Proof of Kraft-McMillan theorem
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1 Kraft-McMillan theorem This means that
LetC be a code with n codewords with lenghiihiz, ..., Ix. If nl nl
C is uniquely decodable, then K" => A27"<dy 22 =nl—-nt+1 (3
k=n k=n
N
_ —1; But K (C) is greater than one, it will grow exponentially with
Koy =Y 27%<1 1
©) ; - @ n, whilen(l— 1)+ 1 can only grow linearly, So if{ (C) is greater

than one, we can always find an n large enough that the inequal-
ity (3) is violated. Therefore, for an uniquely decodable cGde
K (C) is less than or equal ot one.
2 PrOOf (Th)is part of of Kraf?—McMiIIan inequality provides a necces-
The proof works by looking at the nth power &f(C). If K (C) sary condition for uniquely decodable codes. That is, if a code
is greater than one, theli§(C)™ should grw expoentially with n. is uniquely decodable, the codeword lengths have to satisfy the
If it does not grow expoentially with n, then this is proof that inequality.

SN2t
Let n be and arbitrary integer. Then
s, 0] = 3 Construction of prefix code
i=1 -
_ (Zﬁ\lle 9—lig ) ... Given a set of integers, I2, - - - , Iy that satisfy the inequality
N -1 N —l,, N
(212:1 2 2) (ZiNzl 2 ) ZZ_” <1 4)
and then i=1

we can always find a prefix code with codeword lengths

N n N N N
i=1 i1=112=1

L= i ] in=1

The exponent;, + l;, + --- + [;,, is simply the length of n . .
codewords from the cod€. The smallest value this exponent 4  Proof of pl’efIX code COﬂStFUCtIng

can take is greater than or equal to n, which would be the case if

codwords were 1 bit long. If theorem
We will prove this assertion by developing a procedure for con-
L=maz{ly,lz, -, Iv} structing a prefix code with codeword lengthsls, - - - , Iy that
then the largest value that the exponent can take is less than @atisfy the given inequality. Without loss of generality, we can
equal tonl. Therefore, we can write this summation as assume that
I <l < <ZlIn. (5)
nl .
Defin n f num follows:
K(C)" :ZAka efine a sequence of numbers, wo, - - - ,wn as follows
n w1 = 0
where Ay, is the number of combinations of n codewords that w; = 1ol —li j>1.

have a combined length of k. Let’s take a look at the size of this The binary representation af; for ; > 1 would take up
coeficient. The number of possibledistinct binary sequences o !

. k . . .
length k is2". If this code is uniquely decodable, then each se- 5 hrefix code. We first note that the number of bits in the binary

guence can represent one and only one sequence of codewor presentation of; is less than or equal tg. This is obviously
Therefore, the number of possible combinations of codewords[rue forw,. Forj > 1

whose combined length is k cannot be greater ttfanin other
words,

f]—logz wj | bits. We will use this binary representation to construct

logyw; = log, 5;11 QIJ_Zi]
log, [ 47 270

I; +log, [Zg’;f 2*11‘]
lj.
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The last inequality results from the hypothesis of the theo- i2,-+,Xn = in) . And second-order entropy is defined
rem thaty> ", 27" < 1, which implies thaty/_ 2" < 1. by H2(S) = —> P(X1)log P(X1). In case ofiid,
As the logarithm of a number less than one is negatiyet- Gn=-—n3 71" P(X1 =i1)log P(X1 = i1). Prove it!
log, [>°i = 17""27"] has to be less thap.

Using the binary representation @f;, we can devise a binary
code in the following manner: Iflog, w;] = l;, then the jth

3. Given an alphabet = {a1, az, as, a4}, find the first-order
entropy in the following cases:

codeword:; is the binary representation af;. If [log, w;] < I, (@) P(a1) = P(az) = P(as) = P(as) = 3.

thenc; is the binary representation af;, with I; — [log, w;]| (b) P(a1) = L, P(as) = 1, P(as) = P(as) = L.
zeros appended to the right. This certainly a code, but is it a prefix ! )

code? If we can show that the code= {c1,cz, -+ ,cn}isa () Pla1) = 0.505, Paz) = 7, P(as) = g, Pas) =
prefix, then we will have proved the theorem by construction. 0.12.

Suppose that our claim is not true.. The for sgme k, ¢; is a 4. Suppose we have a source with a probability mdde-
refix of ¢;,. This means thdt most significant bits ofv;, form the {po,p1, -+ ,pm} and entropyHp. Suppose we have an-
binary representation af;. Therefore if we right—shift the binary other sourcewith probability mod&) = {qo,q1, - qm}
of wy, by I, — I; bits, we should get the binary representation for and entroyH g, where

wj. We can write this as
qi = Pi 2207177.]_27.]+177m

w; =l ) and
However, 4 = qj_1 = HFRim
- 2
k-1 i How is Hq related toH p( greater, equal, or less)? Prove
wp =Y 2 your answer.
i=1 Hints: HQ — Hp = qu;logpi — Zqilogqi =

Therefore,

pi1logp; 1 + pjlogp; — 2B=LEL jog i1l

$(pj-1) + $(p;) — 26("=51). Whereg(z) = zlog
wi ki it andg’ (z) = 1/z > 0 Vz > 0.
ole—tj — P 5. There are several image and speech files among the accom-
o1 panying data sets.
= w; + Z oli—li : .
i (a) Write a program to compute the first—order entropy of
i=j

©) some of the image and speech files.
—w; + 20+ kil oli—l (b) Pick one of the image files and compute is second—
’ S order entropy. Comment on the difference between

S w41 the first—order and second-order entropies.
- (c) Compute the entropy of the difference between neigh-
Thatis, the smalleset value fgr“- is w; + 1. This constra- boring pixels for the image you used in part (b). Com-
dicts the requirement fat; being the prefix o;,. Thereforec; ment on what you discovered.
cannot be the prefix ofs. As j and k were arbitrary, this means g conduct an experiemnt to see how well a model can describe
that no codword is a prefix of another codeword, and the ¢ode a source.

is a prefix code. _
(a) Write a program that randomly selects letters from

a 26-letter alphabdla, b, ¢, - - - , z} and forms four—
letter words. Form 100 such words and see how many

5 Projects and Problems of these words make sence.
. . (b) Among the accompanying data sets is a file called
1. Suppose X is a random variable that takes on values from an Aletter words which contains a list of four—

M-letter alphabet. Show that< H(X) < log; M. letter words. Using this file, obtain a probability

Hints: H(X) = — >, P(e:)log P(ai) where, M = model for the alphabet. Now repeat part (a) gener-

{ou X mi,az X Mg, n X mn};ai m?_'é %'WY? # ating the words using probability model. To pick let-

]7;i=1nmi = M. HX) = - 21121 a7 log 5 = ters according to a probability model, construct the

=31 2izy Mi(logmi —log M) = —5; 3" milogmi + cumulative density functioricdf)Fx (z)2. Using a

ﬁ log M >~ m; :’ 7ﬁ S m; logm; + log M ‘ uniform pseudorandom number. generator to ge.nerate
a value r, wherdd < r < 1, pick the letterxy if

2. Show that for the case where the elements of an observed Fx(zx — 1) < r < Fx(z)). Compare your results
sequence areld ' the entropy is equal to the first-order with those of part (a).
entropy. . .
. Py . . . (c) Repeat (b) using a single—letter context.

Hints: First—order entropy is defined by: )

Hi(S) _ lim, oo LG, where G, _ (d) Repeat (b) using a two—letter context.

- Zﬁj{l ZZZ" D 1 tn = mP(Xy = 7. Determine whether the following codes are uniquely decod-

il,XQ = i?a"'7X’rL = Zn)logP(Xl - i17X2 = able:

Liid: independent and identical distributed 2cumulative distribution functioficdf) Fx (z) = P(X < x)



(@) {0,01,11,111}(0111 = 0111) In this alphabetas anda, are the two letters at the bottom of
(b) {0,01,110,111} (01110 =01110) the sorted list. We assign their codewords as

(c) {0,10,110,111}, Yes. Prove it!
(d) {1,10,110,111}, (110 = 110) clag) = a0
8. Using a text file compute the probabilities of each letter
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butc(a/) = ay. Therefore
1 4
(a) Assume that we need a codeword of Ien%}

to encode the letter i. Determine the number of bits

needed to encode the file. o =azxl

(b) Compute the conditional probability(i/;) of a let- which means that
ter i given that the previous letter is j. Assume that
we need(W} to represent a letter i that fol- clas) = a2x10
lows a letter’j. Determine the number of bits needed clas) = oaox1l

to encode the file. At this stage, we again define a new alphahétthat consists

of three lettersiy, as, a;,, Wherea'3 is composed ofi3 anda:1 and
has a probabilit)P(a;,) = P(a3) + P(a;) = 0.4. We sort this

6 Huffman Coding new alphabet in descending order to obtain the following table.
P The reduced four—letter alphabet
6.1 Definition Letter Probability Codewords
A minimal variable-length character encoding based on the fre- a2 0.4 c(az2)
guency of each character. First, each character becomes a trivial as 0.4 o2
tree, with the character as the only node. The character’s fre- a1 0.2 c(ar)

qguency is the tree’s frequency. The two trees with the least fre-
guencies are joined with a new root which is assigned the sum In this case, the two least probable symbols @reand a;'
of their frequencies. This is repeated until all characters are inTherefore '

one tree. One code bit represents each level. Thus more frequent '

characters are near the root and are encoded with few bits, and l

rare characters are far from the root and are encoded with many ZEZ?; B Zi i(l)
bits. -
Butc(a;,) = ap. Therefore,
6.2 Example of Huffman encoding design o2 =az*0
AlphabetA = {a1, a2, a3, a1} with P(a1) = P(as) = 0.2 which means that.

and P(as) = P(as) = 0.1. The entropy of this source is clas) = as*00
2.122bits/symbol. To design the Huffman code, we first sort the ? ~ 3

. . - ) clas) = asx010
letters in a descending probability order as shown in table below. clas) = as#011

Herec(a;) denotes the codewords as
Again we define a new alphabet, this time with only two let-

clas) = a1x0 ter a;',ag. Hereag is composed of Ietters; anda; and has
clas) = arxl probability P(a3 ) = P(a}) + P(a1) = 0.6. We now have the
whereq; is a binary string, and * denotes concatnation. following table

The initial five—letter alphabet
Letter Probability Codeword

The reduced four—letter alphabet

. 0.4 c(a2) Letter Probability Codewords
a1 0.2 c(ar) ay 0.6 as
as 0.2 c(as) az 0.4 c(az)
a4 0.1 c(a4) . .
as 0.1 c(as) As we have only two letters, the codeword assignment is
straghtforward:
Now we define a new alphabet’ with a four-letter
a1, az,as, ay Wherea, is composed ofi, andas and has a proba- clag) = 0
bility P(ay) = P(as)+ P(as) = 0.2. We sort this new alphabet claz) = 1

in descending order to obtain following table. which means thats = 0, which in turn means that

The reduced four—letter alphabet

Letter Probability Codewords c(ar) = 01
as 0.4 c(az) c(az) = 000
a 0.2 c(ay) c(as) = 0010
as 0.2 c(as) c(as) = 0011

’

ay 0.2 a1 and the Huffman finally is given here.



The reduced four—letter alphabet 6.6 Extended Huffman code
Letter Probability Codewords

Consider an alphabet = {a1, a2, - - ,am }. Each element of
az 0.4 1 . . .
a 02 o1 the sequence is generated independently of the other elements in
as 0.2 000 the sequence. The entropyo f this source is give by
on 0.1 0010 N
as 0.1 0011 H(S) == P(a;)log, P(a)
i=1
] ) We know that we can generate a Huffman code for this source
6.3 Huffman code is optimal with rate r such that
The neccessary conditions for an optimal variable binary code H(S)<R<H(S)+1 ®)

are as follows: We have used the looser bound here; the same argument can

be made with the tighter bound. Notice thatwe have used "rate
R” to denote the number of bits per symbol. This is a standard
convention in the data compression literate. However, in the co-
munication literature, the word "rate” ofter refers to the number
2. Condition 2: The two least probable letters have codewords of bits per second.

with the same maximum length, . Suppose we now encode the sequence by generating one code-
word for every n symbols. As there are™ combinations of
n symbols, we will needn™ codewords in our Huffman code.
We could generate this code by viewing™ symbols as let-

ntimes
4. Condition 4: Su h intermediate node intoters of an extended alphabetd™ = {Gra;...ar,a1a;...a2
. : Suppose we change an intermediate node into p 1Q1...41, Q101 )

a leaf node by combining all the leaves descending from..., a2, a1a1, ...am, a1a1...a2al, ..., amam...am } from a source

it into a composite word of a reduced alphabet. Then, if S(™). Denote the rate for the new sourceR&’. We know

the original tree was optimal for the original alphabet, the

1. Condition 1: Give any two letteta; anday, if P(a;) >
P(ax), thenl; < i, wherel; is the number of bits in the
codeword fora,; .

3. Condition 3: In the tree corresponding to the optimum code,
there must be two branches stemniifigm each interme-
diate node.

(n) (n) (n)
reduced tree is optimal for reduced alphabet. H(S™) < B < H(S™) +1. ©)

The Huffman code satisfies all conditions above and therefore R— lR(n)

be optimal. T n
and
H(S™) _ p _ H(S™) 1
6.4 Average codeword length n Sh<— —
) It can be proven that

For a source S with alphabdt= {a1, as,- - ,ax }, and prob-

ability model {P(a1), P(az), - ,P(ak)}, the average code- H(S™) = nH(S)

word length is given by and therefore

K H(S)< R< H(S) +
I= ZP(ai)li. "

The difference between the entropy ofthe sourcce H(S) and thé.6.1 Example of Huffman Extended Code
average length is

A = {ai,a2,a3} with probabilites modelP(a;) =
0.8, P(a2) = 0.02 and P(a3) = 0.18. The entropy for this
HS) -1 = - Zfil P(ai)log, P(a;) — Zfil P(ai)l; source is 0.816 bits per symbol. Huffman code this this source is
shown below
= X Pa) (log [+t — 1))
= > P(ai) (log ‘P(zi)} - 10%2(21"')) a0
_ ] o=l a2 11
= xr (‘“)llo_g [p@)] az 10
< log, [227] and the extended code is
ajay 0.64 0
6.5 Length of Huffman code aiaz 0.016 10101
ai1as 0.144 11
It has been proven that aza; 0.016 101000
B azaz 0.0004 10100101
H(S) < (I) < H(S) +1 @) azaz  0.0036 1010011
azar 0.1440 100

where H(S) is the entropy of the source S. asaz  0.0036 10100100

SooD azaz 0.0324 1011




6.7 Nonbinary Huffman codes

6.8 Adaptive Huffman Coding

7 Arithmetic coding
4Use the mapping

X(a;) =i, a;€A (10)

whereA = {a1,a2,...an } is the alphabet for a discrete source
and X is a random variable. This mapping means that given a
probability modelnathcal P for the source, we also have a prob-
ability density function for the random variable

P(X =1) = P(a;)
and the curmulative density function can be defined as
Fx(i) =Y _P(X =k).
k=1

DefineTx (a;) as

i—1

Tx(a) =S P(X = k) + %P(X —4) (11)
— Fx(i—1)+ %p(x i) (12)

For eachu;, Tx (a;) will have a unique value. This value can be
used as a unique tag faf. In general

T ) = 32 Ply) + 4 P(e) (13)

y<z;

4Arithmetic: 0 O, 00



