Name and Roll No.:

1. Suppose L_{1}, L_{2}, \ldots is a countable infinite family of regular languages over alphabet $\{0,1\}$. Can we say that $\bigcup_{i=1}^{\infty} L_{i}$ is regular? (Answer Yes/No. If Yes, Prove. If No, Give counter-example.)
Soln: No. Consider the family of languages $L_{0}=\{\epsilon\}, L_{1}=\{a b\}, L_{2}=\{a a b b\}, L_{3}=\{a a a b b b\}$ etc. Each language in the sequence is regular as it consists of just one string. However, their union is $\left\{a^{n} b^{n}: n \geq 0\right\}$ which is not regular. (In fact, any language can be expressed as a countable union of singletons.) Note that the closure of regular languages under finite union does not imply closure under infinite union.
2. Let M_{1} and M_{2} be finite state machines over $\{0,1\}$ with state sets Q_{1}, Q_{2} and F_{1}, F_{2} as the set of final states. Suppose you want the product automation $M_{1} \times M_{2}$ to accept $L\left(M_{1}\right)-L\left(M_{2}\right)$, what must be the final states? Justify your answer in one sentence.
Soln: $F_{1} \times\left(Q_{2}-F_{2}\right)$. That is all strings leading to a final state of M_{1} and a non-final state of M_{2} must be accepted.
3. In the proof of the pumping lemma, it was shown that for every CFL L, there exists an n such that for all $z \in L$ with $|z| \geq n, \exists u, x, w, y, v$ such that $z=u x w y v$ and $u x^{i} w y^{i} z \in L \forall i \geq 0$. Is it true that $|u x w y| \leq n$; i.e., the repetition pattern must be spotted before the first n symbols of z ? (Answer YES/NO first. If Yes, give Proof. If No, give give counter-example).
Soln: No. For instace, consider the language $\left\{a^{i} b^{i} \mid i \geq 0\right\}$. Let n be the constant specified in the Pumping Lemma and consider the string $a^{n} b^{n}$ in the language. It is impossible to pump (repeat) any substring within the first n positions and get a string in the language.
4. Is the language $L=\left\{a^{i} b^{j}: i=j\right.$ if $\left.i \leq 3\right\}$ regular? (Answer YES or NO. If the answer is Yes, give a DFA. Otherwise give a proof that L is not regular by giving an infinite number of Myhill Nerode inequivalent strings).
Soln: Yes. Here is a regular expression for the language (from which one can construct a DFA). $\epsilon+a b+a a b b+a a a b b b+a a a a a^{*} b^{*}$.
5. Consider the grammar $G: S \longrightarrow A a|B b| S a b, A \longrightarrow A a|a, B \longrightarrow B b| b$. Construct a finite state machine that accepts $L^{R}(G)$, the language consisting of all strings in $L(G)$ written in reverse. (Hint: What is the grammar for $L^{R}(G) ?$) Answer on the reverse side.
Soln: If we reverse the right side of each production, we will get a right linear grammar for $L^{R}(G)$. The method of constructing a DFA from a right linear grammar was posed in Assignment I.
