Practice Questions

1. Let G be a group and $a \in G$. Let b, b^{\prime} satisfy $b a=a b=b^{\prime} a=a b^{\prime}=e$ where e is the identify. Show that $b=b^{\prime}$. This shows the inverse of an element is unique in a group.
2. Show that a field is always an integral domain.
3. Show that every finite integral domain is a field.
4. Find all solutions to the equation $49 x=91 \bmod 14$. (In general, suppose you are given equation $a x=b \bmod n$. with $d=G C D(a, n)$ and b being a multiple of d. Is it true that $\frac{a}{d}=\frac{b}{d} \bmod \frac{n}{d}$? - This will help you to solve.)
5. Show that the group $\mathcal{Z}_{n} \times \mathcal{Z}_{m}$ is a cyclic group with respect to addition if and only if m and n are co-prime. (In general, show that if C_{m} and C_{n} are cyclic groups of order m and n, the product group $C_{m} \times C_{n}$ is cyclic if and only if m and n and co-prime. Whenever m, n are co-prime having a and b respectively as generators, show that (a, b) generates $C_{m} \times C_{n}$.
6. A number x gives remainder 2 when divided by 3 , remainder 3 when divided by 5 , remainder 4 when divided by 7 and remainder 7 when divided by 9 . Find all possible integer values of x that satisfy this condition using Chinese remainder theorem.
7. Show that the subset of even elements in \mathcal{Z}_{10} is a commutative ring with unity. (What is the unity?).
8. Let $\mathcal{Q}[x]$ be the ring of polynomials with coefficients in Q Consider the map Φ from $\mathcal{Q}[x]$ to Q defined by $\Phi(f)=f(0)$. That is, the map that evaluates the polynomial at zero. Is Φ a homomorphism? What is $\operatorname{ker}(\Phi)$? What is $\operatorname{img}(\Phi)$?
9. For what integer values of m can there be a ring homomorphism from Z_{10} to Z_{m} ? Justify your answer.
10. Consider the ring $\mathcal{Z}_{4} \times \mathcal{Z}_{6}$ consisting of Consider the ring homomorphism f from \mathcal{Z}_{24} to $\mathcal{Z}_{4} \times \mathcal{Z}_{6}$ sending the element x in \mathcal{Z}_{24} to the tuple $(x \bmod 4, x \bmod 6)$. The map f is a ring homomorphism.

- What is $\operatorname{ker}(f)$ and $\operatorname{img}(f)$?
- What is $\operatorname{ker}(f)$ and $\operatorname{img}(f)$ if the map was from \mathcal{Z}_{15} to $\mathcal{Z}_{3} \times \mathcal{Z}_{5}$?

