Name and Roll No.:

1. Is \mathcal{Z} a vector space over \mathcal{Z}_{2} ? If yes, what is the dimension of \mathcal{Z} over \mathcal{Z}_{2} ? If not, which vector space property is violated?
2. Consider the map T from \mathcal{R}^{2} to itself sending the point $[x, y]^{T}$ to the point $[x,-y]$. What is $\operatorname{Rank}(T)$?
3. In the vector space \mathcal{C} over \mathcal{R}, what are the cordinates of the number $1+2 i$ with respect to basis $\{i+i, i-i\}$?
4. Let $S \subseteq V(F)$ be a maximal linearly independent set (that is, S is linearly independent, but adding any other vector in V to S would made S linearly dependent). Can you say that S is a basis for V ? Justify your answer.
5. Let $\mathcal{Q}[x]$ be the ring of polynomials with coefficients in Q as a vector space over the field \mathcal{Q}. Consider the map Φ from $\mathcal{Q}[x]$ to Q defined by $\Phi(f)=f(0)$. That is, the map that evaluates the polynomial at zero. Is Φ a homomorphism? What is $\operatorname{ker}(\Phi)$? What is $\operatorname{img}(\Phi)$?
6. For what integer values of m can there be a ring homomorphism from Z_{10} to Z_{m} ? Justify your answer.
7. In the group \mathcal{Z}_{10} (with addition $\bmod 10$). Consider the subgroup $H=\{0,5\}$. list all the cosets defined by H ?
8. Consider the ring $\mathcal{Z}_{4} \times \mathcal{Z}_{6}$ consisting of tuples (a, b) with $a \in \mathcal{Z}_{4}$ and $b \in \mathcal{Z}_{6}$. Suppose (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ are tuples in $\mathcal{Z}_{4} \times \mathcal{Z}_{6}$ then we defined $(a, b)+\left(a^{\prime}, b^{\prime}\right)$ to be $\left(a+a^{\prime} \bmod 4, b+b^{\prime} \bmod 6\right)$. Similarly mulitplication gives $\left(a a^{\prime} \bmod 4, b b^{\prime} \bmod 6\right) . \mathcal{Z}_{4} \times \mathcal{Z}_{6}$ is a ring with these operations and is called the product ring of \mathcal{Z}_{4} and \mathcal{Z}_{6}. Consider the map f from \mathcal{Z}_{24} to $\mathcal{Z}_{4} \times \mathcal{Z}_{6}$ sending the element x in \mathcal{Z}_{24} to the tuple $(x \bmod 4, x \bmod 6)$. The map f is a ring homomorphism.

- What is $\operatorname{ker}(f)$ and $\operatorname{img}(f)$?
- What is $\operatorname{ker}(f)$ and $\operatorname{img}(f)$ if the map was from \mathcal{Z}_{15} to $\mathcal{Z}_{3} \times \mathcal{Z}_{5}$?

