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Basic Concepts Theorem Proof Example

Homomorphism

A Homomorphism is a map h : Γ∗ → Σ∗ such that for all x , y ∈ Γ∗

h(xy) = h(x)h(y)
h(ε) = ε



Basic Concepts Theorem Proof Example

Context Free Grammar

A Context Free Grammar (CFG) is a quadruple
G = (N,Σ,P,S)

where,

N is a finite set of Non terminal Symbols,
Σ is a finite set of Terminal Symbols,
P is a finite subset of N × (N ∪ Σ)∗ (set of productions)
S ∈ N is the start symbol
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Chomsky Normal Form

A CFG is in ”Chomsky normal form(CNF)” if all productions are of
the form

A→ BC
or

A→ a

where,
A,B,C ∈ N and a ∈ Σ
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Basic Concepts Theorem Proof Example

PARENn

PARENn denote the language consisting of all balanced strings of
parentheses of n distinct types.

This language is generated by the grammar-

S → [1S ]1|[2S ]2|.............|[nS ]n|ε

The languages PARENn are called Dyck Languages in the
literature.

Example: [1[2]2]1[3]3



Basic Concepts Theorem Proof Example

PARENn

PARENn denote the language consisting of all balanced strings of
parentheses of n distinct types.

This language is generated by the grammar-

S → [1S ]1|[2S ]2|.............|[nS ]n|ε

The languages PARENn are called Dyck Languages in the
literature.

Example: [1[2]2]1[3]3



Basic Concepts Theorem Proof Example

PARENn

PARENn denote the language consisting of all balanced strings of
parentheses of n distinct types.

This language is generated by the grammar-

S → [1S ]1|[2S ]2|.............|[nS ]n|ε

The languages PARENn are called Dyck Languages in the
literature.

Example: [1[2]2]1[3]3



Basic Concepts Theorem Proof Example

PARENn

PARENn denote the language consisting of all balanced strings of
parentheses of n distinct types.

This language is generated by the grammar-

S → [1S ]1|[2S ]2|.............|[nS ]n|ε

The languages PARENn are called Dyck Languages in the
literature.

Example: [1[2]2]1[3]3



Basic Concepts Theorem Proof Example

Theorem

The Chomsky-Schützenberger Theorem

Every context-free language is a homomorphic image of the
intersection of a parenthesis language and a regular set. In other
words, for every CFL A, there is an n >= 0, a regular set R, and a
homomorphism h such that

A = h(PARENn ∩ R)
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Proof

Let G = (N,Σ,P,S) be an arbitrary CFG in Chomsky Normal
Form (CNF).
Let the productions in P are denoted by π, ρ, σ . . .

For π ∈ P, define π
′

A→ [1πB]1π[2πC ]2π if π = A→ BC ,

A→ [1π]1π[2π]2π if π = A→ a

and define the grammar G
′

= (N,Σ,P
′
,S) with

Γ = {[1π, ]1π, [2π, ]2π|π ∈ P}
P

′
= {π′ |π ∈ P}
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Proof continued...

L(G
′
) ⊆ PARENΓ

Properties satisfied by strings in L(G
′
) that are not satisfied by

strings in PARENΓ in general:

Property 1 : Every ]1π is immediately followed by a [2π.

Property 2 : No ]2π is immediately followed by a left
parenthesis.

Property 3 : If π = A→ BC , then every [1π is immediately
followed by [1ρ for some ρ ∈ P with left hand side B, and every
[2π is immediately followed by [1σ for some σ ∈ P with left-hand
side C .

Property 4 : If π = A→ a, then every [1π is immediately
followed by ]1π and every [2π is immediately followed by ]2π.
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Proof continued...

In addition, all strings x such that A
∗−−→
G ′

x satisfy the property

Property (vA): The string x begins with [1π for some π ∈ P
with left-hand side A.

Now we can define a regular expression that satisfies all the above
properties as:

RA = { x ∈ Γ∗ | x satisfies property1 through (vA) }
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Proof continued...

Lemma

A
∗−−→
G ′

x ⇐⇒ x ∈ (PARENΓ ∩ RA)
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Proof Continued...

Proof of Lemma:

Prove ⇒: A
∗−−→
G ′

x ⇒ x ∈ (PARENΓ ∩ RA)

Applying induction on the length of derivation:

Basis: n=1
A→ [1πB]1π[2πC ]2π
A→ [1π]1π[2π]2π

Since RHS satisfies all properties so it is true for n = 1 .

Induction Hypothesis: Let A
∗−−→
G ′

α

where, α is a sentential form of length n that satisfies all properties.

Induction Step: Proving it for n + 1 length of derivation

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

α



Basic Concepts Theorem Proof Example

Proof Continued...

Proof of Lemma:

Prove ⇒: A
∗−−→
G ′

x ⇒ x ∈ (PARENΓ ∩ RA)

Applying induction on the length of derivation:

Basis: n=1
A→ [1πB]1π[2πC ]2π
A→ [1π]1π[2π]2π

Since RHS satisfies all properties so it is true for n = 1 .

Induction Hypothesis: Let A
∗−−→
G ′

α

where, α is a sentential form of length n that satisfies all properties.

Induction Step: Proving it for n + 1 length of derivation

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

α



Basic Concepts Theorem Proof Example

Proof Continued...

Proof of Lemma:

Prove ⇒: A
∗−−→
G ′

x ⇒ x ∈ (PARENΓ ∩ RA)

Applying induction on the length of derivation:

Basis: n=1
A→ [1πB]1π[2πC ]2π
A→ [1π]1π[2π]2π

Since RHS satisfies all properties so it is true for n = 1 .

Induction Hypothesis: Let A
∗−−→
G ′

α

where, α is a sentential form of length n that satisfies all properties.

Induction Step: Proving it for n + 1 length of derivation

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

α



Basic Concepts Theorem Proof Example

Proof Continued...

Proof of Lemma:

Prove ⇒: A
∗−−→
G ′

x ⇒ x ∈ (PARENΓ ∩ RA)

Applying induction on the length of derivation:

Basis: n=1
A→ [1πB]1π[2πC ]2π
A→ [1π]1π[2π]2π

Since RHS satisfies all properties so it is true for n = 1 .

Induction Hypothesis: Let A
∗−−→
G ′

α

where, α is a sentential form of length n that satisfies all properties.

Induction Step: Proving it for n + 1 length of derivation

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

α



Basic Concepts Theorem Proof Example

Proof Continued...

Proof of Lemma:

Prove ⇒: A
∗−−→
G ′

x ⇒ x ∈ (PARENΓ ∩ RA)

Applying induction on the length of derivation:

Basis: n=1
A→ [1πB]1π[2πC ]2π
A→ [1π]1π[2π]2π

Since RHS satisfies all properties so it is true for n = 1 .

Induction Hypothesis: Let A
∗−−→
G ′

α

where, α is a sentential form of length n that satisfies all properties.

Induction Step: Proving it for n + 1 length of derivation

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

α



Basic Concepts Theorem Proof Example

Proof Continued...

Prove ⇐: x ∈ (PARENΓ ∩ RA)⇒ A
∗−−→
G ′

x

Applying induction on the length of x:

It follows from properties that x is a string of balanced parentheses
of the form

x = [1πy ]1π[2πz ]2π

for some y , z ∈ Γ∗ and π with left hand side A.
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Proof continued...

If π = A→ BC , then

From property 3, y satisfies (vB) and z satisfies (vC ).
Also y and z are balanced.

Thus y ∈ PARENΓ ∩ RB and z ∈ PARENΓ ∩ Rc .

By induction hypothesis, B
∗−−→
G ′

y and C
∗−−→
G ′

z therefore,

A
1−−→
G ′

[1πB]1π[2πC ]2π
∗−−→
G ′

[1πx ]1π[2πy ]2π = x
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Proof continued...

If π = A→ a , then

From property 4, y = z = ε , and

A→ [1π]1π[2π]2π = x

It follows from Lemma that L(G ′) = PARENΓ ∩ RS .
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Proof continued...

Applying Homomorphism
Define homomorphism h : Γ∗ → Σ∗ as follows:

For π of the form A→ BC , take
h([1π) = h(]1π) = h([2π) = h(]2π) = ε,

For π of the form A→ a , take
h(]1π) = h([2π) = h(]2π) = ε,
h([1π) = a

Applying h to the production π of P ′ gives the production π of P
thus L(G ) = h(L(G ′)) = h(PARENΓ ∩ RS).

This completes the proof of the Chomsky-Schützenberger theorem.
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Example

Apply the theorem on { anbn | n > = 0 } = h(L(G
′
) ∩ R)
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Example continued...

Let G = (N,Σ,P,S) be the CFG corresponding to our CFL
{anbn|n = 0} where,

S → aSb
S → ε

Converting it to CNF we get

π S → AC
σ C → SB
ρ A→ a
λ B → b
γ S → ε
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Example continued...

Now define grammar G ′ = (N, Γ,P ′,S) with

Γ = {[1π, ]1π, [2π, ]2π|π ∈ P} ,
P ′ = {π′|π ∈ P} .

where production P ′ are,

π S → [1πA]1π[2πC ]2π

σ C → [1σS ]1σ[2σB]2σ

ρ A→ [1ρ]1ρ

λ B → [1λ]1λ

γ S → [1γ ]1γ
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Example continued...

Consider a string x generated by grammar G: x = aabb

The parse tree generated by G is

S

A

a

C

S

A

a

C

S

ε

B

b

B

b

The encoded string generated for this string is
[1π[1ρ]1ρ]1π[2π[1ρ[1π[1ρ]1ρ]1π[1π[1σ[1γ ]1γ ]1σ[2σ[1λ]1λ]2σ]1π]1σ[2σ[1λ]1λ]2σ]2π
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