Name and Roll No.: ____

- 1. Define $L_t = \{(M, w, t): M \text{ is a turing machine that accepts input } w \text{ in less than } t \text{ steps } \}$. Is L_t Turing decidable for each positive integer t > 0? Is $L = L_1 \cup L_2 \cup \dots$. Turing decidable? Justify your answer. Soln: L_t is decidable for each positive integer t because a UTM can simulate M on w for t steps and accept if M accepts, reject otherwise. However $L = L_1 \cup L_2 \cup \dots = L_u$, is the unversal language which is undecidable (proved in class).
- 2. Show that $L = \{a^i b^j c^j d^i : i \ge 0, j \ge 0\}$ satisfies the Chomsky Schutzenberger Theorem conditions and hence is context free. (Specify parenthesis language, regular language and homomorphism).

 $Soln: \ G: S \longrightarrow (S)|[S]|SS|\epsilon. \ h(L(G) \cap (^*[^*]^*)^*) = L \text{ where } h(() = a, h([) = b, h(]) = c, h()) = d.$

- 3. Let M_1 and M_2 be Turing machines that accept languages L_1 and L_2 . Consider the algorithm A that on input w simulates (using UTM strategy) M_1 on w first, and then simulates M_2 on w. A accepts w if at least one of the simulations is accepting. What is the language accepted by A? Soln: $L(A) = L(M_1) \cup L(M_2) \setminus \{w : M_1 \text{ does not halt on } w\}.$
- 4. Let $L_{\overline{u}} = \{(M, w) : M \text{ is a Turing Machine that does not accept input } w\}$. Let $L_{\emptyset} = \{M : L(M) = \emptyset\}$. Show that $L_{\overline{u}} \preceq_m L_{\emptyset}\}$. What can you conclude about the deciability and acceptability of L_{\emptyset} ? Justify. Soln: The reduction from L_u to $(L_{\epsilon} \text{ and } L_{\Sigma^*})$ discussed in class serves as a reduction from $L_{\overline{u}}$ to L_{ϕ} where $L_{\overline{u}} = \{(M, w) : M \text{ does not accept } w\}$. Since $L_{\overline{u}}$ is not Turing acceptable, so is L_{ϕ} .
- 5. An instance of the set cover problem (SC) takes a triple (S, T, k) where S is a finite set, T is a collection of subsets of S and k is a positive integer. A YES instance of the problem has the property that you can pick k subsets from T whose union is S. Give a reduction algorithm from the Vertex Cover problem to SC.

Soln: Given a graph G = (V, E) and integer k as instance of the vertex cover problem, Let $N(v) = \{e \in E : e \text{ is incident on } v\}$. The reduction algorithm outputs S = E and $T = \{N(v) : v \in V\}$ and k. (For each vertex in V, there is a set in T that corresponds to the edges covered by the vertex. The requirement is to cover all edges by picking k such sets). Prove that G has a vertex cover S of size k if and only if $\{N(v) : v \in S\}$ covers E.

6. Is the language $L = a^*b^*c^* - a^nb^nc^n$ context free? If so, provide a CFG and explain why the CFG generates the language. If not, give a proof that the language is not context free. Soln: $L = \{a^ib^jc^k : i \neq j \text{ OR } j \neq k\}$ We can split L as $L = \{a^*b^ic^j : i > j\} \cup \{a^*b^ic^j : i < j\} \cup \{a^ib^jc^* : i > j\} \cup \{a^ib^jc^* : i < j\}$. Now it is easy to write a CFG for $\{a^*b^ic^j : i > j\} = \{a^*bb^*b^jc^j\}$ $(S \longrightarrow ABT, A \longrightarrow aA|\epsilon, B \longrightarrow bB|b, T \longrightarrow bTc|\epsilon)$ etc. 2 + 2

2

2

2 + 2

2

|2|