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Since this material is not in the text in the form we were discussing,
here are some notes on Shannon’s theory of perfect security. We as-
sume we are dealing with a private-key encryption system with a set K
of possible keys, a set M of possible messages, and a set C of possible
ciphertexts. We assume that a key K is chosen from the set K accord-
ing to a certain probability distribution, and a message M is chosen
from the set M with another probability distribution. The “encryp-
tion machine” then produces from this data a ciphertext C(M, K) ∈ C.
Note that the probability distributions on K and M define one on C,
since the ciphertext is a function of the message and the key. For sim-
plicity (so we never have to worry about dividing by zero), let’s assume
each element of K, M, and C has positive probability. (Otherwise just
throw away the elements with probability 0.) We denote probabilities
by P ( ), conditional probabilities by P ( | ).

Definition 1 (Shannon, 1949). The system is perfectly secure or per-

fectly secret if knowing the ciphertext gives no more information about
the message that one would know without intercepting the encoded
message at all, or in other words, if P (M = m) = P (M = m | C = c)
for any c ∈ C and any m ∈ M, regardless of what probability distribu-
tion is chosen on M. As we saw in class, this is equivalent to saying
that P (C = c) = P (C = c | M = m) for any c and m.

This definition would be useless if there were no examples satisfying
it, but fortunately we have:

Theorem 1. The one-time pad is perfectly secure.

Proof. Recall the way this works: we fix a message length n and assume
K = M = C = {all sequences of n bits}. We choose the key according
to the uniform distribution, so all keys are equally likely (with prob-
ability 2−n). Then given that the message is M = m and the key is
K = k, the ciphertext is c = m ⊕ k, and we decode using the same
key: m = c ⊕ k. Note that the key and the message are chosen totally
independently of one another, so regardless of what the message is,
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all ciphertexts are equally likely with probability 2−n. In other words,
regardless of c and m, P (C = c) = P (C = c | M = m) = 2−n, so we
have perfect security. �

This raises the question of what other systems can satisfy the defini-
tion. Unfortunately, it turns out that for perfect security, the key has
to be as long as the message, and the system has to be very much like
a one-time pad!

Theorem 2. Suppose an encryption system as above is perfectly secure.

Then the set K of possible keys must be as big as the set M of possible

messages.

Proof. Suppose not, i.e., |M| > |K|. If we fix a ciphertext c ∈ C,
there are at most |K| possible decodings of c, and since |M| > |K|,
there must be a message m that cannot encode to c. Thus for this
choice of m, P (M = m | C = c) = 0. Since we are assuming that
P (M = m) > 0 for all m ∈ M, P (M = m | C = c) 6= P (M = m),
contradicting perfect security. �

Theorem 3 (Shannon, 1949). Assume we have an encryption system

as above and the sets K, M, and C all have the same size. Then

(1) Each key must be chosen with equal probability 1

|K|
.

(2) For every message m ∈ M and every possible ciphertext c ∈ C,

there must be a unique key k such that C(m, k) = c.

Proof. Part of (2) is like the last theorem — if we are given m and c and
no key k satisfies C(m, k) = c, then P (M = m | C = c) = 0 6= P (M =
m). Similarly, if two keys k1 and k2 satisfy C(m, k1) = C(m, k2) = c,
then since there were only as many keys as ciphertexts, there must
be another ciphertext c′ with C(m, k) 6= c′ for all k, and the same
argument applies again. So this verifies (2).

Now we assume (2) and prove (1). Suppose there are two keys k1 and
k2 with P (k1) > P (k2). Fix m and let C(m, k1) = c1, C(m, k2) = c2.
Then P (M = m | C = c1) = P (k1) > P (k2) = P (M = m | C =
c2) (since by (2), k1 and k2 are the unique keys coding m to c1 and
c2, respectively). Thus we cannot have perfect security, which would
require P (M = m | C = c1) = P (M = m | C = c2) = P (M = m).
This contradiction proves (1). �


