
does not seem to be possible in an isotropic manner. If applied isotropically (i.e. a one-octave
annulus centred on the origin of the Fourier plane), then in fact both the vertical and hori-
zontal frequencies are each low-pass, not bandpass. But if applied in a bandpass manner to
each of the four quadrants, thereby selecting four disjoint square regions in the Fourier plane,
then the different orientations in the image are treated differently (anisotropically).
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Information Theory and Coding: Example Problem Set 14

A.
Consider an alphabet of 8 symbols whose probabilities are as follows:

A B C D E F G H
1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
128

1. If someone has selected one of these symbols and you need to discover which symbol it
is by asking ‘yes/no’ questions that will be truthfully answered, what would be the most
efficient sequence of such questions that you could ask in order to discover the selected
symbol?

2. By what principle can you claim that each of your proposed questions is maximally
informative?

3. On average, how many such questions will need to be asked before the selected symbol
is discovered?

4. What is the entropy of the above symbol set?

5. Construct a uniquely decodable prefix code for the symbol set, and explain why it is
uniquely decodable and why it has the prefix property.

6. Relate the bits in your prefix code to the ‘yes/no’ questions that you proposed in (1).

B.
Explain the meaning of “self-Fourier,” and cite at least two examples of mathematical objects
having this property.

C.
Explain briefly:

1. Sensation limit

2. Critical band

3. Bark scale

4. Which different aspects of perception do Weber’s law and Steven’s law model?
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Model Answer – Example Problem Set 14

A.
A B C D E F G H
1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
128

1. For this symbol distribution, the most efficient sequence of questions to ask (until a ‘yes’
is obtained) would be just: (1) Is it A? (2) Is it B? (3) Is it C? (Etc.)

2. Each such 1-bit question is maximally informative because the remaining uncertainty is
reduced by half (1 bit).

3. The probability of terminating successfully after exactly N questions is 2−N . At most 7
questions might need to be asked. The weighted average of the interrogation durations
is:

1

2
+ (2)(

1

4
) + (3)(

1

8
) + (4)(

1

16
) + (5)(

1

32
) + (6)(

1

64
) + (7)(

2

128
) = 1

126

128

In other words, on average just slightly less than two questions need to be asked in order
to learn which of the 8 symbols it is.

4. The entropy of the above symbol set is calculated by the same formula, but over all 8
states (whereas at most 7 questions needed to be asked):

H = −
8
∑

i=1

pi log2 pi = 1
126

128

5. A natural code book to use would be the following:

A B C D E F G H

1 01 001 0001 00001 000001 0000001 0000000

6. It is uniquely decodable because each code corresponds to a unique letter rather than
any possible combination of letters; and it has the prefix property because the code for
no letter could be confused as the prefix for another letter.

7. The bit strings in the above prefix code for each letter can be interpreted as the history
of answers to the ‘yes/no’ questions.

B.
Functions which have exactly the same form as their Fourier transforms are called “self-
Fourier.” Examples of such pairs include: the Gaussian; the Gabor wavelet; the sampling
Comb function; and the hyperbolic secant.

C.

1. The sensation limit of a sense is the lowest amplitude of a stimulus that can be perceived.

2. If two audio tones fall within the same critical band, the ear is unable to recognize two
separate tones and perceives a single tone with the average of their frequency instead.
(The human ear has approximately 24 non-overlapping critical bands.)

3. The Bark scale is a non-linear transform of an audible frequency into the number range
0 to 24, such that if two frequencies are less than 1 apart on this scale, they are within
the same critical band.
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4. Weber’s law is concerned with how the difference limit, the smallest amplitude change of
a stimulus that can be distinguished, depends on the amplitude of the stimulus. (It states
that the two are proportional, except for a small correction near the sensation limit.)
Steven’s law on the other hand is concerned with how the amplitude of a stimulus is
perceived in relation to other amplitudes, for example how much must the amplitude
raise such that the stimulus is perceived as being twice as strong. (It states a power-law
relationship between amplitude and perceived stimulus strength.)
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Information Theory and Coding: Example Problem Set 15

A.
A variable length, uniquely decodable code which has the prefix property, and whose N binary
code word lengths are n1 ≤ n2 ≤ n3 ≤ · · · ≤ nN must satisfy what condition on code word
lengths? (State the condition, and name it.)

B.
You are asked to compress a collection of files, each of which contains several thousand pho-
tographic images. All images in a single file show the same scene. Everything in this scene
is static (no motion, same camera position, etc.) except for the intensity of the five light
sources that illuminate everything. The intensity of each of the five light sources changes in
completely unpredictable and uncorrelated ways from image to image. The intensity of each
pixel across all photos in a file can be described as a linear combination of the intensity of
these five light sources.

1. Which one of the five techniques discrete cosine transform, µ-law coding, 2-D Gabor

transform, Karhunen-Loève transform and Golomb coding would be best suited to remove
redundancy from these files, assuming your computer is powerful enough for each?

2. Explain briefly this transform and why it is of use here.

Model Answer – Example Problem Set 15

A.
The N binary code word lengths n1 ≤ n2 ≤ n3 ≤ · · · ≤ nN must satisfy the Kraft-McMillan Inequality
in order to form a uniquely decodable prefix code:

N
∑

i=1

1

2ni

≤ 1

B.

1. The Karhunen-Loève transform.

2. The Karhunen-Loève transform decorrelates random vectors. Let the values of the ran-
dom vector v represent the individual images in one file. All vector elements being linear
combinations of five values means that for each file there exists an orthonormal matrix M
such that each image vector v can be represented as v = Mt, where t is a new random
vector whose covariance matrix is diagonal and in which all but the first five elements are
zero. The Karhunen-Loève transform provides this matrix M by calculating the spectral
decomposition of the covariance matrix of v. The significant part of the transform result
M⊤v = t are only five numbers, which can be stored compactly for each image, together
with the five relevant rows of M per file.
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Information Theory and Coding: Example Problem Set 16

(a) For a binary symmetric communication channel whose input source is the alpha-
bet X = {0, 1} with probabilities {0.5, 0.5} and whose output alphabet is Y = {0, 1},
having the following channel matrix where ǫ is the probability of transmission error:

(

1 − ǫ ǫ
ǫ 1 − ǫ

)

(i) How much uncertainty is there about the input symbol once an output symbol
has been received?

(ii) What is the mutual information I(X; Y ) of this channel?

(iii) What value of ǫ maximises the uncertainty H(X|Y ) about the input symbol
given an output symbol?

(b) For a continuous (i.e. non-discrete) function g(x), define:

(i) its continuous Fourier transform G(k)

(ii) the inverse Fourier transform that recovers g(x) from G(k)

(c) What simplifications occur in the Fourier representation of a function if:

(i) the function is real-valued rather than complex-valued?

(ii) the function has even symmetry?

(iii) the function has odd symmetry?

(d) Give a bit-string representation of the number 13 in

(i) unary code for non-negative integers;
(ii) Golomb code for non-negative integers with parameter b = 3;
(iii) Elias gamma code for positive integers.
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Model Answer – Example Problem Set 16

(a)
(i) The uncertainty about the input X given the observed output Y from the channel

is the conditional entropy H(X|Y ), which is defined as:

H(X|Y ) = −
∑

x,y

p(x, y) log p(x|y)

So, we need to calculate both the joint probability distribution p(X,Y ) and the condi-
tional probability distribution p(X|Y ), and then combine their terms according to the above
summation.

The joint probability distribution p(X,Y ) is

(

0.5(1 − ǫ) 0.5ǫ
0.5ǫ 0.5(1 − ǫ)

)

and the conditional probability distribution p(X|Y ) is

(

1 − ǫ ǫ
ǫ 1 − ǫ

)

Combining these matrix elements accordingly gives us the conditional entropy:

H(X|Y ) = − [0.5(1 − ǫ) log(1 − ǫ) + 0.5ǫ log(ǫ) + 0.5ǫ log(ǫ) + 0.5(1 − ǫ) log(1 − ǫ)]

= −(1 − ǫ) log(1 − ǫ) − ǫ log(ǫ)

(ii) One definition of mutual information is I(X; Y ) = H(X) − H(X|Y ). Since the
two input symbols are equi-probable, clearly H(X) = 1 bit. We know from (i)
above that H(X|Y ) = −(1 − ǫ) log(1 − ǫ) − ǫ log(ǫ), and so therefore, the mutual
information of this channel is:

I(X; Y ) = 1 + (1 − ǫ) log(1 − ǫ) + ǫ log(ǫ)

(iii) The uncertainty H(X|Y ) about the input, given the output, is maximised when
ǫ = 0.5, in which case it is 1 bit.

(b) The analysis and synthesis (or forward and inverse) continuous Fourier transforms
are, respectively:

(i) G(k) =
∫ +∞

−∞

g(x)e−ikxdx

(ii) g(x) =
1

2π

∫ +∞

−∞

G(k)eikxdk

(c) The Fourier representation becomes simplified as follows:
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(i) If the function is real-valued rather than complex-valued, then its Fourier trans-
form has Hermitian symmetry: the real-part of the Fourier transform has even sym-
metry, and the imaginary part has odd-symmetry.

(ii) If the function has even symmetry, then its Fourier transform is purely real-valued.

(iii) If the function has odd symmetry, then its Fourier transform is purely imaginary-valued.

(d)
(i) 11111111111110 = 1130

The unary code word for 13 is simply 13 ones, followed by a final zero.

(ii) 1111010 = 140 10
We first divide n = 13 by b = 3 and obtain the representation n = q×b+r = 4×3+1
with remainder r = 1. We then encode q = 4 as the unary code word “11110”. To
this we need to attach an encoding of r = 1. Since r could have a value in the range
{0, . . . , b − 1} = {0, 1, 2}, we first use all ⌊log2 b⌋ = 1-bit words that have a leading
zero (here only “0” for r = 0), before encoding the remaining possible values of r
using ⌈log2 b⌉ = 2-bit values that have a leading one (here “10” for r = 1 and “11”
for r = 2).

(iii) 1110101 = 130 101
We first determine the length indicator m = ⌊log2 13⌋ = 3 (because 23 ≤ 13 < 24)
and encode it using the unary code word “1110”, followed by the binary represen-
tation of 13 (11012) with the leading one removed: “101”.
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Information Theory and Coding: Example Problem Set 17

(a) For continuous random variables X and Y , taking on continuous values x and y
respectively with probability densities p(x) and p(y) and with joint probability distribu-
tion p(x, y) and conditional probability distribution p(x|y), define:

(i) the differential entropy h(X) of random variable X;

(ii) the joint entropy h(X,Y ) of the random variables X and Y ;

(iii) the conditional entropy h(X|Y ) of X, given Y ;

(iv) the mutual information i(X; Y ) between continuous random variables X and Y ;

(v) how the channel capacity of a continuous channel which takes X as its input and
emits Y as its output would be determined.

(b) For a time-varying continuous signal g(t) which has Fourier transform G(k), state the
modulation theorem and explain its role in AM radio broadcasting. How does modulation
enable many independent signals to be encoded into a common medium for transmission,
and then separated out again via tuners upon reception?

(c) Briefly define

(i) The Differentiation Theorem of Fourier analysis: if a function g(x) has Fourier
transform G(k), then what is the Fourier transform of the nth derivative of g(x),
denoted g(n)(x)?

(ii) If discrete symbols from an alphabet S having entropy H(S) are encoded into
blocks of length n, we derive a new alphabet of symbol blocks Sn. If the occurrence
of symbols is independent, then what is the entropy H(Sn) of the new alphabet of
symbol blocks?

(iii) If symbols from an alphabet of entropy H are encoded with a code rate of R bits
per symbol, what is the efficiency η of this coding?

(d) Briefly explain
(i) how a signal amplitude of 10 V is expressed in dBµV;
(ii) the YCrCb coordinate system.
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Model Answer – Example Problem Set 17

(a)
(i) The differential entropy h(X) is defined as:

h(X) =
∫ +∞

−∞

p(x) log

(

1

p(x)

)

dx

(ii) The joint entropy h(X,Y ) of random variables X and Y is:

h(X,Y ) =
∫ +∞

−∞

∫ +∞

−∞

p(x, y) log

(

1

p(x, y)

)

dxdy

(iii) The conditional entropy h(X|Y ) of X, given Y , is:

h(X|Y ) =
∫ +∞

−∞

∫ +∞

−∞

p(x, y) log

(

p(y)

p(x, y)

)

dxdy

=
∫ +∞

−∞

∫ +∞

−∞

p(x, y) log

(

1

p(x|y)

)

dxdy

(iv) The mutual information i(X; Y ) between continuous random variables X and Y
is:

i(X; Y ) =
∫ +∞

−∞

∫ +∞

−∞

p(x, y) log

(

p(x|y)

p(x)

)

dxdy

=
∫ +∞

−∞

∫ +∞

−∞

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy

(v) The capacity of a continuous communication channel is computed by finding the
maximum of the above expression for mutual information i(X; Y ) over all possible
input distributions for X.

(b) The continuous signal g(t) is modulated into a selected part of the frequency spectrum,
defined by a transmitter carrier frequency. The signal is just multiplied by that carrier
frequency (in complex form, i.e. as a complex exponential of frequency ω). The mod-
ulation theorem asserts that then the Fourier transform of the original signal is merely
shifted by an amount equal to that carrier frequency ω:

g(t)eiωt ⇀↽ G(k − ω)

Many different signals can each be thus modulated into their own frequency bands and
transmitted together over the electromagnetic spectrum using a common antenna. Upon
reception, the reverse operation is performed by a tuner, i.e. multiplication of the re-
ceived signal by the complex conjugate complex exponential e−iωt [and filtering away any
other transmitted frequencies], thus restoring the original signal g(t).

(c)
(i) The Fourier transform of the nth derivative of g(x) is: (ik)nG(k)
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(ii) The entropy of the new alphabet of symbol blocks is simply n times the entropy
of the original alphabet:

H(Sn) = nH(S)

(iii) The efficiency of the coding is defined as

η =
H

R

(d)
(i) 10 V = 107 µV = (20 × 7) dBµV = 140 dBµV

(ii) Human colour vision splits the red/green/blue input signal into separate lumi-
nosity and colour channels. Compression algorithms can achieve a simple approx-
imation of this by taking a linear combination of about 30% red, 60% green, and
10% blue as the luminance signal Y = 0.3R + 0.6G + 0.1B (the exact coefficients
differ between standards and do not matter here). The remaining colour information
can be preserved, without adding redundancy, in the form of the difference signals
R − Y and B − Y . These are usually encoded scaled as Cb = (B − Y )/2 + 0.5 and
Cr = (R − Y )/1.6 + 0.5, such that the colour cube remains, after this “rotation”,
entirely within the encoded unit cube, assuming that the original RGB values were
all in the interval [0, 1].
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Information Theory and Coding: Example Problem Set 18

(a)
Suppose we know the conditional entropy H(X|Y ) for two slightly correlated discrete
random variables X and Y . We wish to guess the value of X, from knowledge of Y .
There are N possible values of X. Give a lower bound estimate for the probability of
error, when guessing X from knowledge of Y . What is the name of this relationship?

(b)
In an error-correcting (7/4) Hamming code, under what circumstance is there still a
residual error rate? (In other words, what event causes this error-correction scheme to
fail?)

(c)
Broadband noise whose power spectrum is flat is “white noise.” If the average power
level of a white noise source is σ2 and its excursions are zero-centred so its mean value is
µ = 0, give an expression describing the probability density function p(x) for excursions
x of this noise around its mean, in terms of σ. What is the special relationship between
the entropy of a white noise source, and its power level σ2?

(d)
Explain the phenomenon of aliasing when a continuous signal whose total bandwidth
extends to ±W is sampled at a rate of fs < 2W . If it is not possible to increase the
sampling rate fs, what can be done to the signal before sampling it that would prevent
aliasing?

(e) Prove that the sinc function,

sinc(x) =
sin(πx)

πx

is invariant under convolution with itself: in other words that the convolution of a sinc
function with itself is just another sinc function. You might find it useful to recall that
the Fourier transform of a sinc function is the rectangular pulse function:

Π(k) =

{

1
2π

|k| ≤ π
0 |k| > π
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Model Answer – Example Problem Set 18

(a) The error probability has lower bound:

Pe ≥
H(X|Y ) − 1

log2 N
This relationship is Fano’s Inequality.

(b) In an error-correcting (7/4) Hamming code, errors will fail to be corrected if more
than 1 bit in a block of 7 bits was corrupted.

(c) The probability density function for excursions x of the white noise source around
its mean value of 0, with average power level (or variance) σ2, is:

p(x) =
1√
2πσ

e−x2/2σ2

The special relationship is that for all possible noise power distributions having average
power σ2, the white noise source is the one with the greatest entropy.

(d) Sampling a signal effectively multiplies it with a “comb” function. This causes its
Fourier spectrum to be reproduced completely at each “tyne” of another comb function
in the frequency domain, where the tynes are separated from each other by the sampling
frequency fs. Provided that fs ≥ 2W then all of these reproduced copies of the signal’s
spectrum can still be perfectly separated from each other. We can recover the original
signal’s spectrum just by ideal low-pass filtering, to discard everything outside of ±W .
But this is no longer possible if fs < 2W , since in that case the reproduced copies of
the original spectrum overlap and become partly superimposed, and thus they can no
longer be separated from each other by low-pass filtering. To prevent aliasing when it
not possible to increase the sampling rate fs, the signal should first be low-pass filtered
before it is sampled, reducing its frequency composition to be within ±W0 such that the
condition fs ≥ 2W0 is then satisfied.

(e) When two functions are convolved together, their Fourier transforms are just mul-
tiplied together to give the Fourier transform of the result of the convolution. In this
case, convolving the sinc function with itself means that the Fourier transform of the
result would be the product of the rectangular pulse function with itself; which is, of
course, just another rectangular pulse function. Hence the result of the convolution is
just another sinc function.

As a slightly modified version of this question: What happens when two different sinc
functions (differing in their frequency parameter) are convolved together?

Answer: By the same reasoning as above, the result is always just whichever sinc function
had the lower frequency! Hence, somewhat bizarrely, convolution implements the “select
the lower frequency” operation on sinc functions...
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Information Theory and Coding: Example Problem Set 19

(a) Suppose that the following sequence of Yes/No questions was an optimal strategy
for playing the “Game of 7 questions” to learn which of the letters {A,B,C,D,E, F,G}
someone had chosen, given that their a priori probabilities were known:

“Is it A?” “No.”
“Is it a member of the set {B,C}?” “No.”
“Is it a member of the set {D,E}?” “No.”
“Is it F?” “No.”

(i) Write down a probability distribution for the 7 letters, p(A), ..., p(G), for which
this sequence of questions was an optimal strategy.

(ii) What was the uncertainty, in bits, associated with each question?

(iii) What is the entropy of this alphabet?

(iv) Now specify a variable length, uniquely decodable, prefix code for this alphabet
that would minimise the average code word length.

(v) What is your average coding rate R for letters of this alphabet?

(vi) How do you know that a more efficient code could not be developed?

(b) An invertible transform generates projection coefficients by integrating the product
of a signal onto each of a family of functions. In a reverse process, expansion coefficients
can be used on those same functions to reproduce the signal. If the functions in question
happen to form an orthonormal set, what is the consequence for the projection coeffi-
cients and the expansion coefficients?

(c) In the Information Diagram (a plane whose axes are time and frequency), why does
the Gabor-Heisenberg-Weyl Uncertainty Principle imply that information is quantised –
i.e. that it exists in only a limited number of independent quanta?
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Model Answer – Example Problem Set 19

(a)

(i) Under the Asymptotic Equipartition Theorem, the following a priori probability
distribution would make the given questioning strategy an optimal one:

p(A) p(B) p(C) p(D) p(E) p(F ) p(G)

1/2 1/8 1/8 1/16 1/16 1/16 1/16

(ii) Each Yes/No question had 1 bit entropy (uncertainty), because both possible
answers were equiprobable in each case.

(iii) Since entropy = −
∑

i

pi log2 pi, the entropy of this alphabet is 2.25 bits.

(iv) One possible variable length, uniquely decodable, prefix code is:

A B C D E F G

0 110 111 1000 1001 1010 1011

(v) Summing over all the letters, the probability of each letter times its code word
length in bits, gives us R = (1/2)(1) + (2/8)(3) + (4/16)(4) = 2.25 bits per letter
on average.

(vi) Because the coding rate equals the entropy of the source alphabet, and Shan-
non’s Source Coding Theorem tells us that this is the lower bound for the coding
rate, we know that no more efficient code could be developed.

(b) In the case that the functions used for projection and expansion are an orthonormal
set, then the projection coefficients and the expansion coefficients will be the same.

(c) The Gabor-Heisenberg-Weyl Uncertainty Principle asserts that in the Information
Diagram, there is a lower bound on the size of the smallest area that can be occupied by
any signal or filter. In other words, resolution of information along both axes at once,
is fundamentally limited. The fact that there is a smallest possible occupied area, or
quantum, means that information is quantised; there exists only a limited number of
independent quanta of data in any given piece of this plane.
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Information Theory and Coding: Example Problem Set 20

(a) Suppose that X is a random variable whose entropy H(X) is 8 bits. Suppose that
Y (X) is a deterministic function that takes on a different value for each value of X.

(i) What then is H(Y ), the entropy of Y ?

(ii) What is H(Y |X), the conditional entropy of Y given X?

(iii) What is H(X|Y ), the conditional entropy of X given Y ?

(iv) What is H(X,Y ), the joint entropy of X and Y ?

(v) Suppose now that the deterministic function Y (X) is not invertible; in other
words, different values of X may correspond to the same value of Y (X). In that
case, what could you say about H(Y ) ?

(vi) In that case, what could you say about H(X|Y ) ?

(b) Write down the general functional form for a 1-D Gabor wavelet, and explain how
particular choices for the values of its parameters would turn it into either the Fourier
basis or the delta function sampling basis, as two special cases.

(c) Show that the set of all Gabor wavelets is closed under convolution. I.e. show that
the convolution of any two Gabor wavelets is also a Gabor wavelet. Comment on how
this property relates to the fact that these wavelets are also closed under multiplication,
and that they are also self-Fourier.

(d) We wish to compute the Fourier Transform of a data sequence of 1,024 samples:

(i) Approximately how many multiplications would be needed if the Fourier integral
expressions were to be computed literally (as written mathematically) and without
a clever algorithm?

(ii) Approximately how many multiplications would be needed if an FFT algorithm
were used?
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Model Answer – Example Problem Set 20

(a)
(i) The entropy of Y : H(Y ) = 8 bits also.

(ii) The conditional entropy of Y given X: H(Y |X) = 0

(iii) The conditional entropy of X given Y : H(X|Y ) = 0 also.

(iv) The joint entropy H(X,Y ) = H(X) + H(Y |X) = 8 bits

(v) Since now different values of X may correspond to the same value of Y (X), the
distribution of Y has lost entropy and so H(Y ) < 8 bits.

(vi) Now knowledge of Y no longer determines X, and so the conditional entropy
H(X|Y ) is no longer zero: H(X|Y ) > 0

(b) The general functional form for a 1-D Gabor wavelet is:

f(x) = e−(x−x0)2/a2

e−ik0(x−x0)

In the case that we set the parameter a very large (a → ∞), then this becomes the clas-
sical Fourier basis (the complex exponentials). In the case that we set a small (a → 0)
and k0 = 0, then this becomes the classical Dirac delta function sampling basis.

(c) The Fourier Transform of a 1-D Gabor wavelet has exactly the same functional form,
but with the parameters simply interchanged or inverted:

F (k) = e−(k−k0)2a2

eix0(k−k0)

(In other words, Gabor wavelets are self-Fourier.) It is obvious that the product of any
two Gabor wavelets f(x) will still have the functional form of a Gabor wavelet. Therefore
the product’s Fourier transform will also preserve this general form. Hence (using the
convolution theorem of Fourier analysis), it follows that the family of Gabor wavelets are
also closed under convolution.

(d)
(i) A numerically literal computation of the Fourier transform of a sequence of 1,024

data samples would require on the order of 1 million multiplications.

(ii) If instead we used a Fast Fourier Transform algorithm, O(N log N) or only about
5,000 to 10,000 multiplications would be required, about 1% as many.
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Information Theory and Coding: Example Problem Set 21

Fast Fourier Transform algorithms use factorisation of
discrete complex exponentials to avoid repeated multi-
plications by common factors. The diagram on the right
shows a unit circle in the complex plane. The unit circle
represents a continuous complex exponential (one orbit
around it spans one cycle), and the 16 dots represent dis-
crete samples of this Fourier component which need to
be multiplied by 16 data points and summed to compute
one discrete Fourier coefficient.

Im

Re

(i) The circled dot e2πi/n is a primitive nth-root of unity, where for this diagram
n = 16. Write down a similar expression for the full set of all the nth-roots of unity,
indexed by k, where 1 ≤ k ≤ n.

(ii) The 16 frequency components needed to compute the discrete Fourier transform
of 16 data points are obtained by undersampling the dots; e.g. the 2nd frequency
uses every 2nd dot and orbits twice. Explain the redundancy that occurs when mul-
tiplying these discrete complex exponentials by the data points.

(iii) For n data points, roughly how many multiplications are needed in a Fast Fourier
Transform algorithm that avoids these redundancies?

Model Answer – Example Problem Set 21

(i) The set of all the nth-roots of unity is described by

e(2πi/n)k

or e2πik/n, (1 ≤ k ≤ n)

These are the discrete samples of one cycle of a complex exponential, from which
all higher frequencies (having integer multiples of this frequency) are obtained.

(ii) Successive discrete Fourier components are all constructed from the same set of
the nth-roots of unity as illustrated in the diagram, merely undersampled to con-
struct higher frequencies. But the same complex numbers (dots in the diagram) are
used again and again to multiply by the same data points within the inner product
summations that compute each Fourier coefficient. In addition, for all frequencies
higher than the first frequency, any given discrete sample (dot in the diagram) is
used in successive cycles to multiply more than one data point. These repeated
multiplications can be grouped together in successive factorisations using powers of

the primitive root ω = e2πi/n to implement the transform without redundant mul-
tiplications.

(iii) By eliminating the redundant multiplications through factorisation, a Fast Fourier
Transform algorithm can compute the discrete Fourier transform of n data points
with a number of multiplications that is on the order of O (n log2 n).
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Information Theory and Coding: Example Problem Set 22

(a) Calculate the entropy in bits for each of the following random variables:

(i) Pixel values in an image whose possible grey values are all the integers from 0 to
255 with uniform probability.

(ii) Humans grouped by whether they are, or are not, mammals.

(iii) Gender in a tri-sexual insect population whose three genders occur with proba-
bilities 1/4, 1/4, and 1/2.

(iv) A population of persons classified by whether they are older, or not older, than
the population’s median age.

(b) Let p(x) and q(x) be two probability distributions specified over integers x.

(i) What is the Kullback-Leibler distance (KL) between these distributions?

(ii) If we have devised an optimally compact code for the random variable described
by q(x), what does the KL tell us about the effectiveness of our code if the proba-
bility distribution is p(x) instead of q(x)?

(iii) Which axiom of distance metrics is violated by this distance?

(iv) What happens to this metric if there are some forbidden values of x for which
p(x) = 0, and other values of x for which q(x) = 0?

(c) Explain why the encoding of continuous signals into sequences of coefficients on Gabor
wavelets encompasses, as special cases, both the delta function sampling basis and the
Fourier Transform basis. Show how one particular parameter determines where a signal
representation lies along this continuum that bridges from delta function sampling to the
complex exponential.

(d) Explain why data can be compressed by encoding it into transforms (such as the
DCT, Fourier or Gabor) which result in coefficients that have a more narrow, peaked,
distribution than the original data. Without going into details about particular trans-
forms, explain why the coefficients obtained have distributions with less entropy than the
original signal or image, and why this enables compression.
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Model Answer – Example Problem Set 22

(a) By definition, H = −∑i pi log2 pi is the entropy in bits for a discrete random variable
distributed over states whose probabilities are pi. So:

(i) In this case each pi = 1/256 and the ensemble entropy summation extends over
256 such equiprobable grey values, so H = −(256)(1/256)(−8) = 8 bits.

(ii) Since all belong to the single state (humans ⊂ mammals), there is no uncertainty
about this state and hence the entropy is 0 bits.

(iii) The entropy of this tri-state gender distribution is −(1/4)(−2) − (1/4)(−2) −
(1/2)(−1) = 1.5 bits.

(iv) In this case both classes have probability 0.5, so the entropy is 1 bit.

(b) For p(x) and q(x) as probability distributions over the integers:
(i) The Kullback-Leibler distance between random variables is defined as

DKL(p‖q) =
∑

x

p(x) log
p(x)

q(x)

(ii) DKL(p‖q) reveals the inefficiency that arises from basing the code on the wrong
distribution. It specifies the number of additional bits that would be needed per
codeword, on average, if the actual distribution is p(x) instead of q(x).

(iii) The symmetry axiom for distance metrics is violated in this case.

(iv) The Kullback-Leibler distance becomes infinite, or undefined, when some values
of x have zero probability for either p(x), or q(x), but not both.

(c) To compute the representation of a signal or of data in the Gabor domain, we find its
expansion in terms of elementary functions having the form:

f(x) = e−ik0xe−(x−x0)2/a2

The parameter a (the space-constant in the Gaussian term) builds a continuous bridge
between the two domains: if the parameter a is made very large, then the second expo-
nential above approaches 1.0, and so in the limit our expansion basis becomes

lim
a→∞

f(x) = e−ik0x

– the ordinary Fourier basis. If the frequency parameter k0 and the size parameter a are
instead made very small, the Gaussian term becomes the approximation to a delta func-
tion at location xo, and so our expansion basis implements pure space-domain sampling:

lim
k0,a→0

f(x) = δ(x − x0)

Hence the Gabor expansion basis “contains” both of the other two domains of signal
representation simultaneously. It allows us to make a continuous deformation that selects
a representation lying anywhere on a one-parameter continuum between the two domains
that were hitherto distinct.
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(d) Transforms such as the Discrete Cosine Transform, the Fourier, and Gabor Transform
encode data into a sequence of coefficients on expansion functions. Because these expan-
sion basis functions are decorrelating, the resulting coefficients have non-uniform (and
usually quite peaked) distributions. For example, in many cases the peak of the distri-
bution occurs at a coefficient value of 0, and only very few large coefficients (positive or
negative) are encountered. Those few “do all the work” but because they are so sparsely
distributed, the distribution typically has very low entropy. Shannon’s Source Coding
Theorem explains that codebooks can be constructed with an average code length per
codeword that is no larger than the entropy of the distribution (which in this case is
small). Thus even lossless compression (allowing perfect recovery or decompression by
expansion) can yield large compression factors. When coarse quantisation of the com-
puted coefficients is also allowed, as done in JPEG compression using the DCT basis or in
JPEG-2000 compression using Daubechies wavelets, then even greater compression can
be achieved without visible or significant error (e.g. typical image compression factors of
30:1 or more).
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