10-704: Information Processing and Learning Spring 2012

Lecture 2: Gibb’s, Data Processing and Fano’s Inequalities
Lecturer: Aarti Singh Scribes: Min Xu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 Brief Review

Recall that, in last class, we introduced the following definitions:

e The Shannon information content of an outcome of a random variable is log, ﬁ bits

Entropy is the average uncertainty in random variable X: H(X) = E,[log, ﬁw)]

Relative entropy between two random variables is D(p||¢) = E,[log, %}, usually not equal to
D(qllp)

e Mutual information between two random variables X,Y: I(X,Y) = D(p(z,y) || p(z)p(y))

Joint entropy H(X,Y) = E,(, 4 [log; ;557

e Conditional entropy H(Y | X) = E,, ) [log, m]

2.1.1 Fundamental Limits in Information Theory

The data compression model is the following:

X1, Xn bi,...,by bits .

Suppose the source data is generated from some distribution p(X). If the rate of the compression, which is
the average number of bits used to encode one source symbol, is less than the source entropy H(X), that is,

p[%] < H(X), then perfect reconstruction is not possible.

The data transmission model is the following:

y| =)

Src — | Encoder ‘ l)’ Channel ‘L) ’ Decoder | — Receiver

If the rate of the code, which is %, is greater than the channel capactiy C' = max,x)I(X,Y),

then perfect reconstruction is not possible.
The inference problem is similar to the data transmission problem except we do not have an encoder:
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In the regression setting with f € F:

p(y| f(z)) 5

|
(OOLIG  Ganal ] [Docoder] -

In the density estimation setting with py, 0 € O:

Po (X)

6 —{ Channel |3 -

Under the log loss, we have that

Excess Risk(q) = Risk(g) — Risk(p)
=D(plla)

Fundamental limits of inference problems are often characterized by minimax lower bounds, i.e. the smallest
possible excess risk that any estimator can achieve for a class of models. For the density estimation problem,
the minimax excess risk is inf, sup,cp D(p || ¢) and we will show that this is equal to the capacity C' of the
corresponding channel. This would imply that for all estimators g, sup,cp D(p||q) > C.

We will state and prove these results formally later in the course. Information theory will help us identify
these fundamental limits of data compression, tranmission and inference; and in some cases also demonstrate
that the limits are achievable. The design of efficient encoders/decoders/estimators that achieve these limits
is the common objective of Signal Processing and Machine Learning algorithms.

2.2 Useful Properties of Information Quantities

1. H(X) >0, =0 if and only if X is constant, that is, p(z) is 1 for some outcome x.

For example, consider a binary random variable X ~ Bernoulli(f). Then # = 0 or § = 1 implies
that H(X) = 0. If = 1, then H(X) = 1 (which is the maximum entropy for a binary random variable
since § = § implies the distribution is uniform).

. (Gibbs Information Inequality) D(p||q) > 0, = 0 if and only if p(x) = ¢(z) for all z.

Proof: Define the support of p to be X = {z : p(z) > 0}

~Dlplla) =~ 3 ple) o 27
reX

= p(x)log
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The first step is justified for x € X. The first inequality follows from Jensen’s inequality since log is
concave.

Because log is strictly concave, we have equality only if p is a constant distribution or if g(—i; is a

constant, say ¢, for all « (i.e. if ¢(z) = ¢p(z)). The second inequality is an equality only when that
constant ¢ = 1 since ), p(x) = 1. [ |



Lecture 2: Gibb’s, Data Processing and Fano’s Inequalities 2-3

3. As a corollary, we get that I(X,Y) = D(p(x,y) || p(x)p(y)) > 0 and = 0 iff X,Y are independent, that
is, p(x,y) = p(x)p(y)-

4. H(X) <log|X| where X is the set of all outcomes with non-zero probability. Equality is achieved iff
X is uniform.

Proof: Let u be the uniform distribution over X, i.e. u(x) = 1/]X|.

1 1
D =E,[log —] — E,[log —
(pllu) = Epflog ] = By[log ]
— log || - H(X)
The claim follows from the previously described property of relative entropy. ]

5. The following relations hold between entropy, conditional entropy, joint entropy, and mutual informa-
tion:

HX,Y)
H(X) H(Y)

(a) HX,Y)=H(X)+H(Y |X)=H(Y)+H(Y|X)
(b) I(X,Y) = H(X) - H(X|Y) = HY) - HY [ X) = I(Y, X)
(¢) I(X,Y) = H(X,Y) - H(X|Y) - HY | X)

(d) I(X,Y)=H(X)+ H(Y) - H(X,Y)

6. Conditioning does not reduce entropy/Information always helps
H(X]Y) < H(X)

i.e. observing additional information cannot increase the random-ness of X.
Proof: Follows from properties 3 and 5(b) above. [

It is important to note that for a particular outcome y, it could be that H(X |Y = y) > H(X), but it
cannot happen when we average across all outcomes of Y.

2.3 Data Processing Inequality

Intuitively, the data processing inequality says that no clever transformation of the received code (channel
output) Y can give more information about the sent code (channel input) X than Y itself.
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Theorem 2.1 (Data processing inequality)
Suppose we have a probability model described by the following (Markov Chain):

X—-Y—>Z

where X L Z|Y, then it must be that I(X,Y) > I(X, Z).

Proof: By the Chain rule (see homework 1), we know that I(X, (Y, Z)) can be decomposed in two ways:
1(X,(v, 2)) = I(X, 2) + I(X, Y| 2)
= I(X,Y)+I(X,Z|Y)

Because I(X,Z|Y) = 0 by assumption (X1Z|Y), we have that I(X,Z) + I[(X,Y | Z) = I(X,Y). Since
mutual information is always non-negative, we get that I(X,7Z) < I(X,Y). ]

2.4 Sufficient Statistics

Suppose we have a family of distributions parametrized by parameter 6: {fp(z)}. Suppose data X is drawn
from a distribution fg(x).

Definition 2.2 A function of the data T(X) is called a statistic. A function T(X) is a sufficient statistic
relative to parameter 0 if X 10| T(X).

Here is visual way to remember sufficient statistic: for any statistic, it is true that
00— X —T(X)

For sufficient statistic, it is also true that
0—->T(X)—>X

That is, once we know T(X), the remaining random-ness in X does not depend on 6.

Example:
Suppose X1, ..., X,, ~ Ber (), then T(Xq, ..., X,,) = % i, X, is a sufficient statistic.

Suppose X1, ..., X;, ~ Unif(6,6 + 1), then T(Xq, ..., X,,) = (max; X;, min; X;) is a sufficient statistic. You
will prove this in the Homework.

2.5 Fano’s Inequality

Suppose we want to predict the sent code or channel input X from the received code or channel output Y.
If H(X |Y) =0, then intuitively, the probability of error p, should be 0.

Theorem 2.3 Suppose X is a random variable with finite outcomes in X. Let X = g(Y) be the predicted
value of X for some deterministic function g that also takes values in X. Then we have:

HX|Y) -1

e = X £ X)>
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Or, stated more strongly:
H(Ber(pe)) + pelog(|X¥ —1) = H(X |Y)

where Ber(pe) refers to the bernoulli error random variable E with Pr(E = 1) = p,.

1 ifX#X

Proof: Define random variable E = {
0 else

By the Chain rule, we have two ways of decomposing H(F, X |Y):
H(E,X|Y) = H(X|Y)+ H(E| X.Y)
HE,X|Y)= HE|Y) +HX|EY)
———
<H(E)=H(Ber(pc))

Also, H(E | X,Y) = 0 since F is deterministic once we know the values of X and Y (and g(Y")). Thus, we
have that
H(X]Y) < H(Ber(p.)) + H(X | E,Y)

To bound H(X | E,Y), we use the definition of conditional entropy:
H(X|E,Y)=HX|E=0Y)p(E=0)+H(X|E=1Y)p(E=1)

We will first note that H(X |E = 0,Y) = 0 since E = 0 implies that X = ¢g(Y) and hence, if we observe

both E=0and Y, X = g(Y) is no longer random. Also, P(E =1) = p,.

Next, we note that H(X |E = 1,Y) < log(|X| — 1). This is because if we observe E = 1 and ¢g(Y'), then X
cannot be equal to g(Y) and thus can take on at most |X — 1| values.

Putting everything together, we have
H(Ber(pe)) + pelog(|X —1) = H(X|Y)
as desired. -

Fano’s inequality will be critical to establishing the fundamental limits of data compression and transmission.
We will use it to characterize when reconstruction of sent code is not possible, i.e. the probability of error
is bounded away from zero. Similarly, Fano’s inequality will be used to establish the fundamental limits
of inference in machine learning problems by demonstrating when the probability of error of recovering the
true model from data is bounded away from zero.

2.5.1 For Random Functions
The following section, not in lecture, slightly generalizes Fano’s Inequality to possibly random functions g.

Theorem 2.4 Suppose X is a random variable with finite outcomes in X. Let X = g(Y) be the predicted
value of X for some possibly non-deterministic function g that also takes values in X. Then we have:
HX|Y)-1

e = X+ X)>

Or, stated more strongly:
H(Ber(pe)) + pelog(|X¥ —1) > H(X |Y)

where Ber(pe) refers to the bernoulli error random variable E with Pr(E = 1) = p,.
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1 ifX#X

Proof: Define random variable F =
0 else

By the Chain rule, we have two ways of decomposing H(E, X | X ):
H(E,X|X)=H(X|X)+HE|X,X)
HE,X|X)= HE|X) +HX|E,X)
———
<H(E)=H(Ber(pc))
Also, H(E| X, X) = 0 since E is deterministic once we know the values of X and X. Thus, we have that

H(X|X) < H(Ber(p.)) + H(X|E, X)

To bound H(X | E, X), we use the definition of conditional entropy:

HX|E,X)=HX|E=0,X)p(E=0)+HX|E=1,X)p(E=1)

We will first note that H(X | E =0, X) = 0 since E = 0 implies that X = X and hence, if we observe both
E =0 and X, X is no longer random. Also, P(E =1) = pe.

Next, we note that H(X | E = 1,X) < log(]X| —1). This is because if we observe E = 1 and X, then X
cannot be equal to X and thus can take on at most |X — 1| values.

To complete the proof, we just need to show that H(X | X) > H(X |Y). This holds since X — Y — X
forms a Markov chain and thus

I(X,Y) > I(X, X)(by data processing inequality)
HX)-H(X|Y)>H(X
H(X|Y) < HX

— H(X| X) (by venn-diagram relation)
| X).



