
Proof of Kraft-McMillan theorem∗

Nguyen Hung Vu†

平成 16年 2月 24日

1 Kraft-McMillan theorem
Let C be a code with n codewords with lenghthl1, l2, ..., lN . If

C is uniquely decodable, then

K(C) =

NX
i=1

2−li ≤ 1 (1)

2 Proof
The proof works by looking at the nth power ofK(C). If K(C)

is greater than one, thenK(C)n should grw expoentially with n.
If it does not grow expoentially with n, then this is proof thatPN

i=1 2−li ≤ 1.
Let n be and arbitrary integer. Then

hPN
i=1 2−li

in

=

=
“PN

i1=1 2−li1

”
· · ·“PN

i2=1 2−li2

”“PN
iN =1 2−lin

”

and then
"

NX
i=1

2−li

#n

=

NX
i1=1

NX
i2=1

· · ·
NX

in=1

2−(li1+i2+···+in) (2)

The exponentli1 + li2 + · · · + lin is simply the length of n
codewords from the codeC. The smallest value this exponent
can take is greater than or equal to n, which would be the case if
codwords were 1 bit long. If

l = max{l1, l2, · · · , lN}
then the largest value that the exponent can take is less than or

equal tonl. Therefore, we can write this summation as

K(C)n =

nlX
n

Ak2−k

whereAk is the number of combinations of n codewords that
have a combined length of k. Let’s take a look at the size of this
coeficient. The number of possibledistinct binary sequences of
length k is2k. If this code is uniquely decodable, then each se-
quence can represent one and only one sequence of codewords.
Therefore, the number of possible combinations of codewords
whose combined length is k cannot be greater than2k. In other
words,

Ak ≤ 2k.

∗Introduction to Data Compression, Khalid Sayood
†email: vuhung@fedu.uec.ac.jp

This means that

K(C)n =

nlX

k=n

Ak2−k ≤
nlX

k=n

2k2−k = nl − n + 1 (3)

But K(C) is greater than one, it will grow exponentially with
n, whilen(l−1)+1 can only grow linearly, So ifK(C) is greater
than one, we can always find an n large enough that the inequal-
ity (3) is violated. Therefore, for an uniquely decodable codeC,
K(C) is less than or equal ot one.

This part of of Kraft-McMillan inequality provides a necces-
sary condition for uniquely decodable codes. That is, if a code
is uniquely decodable, the codeword lengths have to satisfy the
inequality.

3 Construction of prefix code
Given a set of integersl1, l2, · · · , lN that satisfy the inequality

NX
i=1

2−li ≤ 1 (4)

we can always find a prefix code with codeword lengths
l1, l2, · · · , lN .

4 Proof of prefix code constructing

theorem
We will prove this assertion by developing a procedure for con-

structing a prefix code with codeword lengthsl1, l2, · · · , lN that
satisfy the given inequality. Without loss of generality, we can
assume that

l1 ≤ l2 ≤ · · · ≤ lN . (5)

Define a sequence of numbersw1, w2, · · · , wN as follows:

w1 = 0

wj =
Pj−1

i=1 2lj−li j > 1.

The binary representation ofwj for j > 1 would take up
dlog2 wje bits. We will use this binary representation to construct
a prefix code. We first note that the number of bits in the binary
representation ofwj is less than or equal tolj . This is obviously
true forw1. Forj > 1,

log2 wj = log2

hPj−1
i=1 2lj−li

i

= log2

h
2lj
Pj−1

i=1 2−li
i

= lj + log2

hPj−1
i=1 2−li

i

≤ lj .

1

The last inequality results from the hypothesis of the theo-
rem that

PN
i=1 2−li ≤ 1, which implies that

Pj−1
i=1 2li ≤ 1.

As the logarithm of a number less than one is negative,lj +
log2

ˆP
i = 1j−12−li

˜
has to be less thanlj .

Using the binary representation ofwj , we can devise a binary
code in the following manner: Ifdlog2 wje = lj , then the jth
codewordcj is the binary representation ofwj . If dlog2 wje < lj ,
thencj is the binary representation ofwj , with lj − dlog2 wje
zeros appended to the right. This certainly a code, but is it a prefix
code? If we can show that the codeC = {c1, c2, · · · , cN} is a
prefix, then we will have proved the theorem by construction.

Suppose that our claim is not true.. The for somej < k, cj is a
refix of ck. This means thatlj most significant bits ofwk form the
binary representation ofwj . Therefore if we right–shift the binary
of wk by lk − lj bits, we should get the binary representation for
wj . We can write this as

wj = b wk

2lk−lj
c.

However,

wk =

k−1X
i=1

2lk−li .

Therefore,

wk

2lk−lj
=

k−1X
i=0

2lj−li

= wj +

k−1X
i=j

2lj−li

= wj + 20 +

k−1X
i=j+1

2lj−lk

≥ wj + 1

(6)

That is, the smalleset value forwk

2
lk−lj

is wj + 1. This constra-
dicts the requirement forcj being the prefix ofck. Therefore,cj

cannot be the prefix ofck. As j and k were arbitrary, this means
that no codword is a prefix of another codeword, and the codeC
is a prefix code.

5 Projects and Problems
1. Suppose X is a random variable that takes on values from an

M–letter alphabet. Show that0 ≤ H(X) ≤ log2 M .

Hints: H(X) = −Pn
i=1 P (αi) log P (αi) where,M =

{α1 × m1, α2 × m2, · · · , αn × mn}, αi 6= αj∀i 6=
j,
Pn

i=1 mi = M . H(X) = −Pn
i=1

mi
M

log mi
M

=
− 1

M

Pn
i=1 mi(log mi − log M) = − 1

M

P
mi log mi +

1
M

log M
P

mi = − 1
M

P
mi log mi + log M

2. Show that for the case where the elements of an observed
sequence areidd 1 ,the entropy is equal to the first-order
entropy.

Hints: First–order entropy is defined by:
H1(S) = limn→∞ 1

n
Gn, where Gn =

−Pi1=m
i1=1

Pi2=m
i2=1 · · ·

P
in=1 in = mP (X1 =

i1, X2 = i2, · · · , Xn = in) log P (X1 = i1, X2 =

1iid: independent and identical distributed

i2, · · · , Xn = in) . And second–order entropy is defined
by H2(S) = −PP (X1) log P (X1). In case of iid,
Gn = −n

Pi1=m
i1=1 P (X1 = i1) log P (X1 = i1). Prove it!

3. Given an alphabetA = {a1, a2, a3, a4}, find the first–order
entropy in the following cases:

(a) P (a1) = P (a2) = P (a3) = P (a4) = 1
4
.

(b) P (a1) = 1
2
, P (a2) = 1

4
, P (a3) = P (a4) = 1

8
.

(c) P (a1) = 0.505, P (a2) = 1
4
, P (a3) = 1

8
, P (a4) =

0.12.

4. Suppose we have a source with a probability modelP =
{p0, p1, · · · , pm} and entropyHP . Suppose we have an-
other sourcewith probability modelQ = {q0, q1, · · · qm}
and entroyHQ, where

qi = pi i = 0, 1, · · · , j − 2, j + 1, · · · , m

and

qj = qj−1 =
pj+pj−1

2

How is HQ related toHP (greater, equal, or less)? Prove
your answer.

Hints: HQ − HP =
P

pi log pi −
P

qi log qi =

pj−1 log pj−1 + pj log pj − 2
pj−1+pj

2
log

pj−1+pj

2
=

φ(pj−1) + φ(pj) − 2φ(
pj−1+pj

2
). Whereφ(x) = x log x

andφ
′′
(x) = 1/x > 0 ∀x > 0.

5. There are several image and speech files among the accom-
panying data sets.

(a) Write a program to compute the first–order entropy of
some of the image and speech files.

(b) Pick one of the image files and compute is second–
order entropy. Comment on the difference between
the first–order and second–order entropies.

(c) Compute the entropy of the difference between neigh-
boring pixels for the image you used in part (b). Com-
ment on what you discovered.

6. Conduct an experiemnt to see how well a model can describe
a source.

(a) Write a program that randomly selects letters from
a 26–letter alphabet{a, b, c, · · · , z} and forms four–
letter words. Form 100 such words and see how many
of these words make sence.

(b) Among the accompanying data sets is a file called
4letter.words , which contains a list of four–
letter words. Using this file, obtain a probability
model for the alphabet. Now repeat part (a) gener-
ating the words using probability model. To pick let-
ters according to a probability model, construct the
cumulative density function(cdf)FX(x)2. Using a
uniform pseudorandom number generator to generate
a value r, where0 ≤ r < 1, pick the letterxk if
FX(xk − 1) ≤ r < FX(xk). Compare your results
with those of part (a).

(c) Repeat (b) using a single–letter context.

(d) Repeat (b) using a two–letter context.

7. Determine whether the following codes are uniquely decod-
able:

2cumulative distribution function(cdf) FX(x) = P (X ≤ x)

(a) {0, 01, 11, 111}(01 11 = 0 111)

(b) {0, 01, 110, 111} (01 110 = 0 111 0)

(c) {0, 10, 110, 111}, Yes. Prove it!

(d) {1, 10, 110, 111}, (1 10 = 110)

8. Using a text file compute the probabilities of each letterpi.

(a) Assume that we need a codeword of lengthd 1
log2 pi

e
to encode the letter i. Determine the number of bits
needed to encode the file.

(b) Compute the conditional probabilityP (i/j) of a let-
ter i given that the previous letter is j. Assume that
we needd 1

log2 P (i/j)
e to represent a letter i that fol-

lows a letter j. Determine the number of bits needed
to encode the file.

6 Huffman coding

6.1 Definition

A minimal variable-length character encoding based on the fre-
quency of each character. First, each character becomes a trivial
tree, with the character as the only node. The character’s fre-
quency is the tree’s frequency. The two trees with the least fre-
quencies are joined with a new root which is assigned the sum
of their frequencies. This is repeated until all characters are in
one tree. One code bit represents each level. Thus more frequent
characters are near the root and are encoded with few bits, and
rare characters are far from the root and are encoded with many
bits.

6.2 Example of Huffman encoding design

AlphabetA = {a1, a2, a3, a4} with P (a1) = P (a2) = 0.2
and P (a4) = P (a5) = 0.1. The entropy of this source is
2.122bits/symbol. To design the Huffman code, we first sort the
letters in a descending probability order as shown in table below.
Herec(ai) denotes the codewords as

c(a4) = α1 ∗ 0
c(a5) = α1 ∗ 1

whereα1 is a binary string, and * denotes concatnation.

The initial five–letter alphabet
Letter Probability Codeword
a2 0.4 c(a2)
a1 0.2 c(a1)
a3 0.2 c(a3)
a4 0.1 c(a4)
a5 0.1 c(a5)

Now we define a new alphabeA′ with a four–letter
a1, a2, a3, a

′
4 wherea

′
4 is composed ofa4 anda5 and has a proba-

bility P (a
′
4) = P (a4)+P (a5) = 0.2. We sort this new alphabet

in descending order to obtain following table.

The reduced four–letter alphabet
Letter Probability Codewords
a2 0.4 c(a2)
a1 0.2 c(a1)
a3 0.2 c(a3)

a
′
4 0.2 α1

In this alphabet,a3 anda
′
4 are the two letters at the bottom of

the sorted list. We assign their codewords as

c(a3) = α2 ∗ 0

c(a
′
4) = α2 ∗ 1

but c(a
′
4) = α1. Therefore

α1 = α2 ∗ 1

which means that

c(a4) = α2 ∗ 10
c(a5) = α2 ∗ 11.

At this stage, we again define a new alphabetA′′ that consists
of three lettersa1, a2, a

′
3, wherea

′
3 is composed ofa3 anda

′
4 and

has a probabilityP (a
′
3) = P (a3) + P (a

′
4) = 0.4. We sort this

new alphabet in descending order to obtain the following table.

The reduced four–letter alphabet
Letter Probability Codewords
a2 0.4 c(a2)

a
′
3 0.4 α2

a1 0.2 c(a1)

In this case, the two least probable symbols area1 and a
′
3.

Therefore,

c(a
′
3) = α3 ∗ 0

c(a1) = α3 ∗ 1

But c(a
′
3) = α2. Therefore,

α2 = α3 ∗ 0

which means that.

c(a3) = α3 ∗ 00
c(a4) = α4 ∗ 010
c(a5) = α5 ∗ 011.

Again we define a new alphabet, this time with only two let-
ter a

′′
3 , a2. Herea

′′
3 is composed of lettersa

′
3 and a1 and has

probabilityP (a
′′
3) = P (a′3) + P (a1) = 0.6. We now have the

following table

The reduced four–letter alphabet
Letter Probability Codewords
a′′3 0.6 α3

a2 0.4 c(a2)

As we have only two letters, the codeword assignment is
straghtforward:

c(a′′3) = 0
c(a2) = 1

which means thatα3 = 0, which in turn means that

c(a1) = 01
c(a3) = 000
c(a4) = 0010
c(a5) = 0011

and the Huffman finally is given here.

The reduced four–letter alphabet
Letter Probability Codewords
a2 0.4 1
a1 0.2 01
a3 0.2 000
a4 0.1 0010
a5 0.1 0011

6.3 Huffman code is optimal

The neccessary conditions for an optimal variable binary code
are as follows:

1. Condition 1: Give any two letteraj andak, if P (aj) ≥
P (ak), thenlj ≤ lk, wherelj is the number of bits in the
codeword foraj .

2. Condition 2: The two least probable letters have codewords
with the same maximum lengthlm.

3. Condition 3: In the tree corresponding to the optimum code,
there must be two branches stemming3 from each interme-
diate node.

4. Condition 4: Suppose we change an intermediate node into
a leaf node by combining all the leaves descending from
it into a composite word of a reduced alphabet. Then, if
the original tree was optimal for the original alphabet, the
reduced tree is optimal for reduced alphabet.

The Huffman code satisfies all conditions above and therefore
be optimal.

6.4 Average codeword length

For a source S with alphabetA = {a1, a2, · · · , aK}, and prob-
ability model {P (a1), P (a2), · · · , P (aK)}, the average code-
word length is given by

l̄ =

KX
i=1

P (ai)li.

The difference between the entropy ofthe sourcce H(S) and the
average length is

H(S)− l̄ = −PK
i=1 P (ai) log2 P (ai)−

PK
i=1 P (ai)li

=
P

P (ai)
“
log
h

1
P (ai)

− li
i”

=
P

P (ai)
“
log
h

1
P (ai)

i
− log2(2

li)
”

=
P

P (ai) log
h

2−li

P (ai)

i

≤ log2

ˆP
2li
˜

6.5 Length of Huffman code

It has been proven that

H(S) ≤ (̄l) < H(S) + 1 (7)

where H(S) is the entropy of the source S.

3生じる

6.6 Extended Huffman code

Consider an alphabetA = {a1, a2, · · · , am}. Each element of
the sequence is generated independently of the other elements in
the sequence. The entropyo f this source is give by

H(S) = −
NX

i=1

P (ai) log2 P (ai)

We know that we can generate a Huffman code for this source
with rate r such that

H(S) ≤ R < H(S) + 1 (8)

We have used the looser bound here; the same argument can
be made with the tighter bound. Notice thatwe have used ”rate
R” to denote the number of bits per symbol. This is a standard
convention in the data compression literate. However, in the co-
munication literature, the word ”rate” ofter refers to the number
of bits per second.

Suppose we now encode the sequence by generating one code-
word for every n symbols. As there aremn combinations of
n symbols, we will needmn codewords in our Huffman code.
We could generate this code by viewingmn symbols as let-

ters of an extended alphabet.A(n) = {
ntimesz }| {

a1a1...a1, a1a1...a2,
..., a2, a1a1, ...am, a1a1...a2a1, ..., amam...am} from a source
S(n). Denote the rate for the new source asR(n). We know

H(S(n)) ≤ R(n) < H(S(n)) + 1. (9)

R =
1

n
R(n)

and

H(S(n))

n
≤ R <

H(S(n))

n
+

1

n
It can be proven that

H(S(n)) = nH(S)

and therefore

H(S) ≤ R ≤ H(S) +
1

n

6.6.1 Example of Huffman Extended Code

A = {a1, a2, a3} with probabilities modelP (a1) =
0.8, P (a2) = 0.02 and P (a3) = 0.18. The entropy for this
source is 0.816 bits per symbol. Huffman code this this source is
shown below

a1 0
a2 11
a3 10

and the extended code is

a1a1 0.64 0
a1a2 0.016 10101
a1a3 0.144 11
a2a1 0.016 101000
a2a2 0.0004 10100101
a2a3 0.0036 1010011
a3a1 0.1440 100
a3a2 0.0036 10100100
a3a3 0.0324 1011

6.7 Nonbinary Huffman codes

6.8 Adaptive Huffman Coding

7 Arithmetic coding
4Use the mapping

X(ai) = i, ai ∈ A (10)

whereA = {a1, a2, ...am} is the alphabet for a discrete source
and X is a random variable. This mapping means that given a
probability modelmathcalP for the source, we also have a prob-
ability density function for the random variable

P (X = i) = P (ai)

and the curmulative density function can be defined as

FX(i) =

iX

k=1

P (X = k).

DefineT̄X(ai) as

T̄X(ai) =

i−1X

k=1

P (X = k) +
1

2
P (X = i) (11)

= FX(i− 1) +
1

2
P (X = i) (12)

For eachai, T̄X(ai) will have a unique value. This value can be
used as a unique tag forai. In general

T̄
(m)
X (xi) =

X
y<xi

P (y) +
1

2
P (xi) (13)

4Arithmetic:算数,算術

