3

3

3

3

3

Name and Roll No.:

1. Is \mathcal{Z} a vector space over \mathcal{Z}_2 ? If yes, what is the dimension of \mathcal{Z} over \mathcal{Z}_2 ? If not, which vector space property is violated?

2. Consider the map T from \mathcal{R}^2 to itself sending the point $[x, y]^T$ to the point [x, -y]. What is Rank(T)?

3. In the vector space C over \mathcal{R} , what are the **cordinates** of the number 1 + 2i with respect to basis $\{i + i, i - i\}$?

4. Let $S \subseteq V(F)$ be a maximal linearly independent set (that is, S is linearly independent, but adding any other vector in V to S would made S linearly dependent). Can you say that S is a basis for V? Justify your answer.

5. Let $\mathcal{Q}[x]$ be the ring of polynomials with coefficients in Q as a vector space over the field \mathcal{Q} . Consider the map Φ from $\mathcal{Q}[x]$ to Q defined by $\Phi(f) = f(0)$. That is, the map that evaluates the polynomial at zero. Is Φ a homomorphism? What is $ker(\Phi)$? What is $img(\Phi)$?

3

 $4 \ge 2$

6. For what integer values of m can there be a ring homomorphism from Z_{10} to Z_m ? Justify your answer. 3

7. In the group \mathcal{Z}_{10} (with addition mod 10). Consider the subgroup $H = \{0, 5\}$. list all the cosets defined by H?

- 8. Consider the ring $\mathcal{Z}_4 \times \mathcal{Z}_6$ consisting of tuples (a, b) with $a \in \mathcal{Z}_4$ and $b \in \mathcal{Z}_6$. Suppose (a, b) and (a', b') are tuples in $\mathcal{Z}_4 \times \mathcal{Z}_6$ then we defined (a, b) + (a', b') to be $(a + a' \mod 4, b + b' \mod 6)$. Similarly multiplication gives $(aa' \mod 4, bb' \mod 6)$. $\mathcal{Z}_4 \times \mathcal{Z}_6$ is a ring with these operations and is called the product ring of \mathcal{Z}_4 and \mathcal{Z}_6 . Consider the map f from \mathcal{Z}_{24} to $\mathcal{Z}_4 \times \mathcal{Z}_6$ sending the element x in \mathcal{Z}_{24} to the tuple $(x \mod 4, x \mod 6)$. The map f is a ring homomorphism.
 - What is ker(f) and img(f)?

• What is ker(f) and img(f) if the map was from \mathcal{Z}_{15} to $\mathcal{Z}_3 \times \mathcal{Z}_5$?