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Chapter 1

Introduction

This monograph primarily focuses on introducing tensor product spaces over fi-

nite dimensional complex inner product spaces when constrained orthonormal

bases. We believe that placement of these constraints over general theory helps

in developing a more accessible material for computer science audience without

compromising on mathematical rigour and practical applicability. Tensor product

spaces are typically introduced using concepts that use abstract algebra. In this

notes an intuitive approach is used by defining the set of all multi-linear functions

as the tensor product space. This approach is historically well-known but owing

to the generality in developing the theory, mathematicians use abstract algebra.

Most of the engineering applications, in particular machine learning and quantum

computation in computer science require working on finite dimensional real or

complex inner product spaces. Moreover working on orthonormal basis is suffi-

cient to work on most of the applications. Hence, we initially focus on developing

the theory of tensor product spaces of complex inner product spaces limiting to

orthonormal bases. For those mathematically inclined or interested more in gen-

eral theory can refer appendix to understand the theory of tensor product spaces

over any finite dimensional vector spaces. The exposition is written in an incre-

mental manner in order to gain more intuition into the k-fold tensors theory.

We expect reader to be familiar with basic notions in linear algebra. In this sec-

tion, some properties of orthonormal bases of finite dimensional complex inner

product spaces are shown which help in simplifying proofs provided in the next

chapter. Notice that this theory works for vector spaces over real fields also.
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1. Introduction

1.1 Prerequisites

Definition 1.1.1. Let V be a finite dimensional vector space over field C. A

function () : V × V → C is called an inner product if it satisfies the following,

Linearity : ∀ x, y, z ∈ V , ∀ α ∈ C,

(x, y + z) = (x, y) + (x, z)

(x, αy) = α (x, y)

Conjugate symmetry : ∀ x, y ∈ V ,

(x, y) = (y, x)

Positive definiteness : ∀ x ∈ V ,

if x ̸= 0 then (x, x) > 0

Remark :

1. ∀ x, y, z ∈ V , (x+ y, z) = (x, z) + (y, z)

(x+ y, z) = (z, x+ y) = (z, x) + (z, y) = (x, z) + (y, z)

2. ∀ x, y ∈ V , ∀ α ∈ C, (αx, y) = α (x, y)

(αx, y) = (y, αx) = α · (y, x) = α · (x, y)

3. ∀ x ∈ V , (0, x) = (x, 0) = 0

(x, 0) = (x, 0 + 0) = (x, 0) + (x, 0) =⇒ (x, 0) = 0 =⇒ (0, x) = (0, x) = 0

4. Let x ∈ V , using the above remark 3, we get (x, x) = 0 ⇐⇒ x = 0

4



1. Introduction

Let dim (V ) = n < ∞. Let A = {a1, a2, ..., an} be any orthonormal basis of V .

Then, ∀ i, j ∈ {1, 2, ..., n},

(ai, aj) = 1 if i = j

= 0 if i ̸= j

Lemma 1.1.1. Let V be a finite dimensional inner product space over field C
where dim (V ) = n. Let A = {a1, a2, ..., an} be any orthonormal basis of V . ∀
x ∈ V ,

x =
n∑

i=1

(ai, x) ai

Proof. ∀ x ∈ V , since A is a basis of V , there exist unique αi ∈ C such that,

x =
n∑

i=1

αiai (1.1)

∀ j ∈ {1, 2, ..., n},

(aj, x) =

(
aj,

n∑
i=1

αiai

)
Using linearity of inner product we get,

(aj, x) =
n∑

i=1

(aj, αai) =
n∑

i=1

αi (aj, ai)

Since A is an orthonormal basis of V we get,

(aj, x) = αj (1.2)

Combining equations 1.1 and 1.2 we get,

x =
n∑

i=1

(ai, x) ai
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1. Introduction

Remark :

1. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two orthonormal

bases of V . ∀ x ∈ V using Lemma 1.1.1 we get,

x =
n∑

i=1

(ai, x) ai =
n∑

j=1

(bj, x) bj

We set the convention that the coordinates of any vector x ∈ V with respect to a

basis A is a column vector. Formally,

Definition 1.1.2. Let V be a finite dimensional vector space over field C where

dim (V ) = n. Let A = {a1, a2, ..., an} be a basis of V . ∀ x ∈ V there exist unique

αi ∈ C such that,

x =
n∑

i=1

αiai =
[
a1 a2 . . an

]

α1

α2

.

.

αn


We denote the coordinates of the vector x with respect to basis A as follows,

A

x =
[
α1 α2 . . αn

]T
∈ Cn

We denote the r-th coordinate of vector x with respect to basis A as follows,

A

x [r] = αr ∈ C

Remark :

1. If A is an orthonormal basis of V . ∀ x ∈ V using Lemma 1.1.1 we get,

x =
n∑

r=1

(ai, x) ai =⇒ A

x [i] = αi = (ai, x) ∀ i ∈ {1, 2, ..., n}

6



1. Introduction

Lemma 1.1.2. Let V be a finite dimensional inner product space over field C
where dim (V ) = n. Let A = {a1, a2, ..., an} be any orthonormal basis of V . ∀
x, y ∈ V ,

(x, y) =
n∑

r=1

Ax [r] ·
A

y [r]

Proof. ∀ x, y ∈ V since A is an orthonormal basis of V there exist unique αr,

βs ∈ C such that,

x =
n∑

r=1

αrar y =
n∑

s=1

βsas

(x, y) =

(
n∑

r=1

αrar,
n∑

s=1

βsas

)

=
n∑

r=1

n∑
s=1

αr · βs · (ar, as)

=
n∑

r=1

αr · βr (since A is an orthonormal basis of V )

We already know that,

A

x [r] = αr
A

y [r] = βr

=⇒ (x, y) =
n∑

r=1

Ax [r] · A

y [r]

Definition 1.1.3. Let V be a finite dimensional inner product space over field

C where dim (V ) = n. Let A = {a1, a2, ..., an} be any orthonormal basis of V . ∀
x, y ∈ V we define the dot product of x and y with respect to basis A as

A

x⊙ A

y =
n∑

r=1

Ax [r] ·
A

y [r] =
(

A

x
)∗

·
(

A

y
)

7



1. Introduction

Remark :

1. Lemma 1.1.2 implies that the dot product of any two vectors x, y ∈ V has the

same value irrespective of the choice of orthonormal basis. More concretely,

Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two orthonormal

bases of V . ∀ x, y ∈ V using Lemma 1.1.1 and Lemma 1.1.2 we get,

A

x⊙ A

y = (x, y) =
B

x⊙ B

y

Definition 1.1.4. A matrix M ∈ Cn×n is called non-singular if ∀ α ∈ Cn,

M · α = 0 =⇒ α = 0

Remark :

1. Several equivalent definitions for the non-singularity of a matrix M can

be found in various textbooks. In the above definition we define M to be

non-singular if and only if Nullspace (M) = {0}1.

Theorem 1.1.3. Let V be a finite dimensional vector space over field C where

dim (V ) = n. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two bases of

V . Then there exists a non-singular matrix M ∈ Cn×n such that,[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M

Note that the matrix M is called the basis transformation matrix from A to

B.

Proof. Since B is a basis of V ∀ j ∈ {1, ..., n} there exist unique Mij ∈ C such

that,

aj =
n∑

i=1

Mijbi =
[
b1 b2 . . bn

]

M1j

M2j

.

.

Mnj


1To explore more about Null space and Singularity refer [3] or [7]
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1. Introduction

=⇒
[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]

M11 M12 . . M1n

M21 M22 . . M2n

. . . . .

. . . . .

Mn1 Mn2 . . Mnn



Let M =


M11 M12 . . M1n

M21 M22 . . M2n

. . . . .

. . . . .

Mn1 Mn2 . . Mnn

 ∈ Cn×n. Then,

[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M

It remains to show that M is non-singular. ∀ α ∈ Cn,[
a1 a2 . . an

]
· α =

[
b1 b2 . . bn

]
M · α

If M · α = 0 then[
a1 a2 . . an

]
· α =

[
b1 b2 . . bn

]
M · α =

[
b1 b2 . . bn

]
0 = 0

Let α =
[
α1 α2 . . αn

]T
. Then,

[
a1 a2 . . an

]
·


α1

α2

.

.

αn

 = 0 =⇒
n∑

i=1

αiai = 0

Since A is a linearly independent set we get,

αi = 0 ∀ {1, 2, ..., n} =⇒ α = 0

9



1. Introduction

Corollary 1.1.4. Let V be a finite dimensional vector space over field C where

dim (V ) = n. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two bases of

V . Let M ∈ Cn×n be the basis transformation matrix from A to B i.e,[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M

∀ x ∈ V ,
B

x = M · A

x

Proof. ∀ x ∈ V ,

x =
[
a1 a2 . . an

]
· A

x =
[
b1 b2 . . bn

]
· B

x

Since M is the basis transformation from A to B we get[
b1 b2 . . bn

]
M · A

x =
[
b1 b2 . . bn

]
B

x

=⇒
[
b1 b2 . . bn

] (
B

x−M · A

x
)
= 0

Since B is a linearly independnent set, we get

B

x = M · A

x

Remark :

1. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two bases of V . If M

is the basis transformation matrix from basis A to basis B then M−1 is the

basis transformation matrix from B to A. Note that M−1 is well defined

since M is non-singular. More concretely, ∀ x ∈ V ,[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M =⇒ B

x = M · A

x

=⇒ A

x = M−1 · B

x =⇒
[
b1 b2 . . bn

]
=
[
a1 a2 . . an

]
M−1

10



1. Introduction

Theorem 1.1.5. Let V be a finite dimensional inner product space over field C
where dim (V ) = n. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two

orthonormal bases of V . Let M ∈ Cn×n be the basis transformation matrix from

A to B i.e., [
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M

Then, M is an orthogonal matrix. That is,

M ·M∗ = M∗ ·M = I =⇒ M−1 = M∗

Proof. Let E = {e1 =
[
1 0 . . 0

]T
, e2 =

[
0 1 . . 0

]T
, ..., en =

[
0 0 . . 1

]T
}.

Note that E is the standard orthonormal basis of Cn. It is easy to notice that ∀
i ∈ {1, 2, ..., n},

A

ai = ei

Since M is the basis transformation matrix from A to B we get that ∀ j ∈
{1, 2, ..., n},

B

aj = M · A

aj = M · ej

Using Lemma 1.1.2 we get that ∀ i, j ∈ {1, 2, ..., n},

(ai, aj) =
(
Bai
)
⊙
(

B

aj

)
=⇒ (ai, aj) = (M · ei)⊙ (M · ej) = e∗i ·M∗ ·M · ej

Note that ∀ N ∈ Cn×n,

e∗iNej = Nij

=⇒ (ai, aj) = [M∗ ·M ]ij

Since A is an orthonormal basis of V we get that

[M∗ ·M ]ij = 1 if i = j

= 0 if i ̸= j

=⇒ M∗ ·M = I
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1. Introduction

Remark :

1. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two orthonormal

bases of V . If M is the basis transformation matrix from A to B then,

M−1 = M∗ is the basis transformation matrix from B to A.

Definition 1.1.5. Let V be a finite dimensional inner product space over C. ∀
u ∈ V with ∥u∥ =

√
(u, u) = 1 (i.e, u is a unit vector) the projection operator is

defined along u, Pu : V → V as follows, ∀ x ∈ V ,

Pu (x) = (u, x)u

Remark :

1. Note that Pu (x) ∈ Span{u}

Lemma 1.1.6. Let V be a finite dimensional inner product space over C. ∀
u ∈ V with ∥u∥ = 1, ∀ x ∈ V ,

(u, x− Pu (x)) = 0

(which means that x− Pu (x) is orthogonal to u)

Proof. ∀ u ∈ V with ∥u∥ = 1, ∀ x ∈ V , from Definition 1.1.5 we get that,

(u, x− Pu (x)) = (u, x− (u, x)u)

= (u, x)− (u, x) (u, u)

Since ∥u∥ =
√

(u, u) = 1,

(u, x− Pu (x)) = (u, x)− (u, x) = 0

12



1. Introduction

Lemma 1.1.7. If A = {a1, a2, ..., an} is an orthonormal set of vectors in V , then

A is a linearly independent set.

Proof. If A = {a1, a2, ..., an} is an orthonormal set of vectors in V then, ∀ i, j ∈
{1, 2, ..., n},

(ai, aj) = 1 if i = j

= 0 if i ̸= j

Let αi ∈ C ∀ i ∈ {1, 2, ..., n}. Consider,

n∑
i=1

αiai = 0

∀ j ∈ {1, 2, ..., n},

0 = (aj, ai) =

(
aj,

n∑
i=1

αiai

)
=

n∑
i=1

αi (aj, ai) = αj

=⇒ αj = 0 ∀ j ∈ {1, 2, ..., n}

=⇒ A is a linearly independent set

Theorem 1.1.8. (Gram Schmidt Orthogonalization) Every finite dimensional

inner product space over C has an orthonormal basis.

Proof. Let V be a finite dimensional inner product space over C. Let (V ) = n <

∞. Since dim (V ) = n there exist a set A = {a1, a2, ..., an} such that A spans V

and A is a linearly independent set. Now we use Gram-Schmidt process to define

the following vectors,

b̃1 = a1 b1 =
b̃1

∥b̃1∥

13



1. Introduction

a1 ̸= 0 since A is a linearly independent set =⇒ ∥b̃1∥ ≠ 0 =⇒ b1 is well defined.

b̃2 = a2 − Pb1 (a2) b2 =
b̃2

∥b̃2∥
...

b̃i = ai −
i−1∑
j=1

Pbj (ai) bi =
b̃i

∥b̃i∥
...

b̃n = an −
n−1∑
j=1

Pbj (an) bn =
b̃n

∥b̃n∥

From Remark 1.1 it follows that Span{b1, b2, ..., bi} = Span{a1, a2, ..., ai} ∀ i ∈
{1, 2, ..., n}.

For b2, b3, ..., bn to be well-defined it is necessary to prove the following claim,

Claim : ∀ i ∈ {2, ..., n},

b̃i = ai −
i−1∑
j=1

Pbj (ai) ̸= 0

If not then,

ai =
i−1∑
j=1

Pbj (ai) =
i−1∑
j=1

(ai, bj) bj ∈ Span{b1, b2, ..., bi−1} = Span{a1, a2, ..., ai−1}

This is a contradiction to the fact that A is a linearly independent set. Hence,

ai −
i−1∑
j=1

Pbj (ai) ̸= 0 =⇒ ∥b̃i∥ ≠ 0 =⇒ each bi is well defined

From definition we get ∀ i ∈ {1, 2, ..., n},

∥bi∥ =
∥b̃i∥
∥b̃i∥

= 1

14



1. Introduction

Hence it remains to show that (bi, bj) = 0 ∀ i, j ∈ {1, 2, ..., n} where i < j.

Claim : ∀ i ∈ {1, 2, ..., n− 1} if {b1, b2, ..., bi} is an orthonormal set then,

(bk, bi+1) = 0 ∀ 1 ≤ k ≤ i

(
bk, b̃i+1

)
=

(
bk, ai+1 −

i∑
j=1

Pbj (ai+1)

)
= (bk, ai+1)−

(
bk,

i∑
j=1

Pbj (ai+1)

)

= (bk, ai+1)−
i∑

j=1

(
bk, Pbj (ai+1)

)
= (bk, ai+1)−

i∑
j=1

(bk, (bj, ai+1) bj)

= (bk, ai+1)−
i∑

j=1

(bj, ai+1) (bk, bj)

Since {b1, b2, ..., bi} is an orthonormal set, then

(
bk, b̃i+1

)
= (bk, ai+1)− (bk, ai+1) = 0 =⇒ (bk, bi+1) =

(
bk, b̃i+1

)
∥b̃i+1∥

= 0

Using Lemma 1.1.7, B is a linearly independent set. Since dim (V ) = n = |B|
and B is a linearly independent set, B forms a basis of V . Hence, we have shown

the existence of an orthonormal basis for V .

Lemma 1.1.9. Any finite dimensional inner product space over C with dimension

n is isomorphic to the vector space Cn over C.

Proof. Let V be any finite dimensional inner product space over C. Let dim (V ) =

n < ∞. To establish an isomorphism between V and Cn, it is enough to provide

a linear transformation that maps the basis vectors of V to basis vectors of Cn

bijectively. Consider the standard orthonormal basis E = {e1 =
[
1 0 . . 0

]T
,

e2 =
[
0 1 . . 0

]T
, ..., en =

[
0 0 . . 1

]T
} of Cn over C. Since dim (V ) = n,

there exists a basis A = {a1, a2, ..., an} of V . Consider the linear transformation

T : V → Cn defined as follows,

T (ai) = ei

Note that if a linear transformation is defined over each basis vector of V then

15



1. Introduction

the linear transformation is well defined ∀ x ∈ V . It remains to show that T is a

bijection in order to establish the isomorphism.

Claim : If T (x) = 0 then x = 0

From linear algebra it is already known that the above claim implies that T is

injective. Since dim (V ) = dim (Cn) = n we get that if T is injective then T is

surjective. Let’s prove the above claim. ∀ x ∈ V since A is a basis of V there

exist unique αi ∈ C such that,

x =
n∑

i=1

αiai

Applying the linear transformation T we get,

T (x) = 0 =⇒ T

(
n∑

i=1

αiai

)
=

n∑
i=1

αiT (ai) =
n∑

i=1

αiei = 0

Since E is a linearly independent set we get,

αi = 0 ∀ i ∈ {1, 2, ..., n} =⇒ x = 0

As a concluding remark, we can see that if we limit our framework to orthonormal

basis, any finite dimensional inner product space over C with dimension n can be

identified with Cn over C with standard dot product as the inner product.
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Chapter 2

Tensor products

2.1 1-fold tensor product spaces - dual spaces

2.1.1 Linear functions

Definition 2.1.1. Let V be a vector space over field C with inner product () :

V × V → C. A function u : V → C is called linear if ∀ x, y ∈ V ∀ α ∈ C,

u (x+ y) = u (x) + u (y)

u (α · x) = α · u (x)

Let set S = {u : V → C | u is linear}. Define addition and scalar multiplication

on the set S as follows, ∀ u, v ∈ S, ∀ x ∈ V , ∀ α ∈ C,

[u+ v] (x) = u (x) + v (x)

[α · u] (x) = α · u (x)

Lemma 2.1.1. S is closed under addition and scalar multiplication

Proof. Claim 1 : ∀ u, v ∈ S, [u+ v] ∈ S

1. ∀ x, y ∈ V ,

[u+ v] (x+ y) = u (x+ y) + v (x+ y)

= u (x) + u (y) + v (x) + v (y) = [u+ v] (x) + [u+ v] (y)

17
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2. ∀ x ∈ V , ∀ α ∈ C,

[u+ v] (αx) = u (αx) + v (αx)

= αu (x) + αv (x) = α[u+ v] (x)

=⇒ [u+ v] is linear =⇒ [u+ v] ∈ S =⇒ S is closed under addition

Claim 2 : ∀ u ∈ V , α ∈ C, [αu] ∈ S,

1. ∀ x, y ∈ V ,

[αu] (x+ y) = αu (x+ y)

= αu (x) + αu (y) = [αu] (x) + [αu] (y)

2. ∀ x ∈ V , β ∈ C,

[αu] (βx) = αu (βx)

= βαu (x) = β[αu] (x)

=⇒ [αu] is linear =⇒ [αu] ∈ S =⇒ S is closed under scalar multiplication

A linear function u ∈ S is called a 1-tensor or a linear map on V . It is easy to

verify that S is a vector space over field C (We already proved that S is closed

under addition and scalar multiplication and rest of the axioms of vector space are

easy to verify and are left to reader). The vectorspace of all 1-tensors is defined

to be the 1−fold tensor product space of V denoted by L (V → C) or V ∗. In

addition, 1−fold tensor product space is also called dual space of V .

2.1.2 1-tensors using inner product

Definition 2.1.2. Let V be a finite dimensional inner product space over field

C with dim (V ) = n. Let A = {a1, a2, ..., an} be an orthonormal basis of V . ∀
i ∈ {1, 2, ..., n} Define a∗i : V → C as follows ∀ x ∈ V ,

a∗i (x) = (ai, x)

18
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Remark :

1. a∗i is linear ∀ i and it follows from the definition of inner product 1.1.1

Illustration :

Consider V = C2 over C with standard dot product as inner product. Let A =

{a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. Let E = {e1 =

[
1 0

]T
, e2 =

[
0 1

]T
}

denote the standard orthonormal basis of C2. Verify that A forms an orthonormal

basis of V . From definition 3.1.2 a∗i : C2 → C is defined as follows ∀ x ∈ V ,

a∗i (x) = (ai, x) =
Aai ⊙

A

x where 1 ≤ i ≤ 2

Note that
A
ai = ei

=⇒ a∗i (x) = ei ⊙
A

x =
A

x[i]

1. ∀ x, y ∈ V ,

a∗i (x+ y) =
A

(x+ y) [i]

=
A

x[i] +
A

y[i] = a∗i (x) + a∗i (y)

2. ∀ x ∈ V ∀ α ∈ C,

a∗i (αx) =
A

(αx) [i]

= α · A

x[i] = α · a∗i (x)

=⇒ a∗i is linear

The linearity of coordinates of vectors (
A
(x+ y) =

A
x +

A
y and

A
(αx) = α · A

x

can be easily verified by expressing vectors x and y in terms of basis A.

2.1.3 Basis of 1−fold tensor product spaces

Let V be a finite dimensional inner product space over field C with dim (V ) = n.

Let A = {a1, a2, ..., an} be an orthonormal basis of V . Let A∗ = {a∗1, a∗2, ..., a∗n}.
From remark 2.1.2 we get that ∀ i ∈ {1, 2, ..., n} a∗i is linear.
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Lemma 2.1.2. ∀ x ∈ V ,

x =
n∑

i=1

a∗i (x) ai

Proof. Follows directly from lemma 1.1.1 and the definition of a∗i . Observe that

a∗i (x) gives the i-th coordinate of vector x with respect to basis A.

Theorem 2.1.3. A∗ is a basis for vector space L (V → C).

Proof. Span : From the above lemma we have that ∀ x ∈ V ,

x =
n∑

i=1

a∗i (x) ai

∀ u ∈ L (V → C) since u is linear we get,

u (x) = u

(
n∑

i=1

a∗i (x) ai

)
=

n∑
i=1

u (ai) a
∗
i (x)

=⇒ A∗ spans L (V → C)

Linear Independence : Let αi ∈ C ∀ 1 ≤ i ≤ n. Consider,

n∑
i=1

αia
∗
i = 0

∀ j ∈ {1, 2, ..., n} since A is an orthonormal basis we get that,

n∑
i=1

αia
∗
i (aj) =

n∑
i=1

αi (ai, aj) = αj = 0

=⇒ A∗ is a linearly independent set and a basis of L (V → C)

Remark :

1. LetA = {a1, a2, ..., an} be any orthonormal basis of V . LetA∗ = {a∗1, a∗2, ..., a∗n}.
A∗ is defined to be the dual basis of V .

20



2. Tensor products

Corollary 2.1.4.

dim (L (V → C)) = dim (V ∗) = dim (V )

Illustration :

Consider V = C2 over C with standard dot product as inner product. Let A =

{a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. LetA∗ = {a∗1, a∗2} where each a∗i : C2 → C

is defined as follows ∀ x ∈ V ,

a∗i (x) = (ai, x) =
Aai ⊙

A

x =
A

x[i] where 1 ≤ i ≤ 2

From the above theorem we get that A∗ is a basis of L (C2 → C). Consider the

following linear function,

u

([
x y

]T)
= x+ y where

[
x y

]T
∈ C2

It is straight forward to verify that u is linear. Since A is a basis of V ∀
[
x y

]T
∈

C2 there exist unique α, β ∈ C such that,[
x y

]T
= αa1 + βa2 =⇒ a∗1

([
x y

]T)
= α and a∗2

([
x y

]T)
= β

Since u is linear we get that,

u

([
x y

]T)
= a∗1

([
x y

]T)
u (a1) + a∗2

([
x y

]T)
u (a2)

From the above expression it is quite clear that computing u (a1) and u (a2) is

sufficient to determine the action of u on any
[
x y

]T
.

u (a1) = u

([
1√
2

i√
2

]T)
=

1 + i√
2

u (a2) = u

([
1√
2

− i√
2

]T)
=

1− i√
2

=⇒ u

([
x y

]T)
=

1 + i√
2
a∗1

([
x y

]T)
+

1− i√
2
a∗2

([
x y

]T)
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=⇒ u

([
x y

]T)
= u (a1) a

∗
1

([
x y

]T)
+ u (a2) a

∗
2

([
x y

]T)
With this illustration, observe how {a∗1, a∗2} works as a basis of L (C2 → C) and

also note that the values u (a1), u (a2) is sufficient to compute u

([
x y

]T)
for

any
[
x y

]T
∈ C2

Remark :

1. ∀ u ∈ L (V → C) from theorem 2.1.3 we get that,

u =
n∑

i=1

u (ai) a
∗
i

From definition 1.1.2 we get coordinates of the vector u ∈ L (V → C) with
respect to basis A∗ as follows,

A∗

u =
[
u (a1) u (a2) . . u (an)

]T
2.1.4 Basis Transformation

Theorem 2.1.5. Let V be a finite dimensional inner product space over field

C with dim (V ) = n. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any

two orthonormal basis of V . Let A∗ = {a∗1, a∗2, ..., a∗n} and B∗ = {b∗1, b∗2, ..., b∗n}.
Theorem 2.1.3 implies that A∗ and B∗ form bases of L (V → C). Let M ∈ Cn×n

be the transformation matrix from basis A to B i.e,[
a1 a2 . . . an

]
=
[
b1 b2 . . . bn

]
M

∀ u ∈ L (V → C),
B∗

u = M · A∗

u

Proof. ∀ u ∈ L (V → C) since A∗ and B∗ form bases of L (V → C) we get,

u =
n∑

j=1

u (aj) a
∗
j =

n∑
i=1

u (bi) b
∗
i
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=⇒ A∗

u =
[
u (a1) u (a2) . . . u (an)

]T
B∗

u =
[
u (b1) u (b2) . . . u (bn)

]T
Since M is the transformation matrix from basis A to B we get that M∗ is the

transformation matrix from B to A i.e,[
b1 b2 . . . bn

]
=
[
a1 a2 . . . an

]
M∗

∀ i ∈ {1, 2, ..., n},

bi =
n∑

j=1

M∗
jiaj =

n∑
j=1

M ij · aj

Since u is linear we get,

u (bi) = u

(
n∑

j=1

M ij · aj

)
=

n∑
j=1

M ij · u (aj)

=⇒ u (bi) =
[
M i1 M i2 . . M in

]

u (a1)

u (a2)

.

.

u (an)



=⇒


u (b1)

u (b2)

.

.

u (bn)

 =


M11 M12 . . M1n

M21 M22 . . M2n

. . . . .

. . . . .

Mn1 Mn2 . . Mnn




u (a1)

u (a2)

.

.

u (an)



=⇒ B∗

u = M · A∗

u
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Remark :

1. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two orthonormal

basis of V . Then, A∗ = {a∗1, a∗2, ..., a∗n} and B∗ = {b∗1, b∗2, ..., b∗n} form bases

of L (V → C). Let M ∈ Cn×n be the transformation matrix from basis A to

B. Then, M is the basis transformation matrix from basis A∗ to basis B∗

and
(
M
)−1

= MT is the basis transformation matrix from B to A. More

concretely ∀ u ∈ L (V → C),[
a∗1 a∗2 . . a∗n

]
=
[
b∗1 b∗2 . . b∗n

]
M =⇒ B∗

u = M · A∗
u

=⇒ A∗

u = MT · B

u =⇒
[
b∗1 b∗2 . . b∗n

]
=
[
a∗1 a∗2 . . a∗n

]
MT

Illustration :

Consider V = C2 over C with standard dot product as inner product. Let A =

{a1 =
[

1√
2

− i√
2

]T
, a2 =

[
1√
2

i√
2

]T
}. Let A∗ = {a∗1, a∗2} where each a∗i : C2 → C

is defined as follows ∀ x ∈ V ,

a∗i (x) = (ai, x) =
A

ai ⊙
A

x =
A

x[i] where 1 ≤ i ≤ 2

Let B = {b1 =
[
1 0

]T
, b2 =

[
0 1

]T
}. Let B∗ = {b∗1, b∗2} where each b∗i : C2 → C

is defined as follows ∀ x ∈ V ,

b∗i (x) = (bi, x) =
B

bi ⊙
B

x =
B

x[i] where 1 ≤ i ≤ 2

Verify that both A and B are orthonormal bases of C2. From theorem 2.1.3 we

get that A∗ and B∗ form bases of L (V → C).

Computing the basis transformation matrix from A∗ to B∗

a1 =
1√
2
b1 −

i√
2
b2 a2 =

1√
2
b1 +

i√
2
b2

[
a1 a2

]
=
[
b1 b2

] [ 1√
2

1√
2

− i√
2

i√
2

]
=⇒ M =

[
1√
2

1√
2

− i√
2

i√
2

]
We get that M is the transformation matrix from basis A to B of C2 which implies

that M∗ is the transformation matrix from basis B to A i.e,

24
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[
b1 b2

]
=
[
a1 a2

] [ 1√
2

i√
2

1√
2

− i√
2

]

=⇒ b1 =
1√
2
a1 +

1√
2
a2 b2 =

i√
2
a1 −

i√
2
a2

∀ u ∈ L (C2 → C) since A∗ and B∗ form bases of L (C2 → C) we get,

u = u (a1) a
∗
1 + u (a2) a

∗
2 = u (b1) b

∗
1 + u (b2) b

∗
2

Since u is linear we get that,

u (b1) =
1√
2
u (a1) +

1√
2
u (a2) u (b2) =

i√
2
u (a1)−

i√
2
u (a2)

=⇒

[
u (b1)

u (b2)

]
=

[
1√
2

1√
2

i√
2

− i√
2

][
u (a1)

u (a2)

]
=⇒ B∗

u = M · A∗

u

2.1.5 Invariance of computation of 1−tensors under any

orthonormal basis transformations

Theorem 2.1.6. Let V be a finite dimensional inner product space over field C
where dim (V ) = n. Let A = {a1, a2, ..., an} be any orthonormal basis of V . Let

A∗ = {a∗1, a∗2, ..., a∗n}. Theorem 2.1.3 implies that A∗ forms a basis of L (V → C).
∀ u ∈ L (V → C) ∀ x ∈ V ,

u (x) =
n∑

r=1

A∗

u[r] · A

x[r] = A∗
u⊙ A

x

Proof. ∀ x ∈ V since A is a basis of V there exist unique αr ∈ C such that,

x =
n∑

r=1

αrar
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∀ u ∈ L (V → C) since u is linear we get,

u (x) = u

(
n∑

r=1

αrar

)
=

n∑
r=1

αru (ar)

Since A∗ is a basis of L (V → C) and A is a basis of V we get,

u (ar) =
A∗

u[r] αr =
A

x[r]

=⇒ u (x) =
n∑

r=1

A∗

u[r] · A

x[r] = A∗
u⊙ A

x

Remark :

1. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bn} be any two orthonormal

bases of V . Let A∗ = {a∗1, a∗2, ..., a∗n} and B∗ = {b∗1, b∗2, ..., b∗n}. Note that

both A∗ and B∗ form bases of L (V → C). ∀ u ∈ L (V → C) ∀ x ∈ V ,

u (x) = A∗
u⊙ A

x = B∗
u⊙ B

x

2. It is easy to observe that ∀ x ∈ V u (x) can be determined by the euclidean

dot product of
A∗
u and

A
x. Hence if we fix computations with respect to an

orthonormal basis A we can identify u with
A∗
u

3. Let dim (V ) = n. ∀ u ∈ L (V → C),(
A∗

u
)T

=
[
u (a1) u (a2) . . u (an)

]T
is a 1 × n row vector in Cn. Hence it is easy to show that 1−fold tensor

product space i.e, L (V → C) is isomorphic to C1×n ∼= Cn. (It is straight-

forward to verify and left to reader. For proof technique refer lemma 1.1.9)

4.

u (x) = B∗
u⊙ B

x =
(
M · A∗

u
)
⊙
(
M · A

x
)
= A∗

u⊙ A

x

=⇒ u (x) = B∗
u⊙ B

x = A∗
u⊙ A

x
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Illustration :

Consider V = C2 over C with standard dot product as inner product. Let A =

{a1 =
[

1√
2

− i√
2

]T
, a2 =

[
1√
2

i√
2

]T
}. Let A∗ = {a∗1, a∗2} where each a∗i : R2 → R

is defined as follows ∀ x ∈ V ,

a∗i (x) = (ai, x) =
A

ai ⊙
A

x =
A

x[i] where 1 ≤ i ≤ 2

Let B = {b1 =
[
1 0

]T
, b2 =

[
0 1

]T
}. Let B∗ = {b∗1, b∗2} where each b∗i : C2 → C

is defined as follows ∀ x ∈ V ,

b∗i (x) = (bi, x) =
B

bi ⊙
B

x =
B

x[i] where 1 ≤ i ≤ 2

Verify that both A and B form orthonormal bases of C2. From Theorem 2.1.3

we get A∗ and B∗ form bases of L (V → C). In the previous illustration we have

already shown that the basis transformation matrix M from A to B i.e,

M =

[
1√
2

1√
2

− i√
2

i√
2

]

We have also seen that ∀ x ∈ C2 ∀ u ∈ L (C2 → C),

B

x = M · A

x
B∗

u = M · A∗

u

Since B is a basis of C2 we get,

x =
B

x[1]b1 +
B

x[2]b2

Since u is linear we get that,

u (x) = u
(

B

x[1]b1 +
B

x[2]b2

)
=

B

x[1]u (b1) +
B

x[2]u (b2) =
B∗
u⊙ B

x

=⇒ u (x) =
(
M · A∗

u
)
⊙
(
M · A

x
)
= A∗

u⊙ A

x

=⇒ u (x) = B∗
u⊙ B

x = A∗
u⊙ A

x
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2.1.6 Inner products on 1−fold tensor product spaces

In this section we define a function () : V ∗×V ∗ → C and prove that this function

is an inner product which shows the existence of inner product on dual space V ∗

i.e, V ∗ is an inner product space.

Definition 2.1.3. Let V be a finite dimensional inner product space where

dim(V ) = n. Let A = {a1, a2, ..., an} be any orthonormal basis of V and A∗ =

{a∗1, a∗2, ..., a∗n} be the corresponding dual basis. ∀ u, v ∈ L (V → C) we define the
following function () : V ∗ × V ∗ → C as follows,

(u, v) =
A∗

u⊙ A∗

v

Lemma 2.1.7. ∀ u, v ∈ L (V → C),

(u, v) =
A∗

u⊙ A∗

v is an inner product.

Proof. Linearity : ∀ u, v, w ∈ L (V → C) ∀ α ∈ C,

(u, v + w) =
A∗

u⊙ A∗

(v + w) =
A∗

u⊙
(

A∗

v +
A∗

w
)
=

A∗

u⊙ A∗

v +
A∗

u⊙ A∗

w

= (u, v) + (u,w)

(u, αv) =
A∗

u⊙ A∗

(αv) =
A∗

u⊙
(
α · A∗

v
)
= α · A∗

u⊙ A∗

v = α (u, v)

Conjugate Symmetry : ∀ u, v ∈ L (V → C),

(u, v) =
A∗

u⊙ A∗

v =
n∑

r=1

A∗
u[r] · A∗

v[r] =
n∑

r=1

A∗
v[r] · A∗

u[r]

= A∗
v ⊙ A∗

u = (v, u)

Positive Definiteness : ∀ u ∈ L (V → C),

(u, u) = 0 ⇐⇒ A∗

u⊙ A∗

u = 0 ⇐⇒
n∑

r=1

|A
∗

u[r]|
2
= 0 ⇐⇒ A∗

u = 0 ⇐⇒ u = 0
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Lemma 2.1.8. ∀ u, v ∈ L (V → C),

(u, v) =
A∗

u⊙ A∗

v is well-defined.

Proof. Let B = {b1, b2, ..., bn} be any another orthonormal basis of V . Let B∗ =

{b∗1, b∗2, ..., b∗n} be the corresponding dual basis. To claim (u, v) is well-defined it is

enough to show that(
n∑

i=1

u (ai) a
∗
i ,

n∑
j=1

v (aj) a
∗
j

)
=

(
n∑

p=1

u (bp) b
∗
p,

n∑
q=1

v (bq) b
∗
q

)
(

n∑
i=1

u (ai) a
∗
i ,

n∑
j=1

v (aj) a
∗
j

)
=

n∑
i=1

n∑
j=1

u (ai)u (aj)
(
a∗i , a

∗
j

)
Let M ∈ Cn×n be the transformation matrix from basis A to B. Theorem 2.1.5

implies that [
a∗1 a∗2 . . a∗n

]
=
[
b∗1 b∗2 . . b∗n

]
M

=⇒ a∗i =
n∑

p=1

Mpib
∗
p a∗j =

n∑
q=1

M qjb
∗
q

(
n∑

i=1

u (ai) a
∗
i ,

n∑
j=1

v (aj) a
∗
j

)
=

n∑
i=1

n∑
j=1

n∑
p=1

n∑
q=1

MpiM qju (ai)u (aj)
(
a∗i , a

∗
j

)
=

n∑
p=1

n∑
q=1

(
n∑

i=1

Mpiu(ai)

)(
n∑

j=1

M qju(aj)

)(
b∗p, b

∗
q

)
Theorem 2.1.5 implies that,

B∗

u = M · A∗

u =⇒ u (bp) =
n∑

i=1

Mpiu (ai) and u (bq) =
n∑

j=1

M qju (aj)

=⇒

(
n∑

i=1

u (ai) a
∗
i ,

n∑
j=1

v (aj) a
∗
j

)
=

(
n∑

p=1

u (bp) b
∗
p,

n∑
q=1

v (bq) b
∗
q

)
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We end this section showing how inner products can be used in giving an alternate

proof for the linear independence of dual basis. ∀ i, j ∈ {1, 2, ..., n},(
a∗i , a

∗
j

)
=

A∗

a∗i ⊙
A∗

a∗j = ei ⊙ ej = 1 if i = j

= 0 if i ̸= j

From lemma 1.1.7 it is straight forward to verify linear independence of dual basis.

2.1.7 Linear operators on 1-fold tensor product spaces

Definition 2.1.4. Let L (V ∗) denote the set of all linear operators over the dual

space L (V → C) = V ∗. Define addition and scalar multiplication on the set

L (V ∗) as follows ∀ T,W ∈ L (V ∗) ∀ x ∈ V ∗ ∀ α ∈ C,

[T +W ]x = T (x) +W (x)

[αT ]x = α · T (x)

Remark :

1. It is straight forward to verify that L (V ∗) is a vector space over C and is

left to reader (refer lemma 2.1.1).

2. Note that L (V ∗) is also called tensor product space of operators on the dual

space V ∗.

Next we shall find a basis of L (V ∗).

Definition 2.1.5. Let V be a finite dimensional inner product space over field C
where dim(V ) = n. Let A = {a1, a2, ..., an} be an orthonormal basis of V . Let

A∗ = {a∗1, a∗2, ..., a∗n} be the corresponding dual basis. Define T ∗ = {Tij | 1 ≤
i, j ≤ n} where ∀ i, j, k ∈ {1, 2, ..., n} Tij ∈ L(V ∗) is defined as follows,

Tij (a
∗
k) = a∗j if k = i

= 0 if k ̸= i
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Remark :

1. Note that each Tij ∈ T ∗ is well-defined since A∗ is a basis of V ∗ and Tij is

defined on each basis element of V ∗ (Recall that in order to define a linear

operator it is enough to define the operator on a basis of the vector space).

2. Note that by definition each Tij is linear.

Theorem 2.1.9. T ∗ forms a basis of L (V ∗).

Proof. Span : ∀ u ∈ V ∗ since A∗ is a basis of V ∗ there exist unique αi ∈ C such

that,

u =
n∑

i=1

αia
∗
i

∀ W ∈ L (V ∗) since W is a linear operator we get,

W (u) =
n∑

i=1

αiW (a∗i )

Since W is an operator ∀ i ∈ {1, 2, ..., n} there exist βij ∈ C such that,

W (a∗i ) =
n∑

j=1

βija
∗
j

=⇒ W (u) =
n∑

i=1

n∑
j=1

βijαia
∗
j

Note that ∀ i, j ∈ {1, 2, ..., n} since Tij is linear,

Tij (u) =
n∑

k=1

αkTij (a
∗
k) = αia

∗
j

=⇒ W (u) =
n∑

i=1

n∑
j=1

βijTij (u) =⇒ W =
n∑

i=1

n∑
j=1

βijTij

=⇒ T ∗ spans L(V ∗)
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Linear Independence : ∀ i, j ∈ {1, 2, ..., n}. Consider,

n∑
i=1

n∑
j=1

αijTij = 0

∀ k ∈ {1, 2, ..., n} applying a∗k we get,

n∑
i=1

n∑
j=1

αijTij (a
∗
k) = 0 =⇒

n∑
j=1

αkja
∗
j = 0

Since A∗ is a basis of V ∗ we get that,

αkj = 0 ∀ j ∈ {1, 2, ..., n}

=⇒ T ∗ is a linearly independent set and forms a basis of L(V ∗)

Corollary 2.1.10.

dim (L (V ∗)) = (dim (V ∗))2

It will be evident in the next sections on how the basis T ∗ is used to construct

the basis of 2, 3, k-fold tensor product space of operators.
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2.2 2-fold tensor product spaces

2.2.1 Bi-linear functions

Definition 2.2.1. Let V , W be vector spaces over field C with inner products

()1 : V × V → C and ()2 : W ×W → C. Note that subscripts ()1 and ()2 will be

dropped if the context is clear. A function u : V ×W → C is called bi-linear if

the following holds,

1. ∀ x, y ∈ V ∀ z ∈ W ,

u (x+ y, z) = u (x, z) + u (y, z)

2. ∀ x ∈ V ∀ y, z ∈ W ,

u (x, y + z) = u (x, y) + u (x, z)

3. ∀ x ∈ V ∀ y ∈ W ∀ α ∈ C,

u (αx, y) = αu (x, y) = u (x, αy)

Let set S = {u : V ×W → C | u is bi-linear}. Define addition and multiplication

on the set S as follows, ∀ u, v ∈ S ∀ x ∈ V ∀ y ∈ W ∀ α ∈ C,

[u+ v] (x, y) = u (x, y) + v (x, y)

[αu] (x, y) = αu (x, y)

Lemma 2.2.1. S is closed under addition and scalar multiplication

Proof. Claim 1 : ∀ u, v ∈ S [u+ v] ∈ S,

1. ∀ x, y ∈ V , ∀ z ∈ W ,

[u+ v] (x+ y, z) = u (x+ y, z) + v (x+ y, z) = u (x, z) + u (y, z) + v (x, z) + v (y, z)

= [u+ v] (x, z) + [u+ v] (y, z)
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2. ∀ x ∈ V ∀ y, z ∈ W ,

[u+ v] (x, y + z) = u (x, y + z) + v (x, y + z) = u (x, y) + u (x, z) + v (x, y) + v (x, z)

= [u+ v] (x, y) + [u+ v] (x, z)

3. ∀ x ∈ V ∀ y ∈ W ∀ α ∈ C,

[u+ v] (αx, y) = u (αx, y) + v (αx, y) = αu (x, y) + αv (x, y) = α [u+ v] (x, y)

= u (x, αy) + v (x, αy) = [u+ v] (x, αy)

[u+ v] is bi-linear =⇒ [u+ v] ∈ S =⇒ S is closed under addition

Claim 2 : ∀ u ∈ S α ∈ C [αu] ∈ S,

1. ∀ x, y ∈ V ∀ z ∈ W ,

[αu] (x+ y, z) = αu (x+ y, z) = αu (x, z)+αu (y, z) = [αu] (x, z)+[αu] (y, z)

2. ∀ x ∈ V ∀ y, z ∈ W ,

[αu] (x, y + z) = αu (x, y + z) = αu (x, y)+αu (x, z) = [αu] (x, y)+[αu] (x, z)

3. ∀ x ∈ V ∀ y ∈ W ∀ β ∈ C,

[αu] (βx, y) = αu (βx, y) = αβu (x, y) = β [αu] (x, y) = αu (x, βy) = [αu] (x, βy)

[αu] is bi-linear =⇒ [αu] ∈ S =⇒ S is closed under scalar multiplication

A bi-linear function u ∈ S is called a 2-tensor or a bi-linear map on V ×W . It

is easy to verify that S is a vector space over field C (We already proved that

S is closed under addition and scalar multiplication and rest of the axioms of

vector space are easy to verify and are left to the reader). The vector space of all

2-tensors is defined to be the 2-fold tensor product space of V and W denoted by

L (V ×W → C) or V ⊗W .
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2.2.2 Tensor products on vector spaces V and W

Definition 2.2.2. Let V , W be any two finite dimensional inner product spaces

over field C where dim (V ) = n and dim (W ) = m. ∀ u ∈ L (V → C) ∀ v ∈
L (W → C) Define the tensor product of u and v as a function [u⊗ v] : V ×W → C
as follows ∀ x ∈ V ∀ y ∈ W ,

[u⊗ v] (x, y) = u (x) · v (y)

Remark :

1. ∀ u, v ∈ L (V → C) notice that u⊗ v ̸= v ⊗ u in general.

Lemma 2.2.2. Let V , W be any two finite dimensional inner product spaces over

field C. ∀ u ∈ L (V → C) ∀ v ∈ L (W → C), [u⊗ v] is bi-linear.

Proof. 1. ∀ x, y ∈ V ∀ z ∈ W ,

[u⊗ v] (x+ y, z) = u (x+ y) · v (z) = u (x) · v (z) + u (y) · v (z)

= [u⊗ v] (x, z) + [u⊗ v] (y, z)

2. ∀ x ∈ V ∀ y, z ∈ W ,

[u⊗ v] (x, y + z) = u (x) · v (y + z) = u (x) · v (y) + u (x) · v (z)

= [u⊗ v] (x, y) + [u⊗ v] (x, z)

3. ∀ x ∈ V ∀ y ∈ W ∀ α ∈ C,

[u⊗ v] (αx, y) = u (αx) · v (y) = u (x) · v (αy) = [u⊗ v] (x, αy)

= αu (x) · v (y) = α [u⊗ v] (x, y)

=⇒ [u⊗ v] is bi-linear =⇒ [u⊗ v] ∈ L (V ×W → C)
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Lemma 2.2.3. Let V , W be any two vector spaces over field C.

1. ∀ u, v ∈ L (V → C) ∀ w ∈ L (W → C),

[u+ v]⊗ w = u⊗ w + v ⊗ w

2. ∀ u ∈ L (V → C) ∀ v, w ∈ L (W → C),

u⊗ [v + w] = u⊗ v + u⊗ w

3. ∀ u ∈ L (V → C) ∀ v ∈ L (W → C) ∀ α ∈ C,

[αu]⊗ v = u⊗ [αv] = α [u⊗ v]

Proof. ∀ x ∈ V ∀ y ∈ W ,

1. ∀ u, v ∈ V ∀ w ∈ W ,

[[u+ v]⊗ w] (x, y) = [u+ v] (x) · w (y) = u (x) · w (y) + v (x) · w (y)

= [u⊗ w] (x, y) + [v ⊗ w] (x, y)

2. ∀ u ∈ V ∀ v, w ∈ W ,

[u⊗ [v + w]] (x, y) = u (x) · [v + w] (y) = u (x) · v (y) + u (x) · w (y)

= [u⊗ v] (x, y) + [u⊗ w] (x, y)

3. ∀ u ∈ V ∀ v ∈ W ∀ α ∈ C,

[[αu]⊗ v] (x, y) = [αu] (x) · v (y) = αu (x) · v (y) = α [u⊗ v] (x, y)

= u (x) · [αv] (y) = [u⊗ [αv]] (x, y)

Remark :

1. u ⊗ v = 0 ⇐⇒ u = 0 or v = 0. It is straight forward to verify and left to

reader.
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2. Note that the tensor products don’t have unique representations for instance

∀ u ∈ L (V → C) v ∈ L (W → C) ∀ α ̸= 0 ∈ C,

u⊗ v =
u

α
⊗ (αv)

Illustration :

Consider V = C2 over C and W = C3 over C with standard dot product as

inner product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
} and B = {b1 =[

i√
3

i√
3

i√
3

]T
, b2 =

[
i√
2

− i√
2

0
]T

, b3 =
[

1√
6

1√
6

− 2√
6

]T
}. Verify that A

and B form orthonormal basis of C2 and C3 respectively. Let A∗ = {a∗1, a∗2} and

B∗ = {b∗1, b∗2, b∗3}. Recall that A∗ and B∗ are dual bases of V ∗ and W ∗ respectively.

Theorem 2.1.6 implies that ∀ u ∈ V ∗ ∀ v ∈ W ∗ ∀ x ∈ C2 ∀ y ∈ C3,

u (x) = A∗
u⊙ A

x v (y) = B∗
v ⊙ B

y

Let u =
[
a∗1 a∗2

] [ 1
2i

]
, v =

[
b∗1 b∗2 b∗3

] 3

2i

1

.
∀ x ∈ C2, ∀ y ∈ C3,

[u⊗ v] (x, y) = u (x) · v (y) =
(

A∗
u⊙ A

x
)
·
(

B∗
v ⊙ B

y
)
=

A

x
T
· A∗

u · B∗

v
T
· B

y

=⇒ [u⊗ v] (x, y) =
[
A
x [1]

A
x [2]

]
·

[
1

2i

]
·
[
3 2i 1

]
·


B
y [1]

B
y [2]

B
y [3]



=⇒ [u⊗ v] (x, y) =
[
A
x [1]

A
x [2]

]
·

[
3 2i 1

6i −4 2i

]
B
y [1]

B
y [2]

B
y [3]


From the linearity of coordinates of vectors x, y it is straight forward to conclude

that [u⊗ v] is bi-linear and all the properties in lemma 2.2.3 hold. Note that

computing
A∗
u ·
(

B∗
v
)T

is sufficient to determine the action of [u⊗ v] on any

(x, y) ∈ C2 × C3.
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2.2.3 Basis of 2-fold tensor product spaces

Let V , W be any two finite dimensional inner product spaces over field C where

dim (V ) = n and dim (W ) = m. Let A = {a1, a2, ..., an} be an orthonormal basis

of V and B = {b1, b2, ..., bm} be an orthonormal basis of W . Define A ⊗ B =

{a∗i ⊗ b∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Lemma 2.2.2 implies that ∀ i ∈ {1, 2, ..., n} ∀
j ∈ {1, 2, ...,m} a∗i ⊗ b∗j is bi-linear.

Theorem 2.2.4. A⊗B is a basis for vector space L (V ×W → C)

Proof. Span :

∀ x ∈ V since A is a basis of V there exist unique αi ∈ C such that

x =
n∑

i=1

αiai

∀ y ∈ W since B is a basis of W there exist unique βj ∈ C such that

y =
m∑
j=1

βjbj

∀ u ∈ L (V ×W → C) since u is bi-linear we get that,

u (x, y) = u

(
n∑

i=1

αiai,
m∑
j=1

βjbj

)
=

n∑
i=1

m∑
j=1

αiβju (ai, bj)

∀ i ∈ {1, 2, ..., n} ∀ j ∈ {1, 2, ...,m} from definition 1.1.2 we get

[
a∗i ⊗ b∗j

]
(x, y) = (ai, x) (bj, y) =

A

x [i] · B

y [j] = αiβj

=⇒ u (x, y) =
n∑

i=1

m∑
j=1

u (ai, bj)
[
a∗i ⊗ b∗j

]
(x, y) =⇒ u =

n∑
i=1

m∑
j=1

u (ai, bj)
[
a∗i ⊗ b∗j

]
=⇒ A⊗B spans L (V ×W → C)
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Linear Independence :

Let αij ∈ C ∀ i ∈ {1, 2, ..., n} ∀ j ∈ {1, 2, ...,m}. Consider,

n∑
i=1

m∑
j=1

αij

[
a∗i ⊗ b∗j

]
= 0

∀ p ∈ {1, 2, ..., n} ∀ q ∈ {1, 2, ...,m},

n∑
i=1

m∑
j=1

αij

[
a∗i ⊗ b∗j

]
(ap, bq) = 0 =⇒

n∑
i=1

m∑
j=1

αij (ai, ap) (bj, bq) = 0

Since A and B are orthonormal bases we get that,

n∑
i=1

m∑
j=1

αij (ai, ap) (bj, bq) = αpq = 0

=⇒ A⊗B is a linearly independent set and a basis of L (V ×W → C)

Corollary 2.2.5.

dim (L (V ×W → C)) = dim (V ⊗W ) = dim (V ) · dim (W )

Illustration :

Consider V = C2 over C and W = C3 over C with standard dot product as

inner product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
} and B = {b1 =[

i√
3

i√
3

i√
3

]T
, b2 =

[
i√
2

− i√
2

0
]T

, b3 =
[

1√
6

1√
6

− 2√
6

]T
}. Verify that A

and B form orthonormal basis of C2 and C3 respectively. Let A∗ = {a∗1, a∗2} and

B∗ = {b∗1, b∗2, b∗3}. Recall that A∗ and B∗ are dual bases of V ∗ and W ∗ respectively.

∀ i ∈ {1, 2} ∀ j ∈ {1, 2, 3} ∀ x ∈ C2 ∀ y ∈ C3,[
a∗i ⊗ b∗j

]
(x, y) = (ai, x) (bj, y)

=
(

Aai ⊙
A

x
)
·
(

Bbj ⊙
B

y
)

=
A

x [i] · B

y [j]
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Let A⊗B = {a∗i ⊗ b∗j | 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}. Above theorem implies that A⊗B

is a basis of L (C2 × C3 → C). Consider the following bi-linear function,

u

([
x1 x2

]T
,
[
y1 y2 y3

]T)
= (x1 + 2i · x2) · (3i · y1 + y3)

where
[
x1 x2

]T
∈ C2 and

[
y1 y2 y3

]T
∈ C3.

It is straight forward to verify that u is bi-linear. Since A and B form bases

of V and W respectively we get that,

∀
[
x1 x2

]T
∈ C2 there exist unique α1, α2 ∈ C such that,

[
x1 x2

]T
= α1a1 + α2a2

∀
[
y1 y2 y3

]T
∈ C3 there exist unique β1, β2, β3 ∈ C such that,

[
y1 y2 y3

]∗
= β1b1 + β2b2 + β3b3

Since u is bi-linear we get that,

u

([
x1 x2

]T
,
[
y1 y2 y3

]T)
= u

(
2∑

i=1

αiai,
3∑

j=1

βjbj

)
=

2∑
i=1

3∑
j=1

αiβju (ai, bj)

It is quite clear that computing u (ai, bj) is sufficient to determine the action of u

on any
[
x1 x2

]T
∈ C2

[
y1 y2 y3

]T
∈ C3.

=⇒ u

([
x1 x2

]T
,
[
y1 y2 y3

]T)
=

2∑
i=1

3∑
j=1

u (ai, bj)
[
a∗i ⊗ b∗j

]
(x, y)

With this illustration observe how A⊗B works as a basis of L (C2 × C3 → C) and

also note that the values of u (ai, bj) is sufficient to compute u

([
x1 x2

]T
,
[
y1 y2 y3

]T)
for any

[
x1 x2

]T
∈ C2 and

[
y1 y2 y3

]T
∈ C3.
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2.2.4 Basis Transformation

Definition 2.2.3. Let V , W be any two finite dimensional inner product spaces

over field C where dim (V ) = n and dim (W ) = m. Let A = {a1, a2, ..., an} be

an orthonormal basis of V and B = {b1, b2, ..., bm} be an orthonormal basis of W .

Let A⊗B = {a∗i ⊗ b∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Theorem 2.2.4 implies that A⊗B

forms a basis of L (V ×W → C). Hence ∀ u ∈ L (V ×W → C),

u =
n∑

i=1

m∑
j=1

u (ai, bj)
[
a∗i ⊗ b∗j

]
Define coordinates of the bi-linear function u as follows,

A⊗B

u =


u (a1, b1) u (a1, b2) . . . u (a1, bm)

u (a2, b1) u (a2, b2) . . . u (a2, bm)

. . . . . .

u (an, b1) u (an, b2) . . . u (an, bm)


Note :

1. Note that column vector representation is used for 1−tensors and matrix

representation is used for 2−tensors.

Theorem 2.2.6. Let V , W be any two finite dimensional inner product spaces

over field C where dim (V ) = n and dim (W ) = m. Let A = {a1, ..., an} and

C = {c1, ..., cn} be any two orthonormal basis of V . Let B = {b1, ..., bm} and

D = {d1, ..., dm} be any two orthonormal basis of W . Let A⊗B = {a∗i ⊗ b∗j | 1 ≤
i ≤ n, 1 ≤ j ≤ m} and C ⊗D = {c∗i ⊗ d∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Theorem 2.2.4

implies that A⊗B and C ⊗D form bases of L (V ×W → C). Let M ∈ Cn×n be

the transformation matrix from basis A to C i.e,[
a1 a2 . . . an

]
=
[
c1 c2 . . . cn

]
M

Let N ∈ Cm×m be the transformation matrix from basis B to D i.e,[
b1 b2 . . . bm

]
=
[
d1 d2 . . . dm

]
N
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∀ u ∈ L (V ×W → C),
C⊗D

u = M · A⊗B

u ·N∗

Proof. ∀ u ∈ L (V ×W → C) since A⊗B, C ⊗D form bases of L (V ×W → C)
we get that,

u =
n∑

i=1

m∑
j=1

u (ai, bj)
[
a∗i ⊗ b∗j

]
=

n∑
p=1

m∑
q=1

u (cp, dq)
[
c∗p ⊗ d∗q

]

=⇒ A⊗B

u =

u (a1, b1) . . u (a1, bm)

. . . .

u (an, b1) . . u (an, bm)

 C⊗D

u =

u (c1, d1) . . u (c1, dm)

. . . .

u (cn, d1) . . u (cn, dm)


Since M is the transformation matrix from basis A to C, we get that M∗ is the

transformation matrix from basis C to A i.e,[
c1 c2 . . . cn

]
=
[
a1 a2 . . . an

]
M∗

∀ p ∈ {1, 2, ..., n},

cp =
n∑

i=1

M∗
ipai =

n∑
i=1

Mpiai

Since N is the transformation matrix from basis B to D, we get that N∗ is the

transformation matrix from basis D to B i.e,[
d1 d2 . . . dm

]
=
[
b1 b2 . . . bm

]
N∗

∀ q ∈ {1, 2, ...,m},

dq =
m∑
j=1

N∗
jqbj =

m∑
j=1

N qj · bj

Since u is bi-linear we get that,

u (cp, dq) = u

(
n∑

i=1

Mpiai,
m∑
j=1

N qjbj

)
=

n∑
i=1

m∑
j=1

MpiN qju (ai, bj)
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=⇒ u (cp, dq) =
[
Mp1 . . Mpn

]u (a1, b1) . . u (a1, bm)

. . . .

u (an, b1) . . u (an, bm)



N q1

.

.

N qm


u (c1, d1) .. u (c1, dm)

. .. .

u (cn, d1) .. u (cn, dm)

 =

M11 .. M1n

. .. .

Mn1 .. Mnn


u (a1, b1) .. u (a1, bm)

. .. .

u (an, b1) .. u (an, bm)


N11 .. Nm1

. .. .

N1m .. Nmm



=⇒ C⊗D

u = M · A⊗B

u ·N∗

Illustration :

LetA = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
} andB = {b1 =

[
i√
3

i√
3

i√
3

]T
, b2 =[

i√
2

− i√
2

0
]T

, b3 =
[

1√
6

1√
6

− 2√
6

]T
}. Verify that A and B form orthonormal

basis of C2 and C3 respectively. Let A∗ = {a∗1, a∗2} and B∗ = {b∗1, b∗2, b∗3}. Re-

call that A∗ and B∗ are dual bases of V ∗ and W ∗ respectively. ∀ i ∈ {1, 2} ∀
j ∈ {1, 2, 3} ∀ x ∈ C2 ∀ y ∈ C3,

[
a∗i ⊗ b∗j

]
(x, y) = (ai, x) (bj, y) =

(
Aai ⊙

A

x
)
·
(

Bbj ⊙
B

y
)

=
A

x [i] · B

y [j]

Let C = {c1 =
[
1 0

]T
, c2 =

[
0 1

]T
} and D = {d1 =

[
1 0 0

]T
, d2 =[

0 1 0
]T

, d3 =
[
0 0 1

]T
}. Verify that C and D form orthonormal basis of

C2 and C3 respectively. Let C∗ = {c∗1, c∗2} and D∗ = {d∗1, d∗2, d∗3}. Recall that C∗

and D∗ are dual bases of V ∗ and W ∗ respectively. ∀ p ∈ {1, 2} ∀ q ∈ {1, 2, 3} ∀
x ∈ C2 ∀ y ∈ C3,[

c∗p ⊗ d∗q
]
(x, y) = (cp, x) (dq, y) =

(
Ccp ⊙

C

x
)
·
(

Ddq ⊙
D

y
)

=
C

x [i] · D

y [j]

Let A ⊗ B = {a∗i ⊗ b∗j | 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} and C ⊗ D = {c∗p ⊗ d∗q | 1 ≤

43



2. Tensor products

p ≤ 2, 1 ≤ q ≤ 3}. Above theorem implies that A ⊗ B and C ⊗ D is a basis of

L (C2 × C3 → C).

Computing the basis transformation matrix from basis A to C

a1 =
1√
2
c1 +

i√
2
c2 a2 =

1√
2
c1 −

i√
2
c2

[
a1 a2

]
=
[
c1 c2

] [ 1√
2

1√
2

i√
2

− i√
2

]
=⇒ M =

[
1√
2

1√
2

i√
2

− i√
2

]
We get that M is the transformation matrix from basis A to C of C2 which implies

that M∗ is the transformation matrix from basis C to A i.e,

[
c1 c2

]
=
[
a1 a2

] [ 1√
2

− i√
2

1√
2

i√
2

]

=⇒ c1 =
1√
2
a1 +

1√
2
a2 c2 = − i√

2
a1 +

i√
2
a2

Computing the basis transformation matrix from basis B to D

b1 =
i√
3
d1+

i√
3
d2+

i√
3
d3 b2 =

i√
2
d1−

i√
2
d2 b1 =

1√
6
d1+

1√
6
d2−

2√
6
d3

[
b1 b2 b3

]
=
[
d1 d2 d3

]
i√
3

i√
2

1√
6

i√
3

− i√
2

1√
6

i√
3

0 − 2√
6

 =⇒ N =


i√
3

i√
2

1√
6

i√
3

− i√
2

1√
6

i√
3

0 − 2√
6


We get that N is the transformation matrix from basis B to D of C3 which implies

that N∗ is the transformation matrix from basis D to B i.e,

[
d1 d2 d3

]
=
[
b1 b2 b3

]
− i√

3
− i√

3
− i√

3

− i√
2

i√
2

0
1√
6

1√
6

− 2√
6


=⇒ d1 = − i√

3
b1−

i√
2
b2+

1√
6
b3 d2 = − i√

3
b1+

i√
2
b2+

1√
6
b3 d3 = − i√

3
b1−

2√
6
b3
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∀ u ∈ L (C2 × C3 → C) since u is bi-linear ∀ p ∈ {1, 2} ∀ q ∈ {1, 2, 3},

u (cp, dq) = u

(
2∑

i=1

M∗
ipai,

3∑
j=1

N∗
jqbi

)

=
2∑

i=1

3∑
j=1

MpiN qju (ai, bj)

=
[
Mp1 Mp2

] [u (a1, b1) u (a1, b2) u (a1, b3)

u (a2, b1) u (a2, b2) u (a2, b3)

]N q1

N q2

N q3


[
u (c1, d1) u (c1, d2) u (c1, d3)

u (c2, d1) u (c2, d2) u (c2, d3)

]
=

[
M11 M12

M21 M22

][
u (a1, b1) u (a1, b2) u (a1, b3)

u (a2, b1) u (a2, b2) u (a2, b3)

]N11 N21 N31

N12 N22 N32

N13 N23 N33


=⇒ C⊗D

u = M · A⊗B

u ·N∗

2.2.5 Invariance of computation of 2−tensor under any or-

thonormal basis transformations

Theorem 2.2.7. Let V , W be any two finite dimensional inner product spaces

over field C where dim (V ) = n and dim (W ) = m. Let A = {a1, a2, ..., an} be

any orthonormal basis of V . Let B = {b1, b2, ..., bm} be any orthonormal basis of

W . Let A ⊗ B = {a∗i ⊗ b∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Theorem 2.2.4 implies that

A⊗B forms basis of L (V ×W → C). ∀ u ∈ L (V ×W → C) ∀ x ∈ V ∀ y ∈ W ,

u (x, y) =
n∑

r=1

m∑
s=1

A

x [r] · A⊗B

u [r, s] · B

y [s] =
(

A

x
)T

· A⊗B

u · B

y

Note that
A⊗B

u [r, s] is used to denote u (ar, bs).

Proof. ∀ x ∈ V since A is a basis of V there exist unique αr ∈ C such that,

x =
n∑

r=1

αrar
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∀ y ∈ W since B is a basis of W there exist unique βs ∈ C such that,

y =
m∑
s=1

βsbs

∀ u ∈ L (V ×W → C) we get that,

u (x, y) = u

(
n∑

r=1

αrar,

m∑
s=1

βsbs

)
=

n∑
r=1

m∑
s=1

αrβsu (ar, bs)

Since A and B form bases of V and W respectively we get that,

αr =
A

x [r] βs =
B

y [s]

Since A⊗B forms basis of L (V ×W → C) we get that,

A⊗B

u =


u (a1, b1) u (a1, b2) . . . u (a1, bm)

u (a2, b1) u (a2, b2) . . . u (a2, bm)

. . . . . .

u (an, b1) u (an, b2) . . . u (an, bm)



=⇒ u (x, y) =
n∑

r=1

m∑
s=1

A

x [r] · A⊗B

u [r, s] · B

y [s]

Remark :

1. Let A = {a1, a2, ..., an} and C = {c1, c2, ..., cn} be any two orthonormal

basis of V . Let B = {b1, b2, ..., bm} and D = {d1, d2, ..., dm} be any two

orthonormal basis of W . Let A ⊗ B = {a∗i ⊗ b∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
and C ⊗D = {c∗i ⊗ d∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Theorem 2.2.4 implies that

A⊗B and C ⊗D form bases of L (V ×W → C). ∀ u ∈ L (V ×W → C) ∀
x ∈ V ∀ y ∈ W we get that,

u (x, y) =
(

A

x
)T

· A⊗B

u · B

y =
(

C

x
)T

· C⊗D

u · D

y
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2. It is easy to observe that ∀ (x, y) ∈ V ×W , u (x, y) can be determined by

the action of
A⊗B

u on
A
x and

B
y. Hence if we fix computations with respect

to orthonormal bases A and B of V and W respectively we can identify u

with
A⊗B

u.

3. Let dim (V ) = n, dim (W ) = m. ∀ u ∈ L (V ×W → C),

A⊗B

u =


u (a1, b1) u (a1, b2) . . . u (a1, bm)

u (a2, b1) u (a2, b2) . . . u (a2, bm)

. . . . . .

u (an, b1) u (an, b2) . . . u (an, bm)


Hence, 2−fold tensor product space L (V ×W → C) is isomorphic to Cn×m.

(It is straight-forward to verify and is left to reader. For the proof technique

you may refer lemma 1.1.9)

4.

u (x, y) =
(

C

x
)T

· C⊗D

u · D

y =
(
M · A

x
)T

·M · A⊗B

u ·N∗ ·
(
N · B

y
)

=
(

A

x
)T

·MT ·M · A⊗B

u ·N∗ ·N · B

y

Since M∗M = N∗N = I we get,

=⇒ u (x, y) =
(

A

x
)T

· A⊗B

u · B

y =
(

C

x
)T

· C⊗D

u · D

y

Illustration :

LetA = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
} andB = {b1 =

[
i√
3

i√
3

i√
3

]T
, b2 =[

i√
2

− i√
2

0
]T

, b3 =
[

1√
6

1√
6

− 2√
6

]T
}. Verify that A and B form orthonormal

basis of C2 and C3 respectively. Let A∗ = {a∗1, a∗2} and B∗ = {b∗1, b∗2, b∗3}. Re-

call that A∗ and B∗ are dual bases of V ∗ and W ∗ respectively. ∀ i ∈ {1, 2} ∀
j ∈ {1, 2, 3} ∀ x ∈ C2 ∀ y ∈ C3,

[
a∗i ⊗ b∗j

]
(x, y) = (ai, x) (bj, y) =

(
Aai ⊙

A

x
)
·
(

Bbj ⊙
B

y
)

=
A

x [i] · B

y [j]
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Let C = {c1 =
[
1 0

]T
, a2 =

[
0 1

]T
} and D = {d1 =

[
1 0 0

]T
, b2 =[

0 1 0
]T

, b3 =
[
0 0 1

]T
}. Verify that C and D form orthonormal basis of

C2 and C3 respectively. Let C∗ = {c∗1, c∗2} and D∗ = {d∗1, d∗2, d∗3}. Recall that C∗

and D∗ are dual bases of V ∗ and W ∗ respectively. ∀ p ∈ {1, 2} ∀ q ∈ {1, 2, 3} ∀
x ∈ C2 ∀ y ∈ C3,[

c∗p ⊗ d∗q
]
(x, y) = (cp, x) (dq, y) =

(
Ccp ⊙

C

x
)
·
(

Ddq ⊙
D

y
)

=
C

x [i] · D

y [j]

Let A ⊗ B = {a∗i ⊗ b∗j | 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} and C ⊗ D = {c∗p ⊗ d∗q | 1 ≤
p ≤ 2, 1 ≤ q ≤ 3}. Above theorem implies that A ⊗ B and C ⊗ D is a basis

of L (C2 × C3 → C). In the previous illustration we have already shown that the

transformation matrix M from basis A to C is

M =

[
1√
2

1√
2

i√
2

− i√
2

]

We have also seen that ∀ x ∈ C2,

C

x = M · A

x

N =


i√
3

i√
2

1√
6

i√
3

− i√
2

1√
6

i√
3

0 − 2√
6


We have also seen that ∀ y ∈ C3,

D

y = N · B

y

Since C and D are bases of C2 and C3 respectively we get that,

x =
C

x [1] c1 +
C

x [2] c2 y =
D

y [1] d1 +
D

y [2] d2 +
D

y [3] d3
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Since u is bi-linear we get,

u (x, y) = u

(
2∑

i=1

C

x [i] ci,
3∑

j=1

D

y [j] dj

)
=

2∑
i=1

3∑
j=1

C

x [i]
D

y [j]u (ci, dj)

=⇒ u (x, y) =
[
C
x [1]

C
x [2]

] [u (c1, d1) u (c1, d2) u (c1, d3)

u (c2, d1) u (c2, d2) u (c2, d3)

]
B
y [1]

B
y [2]

B
y [3]


∀ u ∈ L (C2 × C3 → C) we have already shown in previous illustration that,

C⊗D

u = M · A⊗B

u ·N∗

u (x, y) =
(

C

x
)T

· C⊗D

u · D

y =
(
M · A

x
)T

·M · A⊗B

u ·N∗ ·
(
N · B

y
)

=
(

A

x
)T

·MT ·M · A⊗B

u ·N∗ ·N · B

y

Since M and N are orthogonal matrices we get that,

u (x, y) =
(

A

x
)T

· A⊗B

u · B

y =
(

C

x
)T

· C⊗D

u · D

y

2.2.6 Inner products on 2-fold tensor product spaces

In this section we define a function () : V ⊗W × V ⊗W → C in terms of inner

products defined on V ∗ and W ∗ and prove that this function is an inner product.

Definition 2.2.4. Let V , W be any finite dimensional inner product space where

dim(V ) = n and dim(W ) = m. ∀ u1, ..., uk, w1, ..., wl ∈ V ∗ ∀ v1, ..., vk, t1, ..., tl ∈
W ∗ ∀ α1, ..., αk, β1, ..., βl ∈ C Define the following function () : V ⊗W ×V ⊗W →
C,

(
k∑

i=1

αi [ui ⊗ vi] ,
l∑

j=1

βj [wj ⊗ tj]

)
=

k∑
i=1

l∑
j=1

αiβj(ui, wj)1(vi, tj)2 (2.1)

Note that ()1 is an inner product on V ∗ and ()2 is an inner product on W ∗. In

the subsequent analysis we drop the subscripts since we believe that the context

of usage shall be clear.
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In this lemma it is shown that how above definition can be used to compute

(u, v) ∀ u, v ∈ V ⊗W .

Lemma 2.2.8. Let V , W be any finite dimensional inner product space where

dim(V ) = n and dim(W ) = m. Let A = {a1, a2, ..., an} be any orthonormal

basis of V and A∗ = {a∗1, a∗2, ..., a∗n} be the corresponding dual basis. Let B =

{b1, b2, ..., bm} be any orthonormal basis of W and B∗ = {b∗1, b∗2, ..., b∗m} be the

corresponding dual basis. ∀ u, v ∈ V ⊗W since A⊗B is a basis of V ⊗W there

exist αij, βpq ∈ C such that,

u =
n∑

i=1

n∑
j=1

αij

[
a∗i ⊗ b∗j

]
v =

n∑
p=1

m∑
q=1

βpq

[
a∗p ⊗ b∗q

]

(u, v) =
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
(2.2)

Proof. Proof is straight forward and left to reader (use equation 3.1.1).

Remark :

1. The existence of inner products on dual space i.e, ()1 and ()2 is already

shown in the previous chapter section 2.1.6. Also It is already shown that

with respect to the inner product defined in section 2.1.6 A∗ and B∗ are

orthonormal bases which implies that,

(u, v) =
n∑

i=1

m∑
j=1

αijβij (2.3)

2. Note that in the subsequent analysis we consider arbitrary inner products

on V ∗ and W ∗ in order to make the theory more general. Hence equation

3.1.1 is used instead of equation 3.1.1.

Lemma 2.2.9. ∀ u, v ∈ V ⊗W ,

(u, v) =
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
is well-defined
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Proof. Let C = {c1, c2, ..., cn} be any another orthonormal basis of V and C∗ =

{c∗1, c∗2, ..., c∗n} be the corresponding dual basis. Let D = {d1, d2, ..., dm} be any

another orthonormal basis of W and D∗ = {d∗1, d∗2, ..., d∗m} be the corresponding

dual basis. Since C ⊗D is a basis of V ⊗W there exist γkl, δrs ∈ C such that,

u =
n∑

k=1

n∑
l=1

γkl [c
∗
k ⊗ d∗l ] v =

n∑
r=1

m∑
s=1

δrs [c
∗
r ⊗ d∗s]

Inner product of u and v using basis C∗ and D∗ is

(u, v) =
n∑

k=1

m∑
l=1

n∑
r=1

m∑
s=1

γklδrs (c
∗
k, c

∗
r) (d

∗
l , d

∗
s)

To claim (u, v) is well-defined it is enough to show that

n∑
k=1

m∑
l=1

n∑
r=1

m∑
s=1

γklδrs (c
∗
k, c

∗
r) (d

∗
l , d

∗
s) =

n∑
i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
Let M ∈ Cn×n be the transformation matrix from basis A to C. Theorem 2.1.5

implies that,

[
a∗1 a∗2 . . a∗n

]
=
[
c∗1 c∗2 . . c∗n

]
M =⇒ a∗i =

n∑
k=1

Mkic
∗
k and a∗p =

n∑
r=1

M rpc
∗
r

Let N ∈ Cm×m be the transformation matrix from basis B to D. Theorem 2.1.5

implies that,

[
b∗1 b∗2 . . b∗m

]
=
[
d∗1 d∗2 . . d∗m

]
N =⇒ b∗j =

m∑
l=1

N ljd
∗
l and b∗q =

m∑
s=1

N sqd
∗
s

Above two equations imply that,

n∑
i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
=

n∑
i=1

m∑
j=1

n∑
p=1

m∑
q=1

n∑
k=1

m∑
l=1

n∑
r=1

m∑
s=1

αijβpqMkiM rpNljN sq (c
∗
k, c

∗
r) (d

∗
l , d

∗
s)
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=
n∑

k=1

m∑
l=1

n∑
r=1

m∑
s=1

(
n∑

i=1

m∑
j=1

MkiαijNlj

)(
n∑

p=1

m∑
q=1

M rpβpqN sq

)
(c∗k, c

∗
r) (d

∗
l , d

∗
s)

Note that

C⊗D

u [k, l] = γkl
C⊗D

v [r, s] = δrs
A⊗B

u [i, j] = αij
A⊗B

v [p, q] = βpq

From theorem 3.2.4 we get,

C⊗D

u = M · A⊗B

u ·N∗ C⊗D

v = M · A⊗B

v ·N∗

=⇒ γkl =
n∑

i=1

m∑
j=1

MkiαijN
∗
jl =

n∑
i=1

m∑
j=1

MkiαijN lj and

δrs =
n∑

p=1

m∑
q=1

M rpβpqN
∗
qs =

n∑
p=1

m∑
q=1

M rpβpqN sq

=⇒
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
=

n∑
k=1

m∑
l=1

n∑
r=1

m∑
s=1

γklδrs (c
∗
k, c

∗
r) (d

∗
l , d

∗
s)

Lemma 2.2.10. ∀ u, v ∈ V ⊗W ,

(u, v) =
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
is an inner product

Proof. Linearity : ∀ u, v, w ∈ V ⊗W ∀ δ ∈ C,

(u, v + w) =

(
n∑

i=1

m∑
j=1

αija
∗
i ⊗ b∗j ,

n∑
p=1

m∑
q=1

(βpq + γpq) a
∗
p ⊗ b∗q

)

=
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αij (βpq + γpq)
(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
= (u, v) + (u,w)

(u, δv) =

(
n∑

i=1

m∑
j=1

αija
∗
i ⊗ b∗j ,

n∑
p=1

m∑
q=1

(δβpq) a
∗
p ⊗ b∗q

)

=
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijδβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
= δ (u, v)
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Conjugate Symmetry : ∀ u, v ∈ V ⊗W ,

(u, v) =
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

αijβpq

(
a∗i , a

∗
p

) (
b∗j , b

∗
q

)
=

n∑
i=1

m∑
j=1

n∑
p=1

m∑
q=1

βpqαijβpq

(
a∗p, a

∗
i

) (
b∗q, b

∗
j

)
= (v, u)

Positive Definiteness : Since both V ∗, W ∗ over C are inner product spaces

using Gram Schmidt process there exist orthonormal basis for both V ∗ and W ∗.

Without loss of generality assume A∗ and B∗ form orthonormal bases of V ∗ and

W ∗ respectively.

(u, u) = 0 ⇐⇒ (
n∑

i=1

m∑
j=1

αij

[
a∗i ⊗ a∗j

]
,

n∑
p=1

m∑
q=1

αpq

[
a∗p ⊗ a∗q

]
) = 0

⇐⇒
n∑

i=1

m∑
j=1

αijαij =
n∑

i=1

m∑
j=1

|αij|2 = 0

⇐⇒ u = 0

We end this section showing how inner products can be used in giving an alternate

proof for the linear independence of the set A ⊗ B. Consider the inner product

on dual space defined as in section 2.1.6. ∀ i, j ∈ {1, 2, ..., n} ∀ p, q ∈ {1, 2, ...,m},

(
a∗i ⊗ b∗p, a

∗
j ⊗ b∗q

)
=
(
a∗i , a

∗
j

) (
b∗p, b

∗
q

)
=
(

A∗

a∗i ⊙
A∗

a∗j

)(
B∗

b∗p ⊙
B∗

b∗q

)
= 1 if (i, j) = (p, q)

= 0 otherwise

From lemma 1.1.7 it is straight forward to verify linear independence of A⊗B.

2.2.7 Linear operators on 2-fold tensor product spaces

Definition 2.2.5. Let L (V ⊗W ) denote the set of all linear operators over the

tensor product space of V and W L (V ×W → C) = V ⊗ W . Define addition

and scalar multiplication on the set L (V ⊗W ) as follows ∀ T,W ∈ L (V ⊗W ) ∀
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u ∈ V ⊗W ∀ α ∈ C,
[T +W ]u = T (u) +W (u)

[αT ]u = α · T (u)

Remark :

1. It is straight forward to verify that L (V ⊗W ) is a vector space over C and

is left to reader (refer lemma 2.1.1).

2. Note that L (V ⊗W ) is also called tensor product space of operators on

V ⊗W .

Next we define the tensor product of two operators and show that any operator

on V ⊗W can be expressed in terms of tensor products.

Definition 2.2.6. Let V , W be any two finite dimensional inner product spaces

over field C where dim(V ) = n and dim(W ) = m. Let T be an operator on V ∗

and U be an operator on W ∗. Define the tensor product of T and U as an operator

on V ⊗W i.e, T ⊗U : V ⊗W → V ⊗W ∀ x1, x2, ..., xk ∈ V ∗ ∀ y1, y2, ..., yk ∈ W ∗

∀ α1, α2, ..., αk ∈ C,

[T ⊗ U ]

(
k∑

i=1

αixi ⊗ yi

)
=

k∑
i=1

αi [T (xi)]⊗ [W (yi)] (2.4)

In this lemma it is shown that how above definition can be used to compute

[T ⊗ U ] (x) ∀ x ∈ V ⊗W .

Lemma 2.2.11. Let A = {a1, a2, ..., an} be any orthonormal basis of V and

A∗ = {a∗1, a∗2, ..., a∗n} be the corresponding dual basis. Let B = {b1, b2, ..., bm} be

any orthonormal basis of W and B∗ = {b∗1, b∗2, ..., b∗m} be the corresponding dual

basis. ∀ x ∈ V ⊗W since A⊗ B is a basis of V ⊗W there exist unique αij ∈ C
such that,

x =
n∑

i=1

m∑
j=1

αija
∗
i ⊗ b∗j
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∀ T ∈ L (V ∗) ∀ U ∈ L (W ∗),

[T ⊗ U ] (x) =
n∑

i=1

m∑
j=1

αij [T (a∗i )]⊗
[
W
(
b∗j
)]

Proof. Proof is straight forward and left to reader (use equation 3.1.1).

Remark :

1. ∀ T ∈ L (V ∗) ∀ U ∈ L (W ∗) [T ⊗ U ] is bi-linear. ∀ x, y ∈ V ⊗W since A⊗B

is a basis of V ⊗W there exist unique αij, βij ∈ C such that,

x =
n∑

i=1

n∑
j=1

αija
∗
i ⊗ b∗j y =

n∑
i=1

n∑
j=1

βija
∗
i ⊗ b∗j

∀ γ ∈ C,

[T ⊗ U ] (x+ γy) = [T ⊗ U ]

(
n∑

i=1

m∑
j=1

(αij + γβij) a
∗
i ⊗ b∗j

)

=
n∑

i=1

m∑
j=1

(αij + γβij) [T (a∗i )]⊗
[
U
(
b∗j
)]

= [T ⊗ U ] (x) + γ [T ⊗ U ] (y)

2. ∀ T, U ∈ L(V ∗) ∀ W ∈ L(W ∗),

[T + U ]⊗W = T ⊗W + U ⊗W

∀ T ∈ L(V ∗) ∀ U,W ∈ L(W ∗),

T ⊗ [U +W ] = T ⊗ U + T ⊗W

∀ T ∈ L(V ∗) ∀ U ∈ L(W ∗) ∀ α ∈ C,

[αT ]⊗ U = T ⊗ [αU ] = α [T ⊗ U ]

These properties are straight forward to verify and are left to reader.
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Lemma 2.2.12. ∀ T ∈ L(V ∗) ∀ U ∈ L(W ∗), [T ⊗ U ] is well-defined

Proof. Let C = {c1, c2, ..., cn} be any another orthonormal basis of V . Let C∗ =

{c∗1, c∗2, ..., c∗n} be the corresponding dual basis. Let D = {d1, d2, ..., dm} be any

another orthonormal basis of W . Let D∗ = {d∗1, d∗2, ..., d∗m} be the corresponding

dual basis. Since C⊗D is a basis of V ⊗W there exist unique βpq ∈ C such that,

x =
n∑

p=1

m∑
q=1

βpqc
∗
p ⊗ d∗q

Applying x ∈ V ⊗W expressed in terms of basis C and D to the operator [T ⊗ U ]

we get that,

[T ⊗ U ] (x) =
n∑

p=1

m∑
q=1

βpq

[
T
(
c∗p
)]

⊗
[
U
(
d∗q
)]

To claim (T ⊗ U) is well-defined it is enough to show that

n∑
i=1

m∑
j=1

αij [T (a∗i )]⊗
[
U
(
b∗j
)]

=
n∑

p=1

m∑
q=1

βpq

[
T
(
c∗p
)]

⊗
[
U
(
d∗q
)]

Let M ∈ Cn×n be the transformation matrix from basis A to C. Theorem 2.1.5

implies that,

[
a∗1 a∗2 . . a∗n

]
=
[
c∗1 c∗2 . . c∗n

]
M =⇒ a∗i =

n∑
p=1

Mpic
∗
p =⇒ T (a∗i ) =

n∑
p=1

MpiT
(
c∗p
)

Let N ∈ Cm×m be the transformation matrix from basis B to D. Theorem 2.1.5

implies that,

[
b∗1 b∗2 . . b∗m

]
=
[
d∗1 d∗2 . . d∗m

]
N =⇒ b∗j =

n∑
q=1

N qjd
∗
q and U

(
b∗j
)
=

m∑
q=1

N qjU
(
d∗q
)

Above two equations imply that,

n∑
i=1

m∑
j=1

αij [T (a∗i )]⊗
[
U
(
b∗j
)]

=
n∑

i=1

m∑
j=1

n∑
p=1

m∑
q=1

MpiαijN qj

[
T
(
c∗p
)]

⊗
[
U
(
d∗q
)]
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=
n∑

p=1

m∑
q=1

(
n∑

i=1

m∑
j=1

MpiαijN qj

)[
T
(
c∗p
)]

⊗
[
U
(
d∗q
)]

Note that
C⊗D

u [p, q] = βpq
A⊗B

u [i, j] = αij

From theorem 2.3.6 we get,

C⊗D

u = M · A⊗B

u ·N∗ C⊗D

v = M · A⊗B

v ·N∗

=⇒ βpq =
n∑

i=1

m∑
j=1

MpiαijN
∗
qj =

n∑
i=1

n∑
j=1

MpiαijN jq

=⇒
n∑

i=1

m∑
j=1

αij [T (a∗i )]⊗
[
U
(
b∗j
)]

=
n∑

p=1

m∑
q=1

βpq

[
T
(
c∗p
)]

⊗
[
U
(
d∗q
)]

Definition 2.2.7. Let V , W be any two finite dimensional inner product spaces

over field C where dim(V ) = n and dim(W ) = m. Let A = {a1, a2, ..., an} be an

orthonormal basis of V . Let A∗ = {a∗1, a∗2, ..., a∗n} be the corresponding dual basis.

Let B = {b1, b2, ..., bm} be an orthonormal basis of W . Let B∗ = {b∗1, b∗2, ..., b∗m}
be the corresponding dual basis. Let T ∗ = {Tij | 1 ≤ i, j ≤ n} where ∀ i, j, k ∈
{1, 2, ..., n} Tij ∈ L(V ∗) is defined as follows,

Tij (a
∗
k) = a∗j if k = i

= 0 if k ̸= i

Let U∗ = {Upq | 1 ≤ p, q ≤ m} where ∀ p, q, r ∈ {1, 2, ...,m} Upq ∈ L(W ∗) is

defined as follows,

Upq (b
∗
r) = b∗r if p = r

= 0 if p ̸= r

Define T ∗ ⊗ U∗ = {Tij ⊗ Upq | 1 ≤ i, j ≤ n, 1 ≤ p, q ≤ m}. Note that each

Tij ⊗ Upq ∈ T ∗ ⊗ U∗ is well-defined and a linear operator on V ⊗W .
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Theorem 2.2.13. T ∗ ⊗ U∗ forms a basis of L (V ⊗W ).

Proof. Span :

∀ x ∈ V ⊗W since A ⊗ B is a basis of V ⊗W there exist unique αip ∈ C such

that,

x =
n∑

i=1

m∑
p=1

αipa
∗
i ⊗ b∗p

∀ W ∈ L (V ⊗W ) since W is a linear operator we get,

W (x) =
n∑

i=1

m∑
p=1

αipW
(
a∗i ⊗ b∗p

)
Since W is an operator ∀ i ∈ {1, 2, ..., n} ∀ p ∈ {1, 2, ...,m} there exist βjq ∈ C
such that,

W
(
a∗i ⊗ b∗p

)
=

n∑
j=1

m∑
q=1

βi,p,j,qa
∗
j ⊗ b∗q

=⇒ W (x) =
n∑

i=1

m∑
p=1

n∑
j=1

m∑
q=1

βi,p,j,qαipa
∗
j ⊗ b∗q

Note that ∀ i, j ∈ {1, 2, ..., n} ∀ p, q ∈ {1, 2, ...,m} since Tij ⊗ Upq is linear,

[Tij ⊗ Upq] (x) = [Tij ⊗ Upq]

(
n∑

k=1

m∑
l=1

αkla
∗
k ⊗ b∗l

)

=
n∑

k=1

m∑
l=1

αkl [Tij (a
∗
k)]⊗ [Upq (b

∗
l )]

= αipa
∗
j ⊗ b∗q

=⇒ W (x) =
n∑

p=1

m∑
q=1

n∑
i=1

m∑
j=1

βi,p,j,q [Tij ⊗ Upq] (x)

=⇒ W =
n∑

p=1

m∑
q=1

n∑
i=1

m∑
j=1

βi,p,j,q [Tij ⊗ Upq]

=⇒ T ∗ ⊗ U∗ spans L(V ⊗W )
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Linear Independence : ∀ i, j ∈ {1, 2, ..., n} ∀ p, q ∈ {1, 2, ...,m}. Consider,

n∑
i=1

n∑
j=1

m∑
p=1

m∑
q=1

αi,p,j,qTij ⊗ Upq = 0

∀ k ∈ {1, 2, ..., n} ∀ l ∈ {1, 2, ...,m} applying a∗k ⊗ b∗l we get,

n∑
i=1

n∑
j=1

m∑
p=1

m∑
q=1

αi,p,j,q [Tij (a
∗
k)]⊗ [Upq (b

∗
l )] = 0 =⇒

n∑
j=1

m∑
q=1

αk,l,j,qa
∗
j ⊗ b∗q = 0

Since A⊗B is a basis of V ⊗W we get that,

αk,l,j,q = 0 ∀ j ∈ {1, 2, ..., n} ∀ q ∈ {1, 2, ...,m}

=⇒ T ∗ ⊗ U∗ is a linearly independent set and forms a basis of L(V ⊗W )

Corollary 2.2.14.

dim (L (V ⊗W )) = (dim (V ⊗W ))2
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2.3 k-fold tensor product spaces

2.3.1 Multi-linear Functions

Definition 2.3.1. Let V1, V2, ..., Vk be vector spaces over field C with inner

products ()1 : V1 × V1 → C, ()2 : V2 × V2 → C, ..., ()k : Vk × Vk → C defined on

V1, V2, ..., Vk respectively. Note that subscripts ()1, ()2, ..., ()k will be dropped if

the context is clear. A function u : V1 × V2 × ...× Vk → C is called multi-linear if

the following holds,

1. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k,

u (x1, x2, ..., xi + x̃i, ..., xk) = u (x1, x2, ..., xi, ..., xk) + u (x1, x2, ..., x̃i, ..., xk)

2. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k ∀ α ∈ C,

u (x1, x2, ..., αxi, ..., xk) = αu (x1, x2, ..., xk)

Let set S = {u : V1 × V2 × ...× Vk → C | u is multi-linear}. Define addition and

multiplication on the set S as follows ∀ u, v ∈ S ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xk ∈ Vk

∀ α ∈ C,

[u+ v] (x1, x2, ..., xk) = u (x1, x2, ..., xk) + v (x1, x2, ..., xk)

[αu] (x1, x2, ..., xk) = αu (x1, x2, ..., xk)

Lemma 2.3.1. S is closed under addition and scalar multiplication.

Proof. Claim 1 : ∀ u, v ∈ S [u+ v] ∈ S,

1. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k,

[u+ v] (x1, .., xi + x̃i, .., xk) = u (x1, .., xi + x̃i, .., xk) + v (x1, .., xi + x̃i, .., xk)

= u (x1, .., xi, .., xk) + u (x1, .., x̃i, .., xk) + v (x1, .., xi, .., xk) + v (x1, .., x̃i, .., xk)

= [u+ v] (x1, .., xi, .., xk) + [u+ v] (x1, .., x̃i, .., xk)
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2. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k ∀ α ∈ C,

[u+ v] (x1, .., αxi, .., xk) = u (x1, .., αxi, .., xk) + v (x1, .., αxi, .., xk)

= αu (x1, .., xi, .., xk) + αv (x1, .., xi, .., xk)

= α [u+ v] (x1, .., xi, .., xk)

[u+ v] is multi-linear =⇒ [u+ v] ∈ S =⇒ S is closed under addition

Claim 2 : ∀ u ∈ S ∀ α ∈ C [αu] ∈ S

1. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k,

[αu] (x1, .., xi + x̃i, .., xk) = αu (x1, .., xi + x̃i, .., xk)

= αu (x1, .., xi, .., xk) + αu (x1, .., x̃i, .., xk)

= [αu] (x1, .., xi, ..., xk) + [αu] (x1, .., xi, ..., xk)

2. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k ∀ β ∈ C,

[αu] (x1, .., βxi, .., xk) = αu (x1, .., βxi, .., xk) = αβu (x1, .., xi, .., xk)

= β [αu] (x1, .., xi, .., xk)

[αu] is multi-linear =⇒ [αu] ∈ S =⇒ S is closed under scalar multiplication

A multi-linear function u ∈ S is called a k−tensor or a multi-linear map on

V1 × V2 × ... × Vk. It is easy to verify that S is a vector space over field C (We

already proved that S is closed under addition and scalar multiplication and rest

of the axioms of vector space are easy to verify and are left to the reader). The

vector space of all k−tensors is defined as the tensor product space of V1, V2, ...,

Vk denoted by L (V1 × V2 × ...× Vk → C) or V1 ⊗ V2 ⊗ ...⊗ Vk.
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2.3.2 Tensor products on vector spaces V1, V2, ..., Vk

Definition 2.3.2. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. ∀ u1 ∈ L (V1 → C) ∀ u2 ∈
L (V2 → C) ... ∀ uk ∈ L (Vk → C) Define the tensor product of u1, u2, ..., uk as a

function [u1 ⊗ u2 ⊗ ...⊗ uk] : V1×V2× ...×Vk → C as follows ∀ x1 ∈ V1 ∀ x2 ∈ V2

... ∀ xk ∈ Vk,

[u1 ⊗ u2 ⊗ ...⊗ uk] (x1, x2, ..., xk) = u1 (x1) · u2 (x2) · ... · uk (xk) =
k∏

i=1

ui (xi)

Lemma 2.3.2. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C. ∀ u1 ∈ L (V1 → C) ∀ u2 ∈ L (V2 → C) ... ∀ uk ∈ L (Vk → C),
[u1 ⊗ u2 ⊗ ...⊗ uk] is multi-linear.

Proof. 1. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k,

[u1 ⊗ ...⊗ uk] (x1, ..., xi + x̃i, ..., xk) = u1 (x1) ...ui (xi + x̃i) ...uk (xk)

= u1 (x1) ...ui (xi) ...uk (xk) + u1 (x1) ...ui (x̃i) ...uk (xk)

= [u1 ⊗ ...⊗ uk] (x1, ..., xi, ..., xk) + [u1 ⊗ ...⊗ uk] (x1, ..., x̃i, ..., xk)

2. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k ∀ α ∈ C,

[u1 ⊗ ...⊗ uk] (x1, ..., αxi, ..., xk) = u1 (x1) ...ui (αixi) ...uk (xk)

= αu1 (x1) ...ui (xi) ...uk (xk)

= α [u1 ⊗ ...⊗ uk] (x1, x2, ..., xk)

=⇒ [u1 ⊗ ...⊗ uk] is multi-linear
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Lemma 2.3.3. Let V1, V2, ..., Vk be finite dimensional inner product spaces over

field C.

1. ∀ u1 ∈ L (V1 → C) ... ∀ ui, ũi ∈ L (Vi → C) ... ∀ uk ∈ L (Vk → C) where

1 ≤ i ≤ k,

[u1 ⊗ ...⊗ [ui + ũi]⊗ ...⊗ uk] = [u1 ⊗ ...⊗ ui ⊗ ...⊗ uk]+[u1 ⊗ ...⊗ ũi ⊗ ...⊗ uk]

2. ∀ u1 ∈ L (V1 → C) ... ∀ ui ∈ L (Vi → C) ... ∀ uk ∈ L (Vk → C) where

1 ≤ i ≤ k ∀ α ∈ C,

[u1 ⊗ ...⊗ [αui]⊗ ...⊗ uk] = α [u1 ⊗ ...⊗ ui ⊗ ...⊗ uk]

Proof. 1. ∀ x1 ∈ V1 ... ∀ xk ∈ Vk,

[u1 ⊗ ...⊗ [ui + ũi]⊗ ...⊗ uk] (x1, ..., xk) = u1 (x1) ... [ui + ũi] (xi) ...uk (xk)

= u1 (x1) ...ui (xi) ...uk (xk) + u1 (x1) ...ũi (xi) ...uk (xk)

= [u1 ⊗ ...ui...⊗ uk] (x1, ..., xk) + [u1 ⊗ ...ũi...⊗ uk] (x1, ..., xk)

2. ∀ x1 ∈ V1 ... ∀ xk ∈ Vk ∀ α ∈ C,

[u1 ⊗ ...⊗ [αui]⊗ ...⊗ uk] (x1, ..., xk) = u1 (x1) ... [αui] (xi) ...uk (xk)

= αu1 (x1) ...ui (xi) ...uk (xk)

= α [u1 ⊗ ...⊗ ui ⊗ ...⊗ uk] (x1, ..., xk)

Remark :

1. u1⊗ ...⊗uk = 0 ⇐⇒ at least one of ui = 0. It is straight forward to verify

and left to reader.

2. Note that the tensor products don’t have unique representations for instance

∀ ui ∈ L (Vi → C) ∀ α ̸= 0 ∈ C ∀ i ∈ {1, 2, ..., k},

u1 ⊗ ...⊗ ui ⊗ ...⊗ uk =
u1

α
⊗ ...⊗ [αui]⊗ ...⊗ uk
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Illustration :

Consider Vi = C2 over C ∀ i ∈ {1, 2, ..., k} with standard dot product as inner

product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. Verify that A forms an

orthonormal basis of each Vi = C2. Let A∗ = {a∗1, a∗2}. Recall that A∗ forms dual

basis of V ∗. Theorem 2.1.6 implies that ∀ u ∈ V ∗ ∀ x ∈ C2,

u (x) = A∗
u⊙ A

x

Let ui =
[
a∗1 a∗2

] [ 1
2i

]
∀ i ∈ {1, 2, ..., k}

∀ x1, x2, ..., xk ∈ C2,

[u1 ⊗ ...⊗ uk] (x1, ..., xk) =
k∏

i=1

ui (xi) =
k∏

i=1

(
A

ui ⊙
A

xi

)
=

k∏
i=1

[
1 −2i

] [A
x [1]

A
x [2]

]

From the linearity of coordinates of vectors xi ∈ Vi it is straight forward to

conclude that [u1 ⊗ u2 ⊗ ...⊗ uk] is multi-linear and all the properties in Lemma

3.3.2 hold. Recall that we had an analytic expression to identify 1−tensor (
(

A
u
)T

)

and 2− tensor
A
u ·
(

B
v
)T

once a basis is fixed. It is quite clear that such an

expression is impossible to get if k ≥ 3. However, a k−tensor can be identified as

a k−dimensional array computationally ∀ k ∈ N.

2.3.3 Basis of k−fold tensor product spaces

Let V1, V2, ..., Vk be finite dimensional inner product spaces over field C where

dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, a12, ..., a1n1} be an orthonormal

basis of V1, A2 = {a21, a22, ..., a2n2} be an orthonormal basis of V2, ..., Ak =

{ak1, ak2, ..., aknk
} be an orthonormal basis of Vk. Define A1 ⊗ A2 ⊗ ... ⊗ Ak =

{a∗1i1 ⊗ a∗2i2 ⊗ ... ⊗ a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ ik ≤ nk}. Lemma

2.3.2 implies that ∀ i1 ∈ {1, 2, ..., n1} ∀ i2 ∈ {1, 2, ..., n2} ... ∀ ik ∈ {1, 2, ..., nk}
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik is multi-linear.
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Theorem 2.3.4. A1⊗A2⊗...⊗Ak is a basis for vector space L (V1 × V2 × ...× Vk → C)

Proof. Span :

∀ x1 ∈ V1 since A1 is a basis of V1 there exist unique α1i1 ∈ C such that,

x1 =

n1∑
i1=1

α1i1a1i1

∀ x2 ∈ V2 since A2 is a basis of V2 there exist unique α2i2 ∈ C such that,

x2 =

n2∑
i2=1

α2i2a2i2

...,

∀ xk ∈ Vk since Ak is a basis of Vk there exist unique αkik ∈ C such that,

xk =

nk∑
i1=1

αkikakik

∀ u ∈ L (V1 × V2 × ...× Vk → C) since u is multi-linear we get,

u (x1, x2, ..., xk) = u

(
n1∑

i1=1

α1i1a1i1 ,

n2∑
i2=1

α2i2a2i2 , ...,

n3∑
ik=1

αkikakik

)

=

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

α1i1α2i2 ...αkiku (a1i1 , a2i2 , ..., akik)

∀ i1 ∈ {1, ..., n1} i2 ∈ {1, ..., n2} ... ik ∈ {1, ..., nk} since A1, A2, ..., Ak are

orthonormal bases we get,

[
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik

]
(x1, x2, ..., xk) = (a1i1 , x1) (a2i2 , x2) ... (akik , xk) =

k∏
j=1

αjij

=⇒ u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik)
[
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik

]
(x1, x2, ..., xk)
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=⇒ u =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik)
[
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik

]
=⇒ A1 ⊗ A2 ⊗ ...⊗ Ak spans L (V1 × V2...× Vk → C)

Linear Independence :

Let αi1,i2,...,ik ∈ C ∀ i1 ∈ {1, ..., n1} i2 ∈ {1, ..., n2} ... ik ∈ {1, ..., nk}. Consider,

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ik

[
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik

]
= 0

∀ j1 ∈ {1, ..., n1} j2 ∈ {1, ..., n2} ... jk ∈ {1, ..., nk},

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ik

[
a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik

]
(a1j1 , a2j2 , ..., akjk) = 0

Since A1, A2, ..., Ak are orthonormal bases we get,

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ik (a1i1 , a1j1) (a2i2 , a2j2) ... (akik , akjk) = αj1,j2,...,jk = 0

=⇒ A1⊗A2⊗...⊗Ak is a linearly independent set and a basis of L (V1 × V2 × ...× Vk → C)

Corollary 2.3.5.

dim (L (V1 × V2 × ...× Vk → C)) = dim (V1 ⊗ V2 ⊗ ...⊗ Vk) =
k∏

i=1

dim (Vi)
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Illustration :

Consider Vi = C2 over C ∀ i ∈ {1, 2, ..., k} with standard dot product as inner

product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. Verify that A forms

orthonormal basis of each Vi = C2. Let A∗ = {a∗1, a∗2}. Recall that A∗ is a dual

basis of V ∗.

∀ i1, i2, ..., ik ∈ {1, 2} ∀ x1, x2, ..., xk ∈ C2,[
a∗i1 ⊗ a∗i2 ⊗ ...⊗ a∗ik

]
(x1, x2, ..., xk) = a∗i1 (x1) · a∗i2 (x2) · ... · a∗ik (xk)

=
(

Aai1 ⊙
A

x1

)
·
(

Aai2 ⊙
A

x2

)
· ... ·

(
Aaik ⊙

A

xk

)
=

A

x1 [i1] ·
A

x2 [i2] · ... ·
A

xk [ik]

Let A⊗ A⊗ ...⊗ A︸ ︷︷ ︸
k times

= ⊗k
i=1A = {a∗i1 ⊗ a∗i2 ⊗ ...⊗ a∗ik | 1 ≤ i1, i2, ..., ik ≤ 2}.

Above Theorem implies that ⊗k
i=1A is a basis of L

(
(C2)

k → R
)
,

u

([
x11 x12

]T
, ...,

[
xk1 xk2

]T)
= x11·x21...·xk1 =

k∏
i=1

xi1 where
[
xj1 xj2

]T
∈ C2 ∀ j

It is straight-forward to verify that u is multi-linear. Since A is a basis of C2 ∀[
x11 x12

]T
∈ C2 there exist unique α11, α12 ∈ C such that,

[
x11 x12

]T
= α11a1 + α12a2

∀
[
x21 x22

]T
∈ C2 there exist unique α21, α22 ∈ C such that,

[
x21 x22

]T
= α21a1 + α22a2

...,

∀
[
xk1 xk2

]T
∈ C2 there exist unique αk1, αk2 ∈ C such that,

[
xk1 xk2

]T
= αk1a1 + αk2a2

67



2. Tensor products

Since u is multi-linear we get that

u

([
x11

x12

]
,

[
x21

x22

]
, ...,

[
xk1

xk2

])
= u

(
2∑

i1=1

α1i1ai1 ,

2∑
i2=1

α2i2ai2 , ...,

2∑
ik=1

αkikaik

)

=
2∑

i1=1

2∑
i2=1

...

2∑
ik=1

α1i1α2i2 ...αkiku (ai1 , ai2 , ..., aik)

It is quite clear that computing u (ai1 , ai2 , ..., aik) is sufficient to determine the

action of u on any
[
x11 x12

]T
, ...,

[
xk1 xk2

]T
∈ C2.

=⇒ u

([
x11

x12

]
, ...,

[
xk1

xk2

])
=

2∑
i1=1

2∑
i2=1

...
2∑

ik=1

u (ai1 , ..., aik)
[
a∗1i1 ⊗ ...⊗ a∗kik

]([x11

x12

]
, ...,

[
xk1

xk2

])

With this illustration, you can observe how⊗k
i=1A works as a basis of L

(
(C2)

k → C
)

and also note that the values of u (ai1 , ai2 , ..., aik) is sufficient to compute u on any[
x11 x12

]T
,
[
x21 x22

]T
, ...,

[
xk1 xk2

]T
∈ C2.

2.3.4 Basis transformation

Definition 2.3.3. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, a12, ..., a1n1} be

an orthonormal basis of V1, A2 = {a21, a22, ..., a2n2} be an orthonormal basis of V2,

..., Ak = {ak1, ak2, ..., aknk
} be an orthonormal basis of Ak. Let A1⊗A2⊗...⊗Ak =

{a∗1i1 ⊗ a∗2i2 ⊗ ... ⊗ a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ ik ≤ nk}. Theorem

3.3.3 implies that A1 ⊗A2 ⊗ ...⊗Ak forms a basis of L (V1 × V2 × ...× Vk → C).
∀ u ∈ L (V1 × V2 × ...× Vk → C) we have

u =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik) [a1i1 ⊗ a2i2 ...⊗ akik ]

Define coordinates of the multi-linear function u as follows,

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik] = u (a1i1 , a2i2 , ..., akik) where 1 ≤ i1 ≤ n1, ..., 1 ≤ ik ≤ nk
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Note :

1. Note that column vector representation is used for 1−tensors and matrix

representation is used for 2−tensors. Recall from the illustration 2.3.2 that

for k−tensors such an analytic representation is not possible when k ≥ 3.

But, k−tensors can be represented as k−dimensional array computationally.

Theorem 2.3.6. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, ..., a1n1} and

B1 = {b11, ..., b1n1} be any two orthonormal basis of V1, let A2 = {a21, ..., a2n2} and
B2 = {b21, ..., b2n2} be any two orthonormal basis of V2, ..., let Ak = {ak1, ..., aknk

}
and Bk = {bk1, ..., bknk

} be any two orthonormal basis of Vk. Let A1 ⊗ A2 ⊗ ...⊗
Ak = {a∗1i1 ⊗ a∗2i2 ⊗ ... ⊗ a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ ik ≤ nk} and

B1⊗B2⊗...⊗Bk = {b∗1j1⊗b∗2j2⊗...⊗b∗kjk | 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jk ≤ nk}.
Theorem 3.3.3 implies that A1⊗A2⊗ ...⊗Ak and B1⊗B2⊗ ...⊗Bk form bases of

L (V1 × V2 × ...× Vk → C). Let
i
M ∈ Cni×ni be the transformation matrix from

Ai to Bi i.e, [
ai1 ai2 . . . aini

]
=
[
bi1 bi2 . . . bini

]
i

M

where 1 ≤ i ≤ k. ∀ u ∈ L (V1 × V2 × ...× Vk → C),

B1⊗B2⊗...⊗Bku [j1, j2, ..., jk] =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M j1i1

2

M j2i2 ...
k

M jkik
A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]

where 1 ≤ j1 ≤ n11 ≤ j2 ≤ n2...1 ≤ jk ≤ nk.

Proof. ∀ u ∈ L (V1 × V2...× Vk → C) since A1⊗A2⊗ ...⊗Ak and B1⊗B2⊗ ...⊗Bk

form bases of L (V1 × V2 × ...× Vk → C),

u =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik) [a1i1 ⊗ a2i2 ...⊗ akik ]

=

n1∑
j1=1

n2∑
j2=1

...

nk∑
jk=1

u (b1j1 , b2j2 , ..., bkjk) [b1j1 ⊗ b2j2 ...⊗ bkjk ]
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Since
1
M is the transformation matrix from basis A1 to B1 we get that

1
M∗ is

the transformation from B1 to A1 i.e,[
b11 b12 . . . b1n1

]
=
[
a11 a12 . . . a1n1

]
1

M∗

∀ j1 ∈ {1, 2, ..., n1},

b1j1 =

n1∑
i1=1

1

M∗
i1j1

a1i1 =

n1∑
i1=1

1

M j1i1a1i1

Since
2
M is the transformation matrix from basis A2 to B2 we get that

2
M∗ is

the transformation from B2 to A2 i.e,[
b21 b22 . . . b2n2

]
=
[
a21 a22 . . . a2n2

]
2

M∗

∀ j2 ∈ {1, 2, ..., n2},

b2j2 =

n2∑
i2=1

2

M∗
i2j2

a2i2 =

n2∑
i2=1

2

M j2i2a2i2

...,

Since
k
M is the transformation matrix from basis Ak to Bk, we get that

k
M∗ is

the transformation from Bk to Ak i.e,[
bk1 bk2 . . . bknk

]
=
[
ak1 ak2 . . . aknk

]
k

M∗

∀ jk ∈ {1, 2, ..., nk},

bkjk =

nk∑
ik=1

k

M∗
ikjk

akik =

nk∑
ik=1

k

M jkikakik

Since u is multi-linear we get,

u (b1j1 , b2j2 , ..., bkjk) = u

(
n1∑

i1=1

1

M j1i1a1i1 ,

n2∑
i2=1

2

M j2i2a2i2 , ...,

nk∑
ik=1

k

M jkikakik

)
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=

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M j1i1

2

M j2i2 ...
k

M jkiku (a1i1 , a2i2 , ..., akik)

=⇒ B1⊗B2⊗...⊗Bku [j1, j2, ..., jk] =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M j1i1

2

M j2i2 ...
k

M jkik

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]

Illustration :

Consider Vi = C2 over C ∀ i ∈ {1, 2, ..., k} with standard dot product as inner

product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. Verify that A forms

orthonormal basis of each Vi = C2. Let B = {b1 =
[
1 0

]T
, b2 =

[
0 1

]T
}.

Notice that B is the standard orthonormal bases of C2.

∀ i1, i2, ..., ik ∈ {1, 2} ∀ x1, x2, ..., xk ∈ C2,[
a∗i1 ⊗ a∗i2 ⊗ ...⊗ a∗ik

]
(x1, x2, ..., xk) = a∗i1 (x1) · a∗i2 (x2) · ... · a∗ik (xk)

=
(

Aai1 ⊙
A

x1

)
·
(

Aai2 ⊙
A

x2

)
· ... ·

(
Aaik ⊙

A

xk

)
=

A

x1 [i1] ·
A

x2 [i2] · ... ·
A

xk [ik]

Let A⊗ A⊗ ...⊗ A︸ ︷︷ ︸
k times

= ⊗k
i=1A = {a∗i1 ⊗ a∗i2 ⊗ ... ⊗ a∗ik | 1 ≤ i1, i2, ..., ik ≤ 2}.

Similarly ∀ j1, j2, ..., jk ∈ {1, 2} we have

[
b∗j1 ⊗ b∗j2 ...⊗ b∗jk

]
(x1, x2, ..., xk) =

B

x1 [j1] ·
B

x2 [j2] · ... ·
B

xk [jk]

Let B ⊗B ⊗ ...⊗B︸ ︷︷ ︸
k times

= ⊗k
i=1B = {b∗j1⊗b∗j2 ...⊗b∗jk | 1 ≤ j1, j2, ..., jk ≤ 2}. Theorem

3.3.3 implies that ⊗k
i=1A and ⊗k

j=1B form bases of L
(
(C2)

k → C
)
.

Computing the basis transformation matrix from basis A to B

a1 =
1√
2
b1 +

i√
2
b2 a2 =

1√
2
b1 −

i√
2
b2

[
a1 a2

]
=
[
b1 b2

] [ 1√
2

1√
2

i√
2

− i√
2

]
=⇒ M =

[
1√
2

1√
2

i√
2

− i√
2

]
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We get that M is the transformation matrix from basis A to B of C2 which implies

that M∗ is the transformation matrix from basis B to A i.e,

[
b1 b2

]
=
[
a1 a2

] [ 1√
2

− i√
2

1√
2

i√
2

]

=⇒ b1 =
1√
2
a1 +

1√
2
a2 b2 = − i√

2
a1 +

i√
2
a2

Notice that each
i
M = M since each Vi = C2.

∀ u ∈ L
(
(C2)

k → C
)
∀ j1, j2, ..., jk ∈ {1, 2} we get

u (b1j1 , b2j2 , ..., bkjk) = u

(
2∑

i=1

M∗
i1j1

ai1 ,
2∑

i2=1

M∗
i2j2

ai2 , ...,
2∑

ik=1

M∗
ikjk

aik

)

=
2∑

i1=1

2∑
i2=1

...
2∑

ik=1

M j1i1M j2i2 ...M jkiku (ai1 , ai2 , ..., aik)

=⇒ B1⊗B2⊗...⊗Bku [j1, j2, ..., jk] =
2∑

i1=1

2∑
i2=1

...
2∑

ik=1

M j1i1M j2i2 ...M jkik

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]

2.3.5 Invariance of computation of k-tensors under any

orthonormal basis transformations

Theorem 2.3.7. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, ..., a1n1} be any

orthonormal basis of V1, let A2 = {a21, ..., a2n2} be any orthonormal basis of V2,

..., let Ak = {ak1, ..., aknk
} be any orthonormal basis of Vk. Let A1⊗A2⊗...⊗Ak =

{a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ ik ≤ nk}. Theorem 3.3.3

implies that A1⊗A2⊗ ...⊗Ak form basis of L (V1 × V2 × ...× Vk → C) ∀ x1 ∈ V1

∀ x2 ∈ V2 ... ∀ xk ∈ Vk,

u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]
A1x1 [i1]

A2x2 [i2] ...
Akxk [ik]
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Proof. ∀ x1 ∈ V1 since A1 is a basis of V1 there exist unique α1i1 ∈ C such that,

x1 =

n1∑
i1=1

α1i1a1i1

∀ x2 ∈ V2 since A2 is a basis of V2 there exist unique α2i2 ∈ C such that,

x2 =

n2∑
i2=1

α2i2a2i2

...,

∀ xk ∈ Vk since Ak is a basis of Vk there exist unique αkik ∈ C such that,

xk =

nk∑
ik=1

αkikakik

∀ u ∈ L (V1 × V2 × ...× Vk → C) we have,

u (x1, x2, ..., xk) = u

(
n1∑

i1=1

α1i1a1i1 ,

n2∑
i2=1

α2i2a2i2 , ...,

nk∑
ik=1

αkikakik

)

=

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

α1i1α2i2 ...αkiku (a1i1 , a2i2 , ..., akik)

Since A1, A2, ..., Ak are bases of V1, V2, ..., Vk respectively we get that,

α1i1 =
A1x1 [i1] α2i2 =

A2x2 [i2] ... αkik =
Akxk [ik]

Since A1 ⊗ A2 ⊗ ...⊗ Ak forms basis of L (V1 × V2 × ...× Vk → C), we get

u (a1i1 , a2i2 , ..., akik) =
A1⊗A2...⊗Aku [i1, i2, ..., ik]

=⇒ u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

A1⊗A2...⊗Aku [i1, i2, ..., ik]
A1x1 [i1]

A2x2 [i2] ...
Akxk [ik]
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Remark :

1. Let V1, V2, ..., Vk be finite dimensional inner product spaces over field C
where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, ..., a1n1} and B1 =

{b11, ..., b1n1} be any two orthonormal basis of V1, let A2 = {a21, ..., a2n2}
and B2 = {b21, ..., b2n2} be any two orthonormal basis of V2, ..., let Ak =

{ak1, ..., aknk
} and Bk = {bk1, ..., bknk

} be any two orthonormal basis of Vk.

Let A1⊗A2⊗...⊗Ak = {a∗1i1⊗a∗2i2⊗...⊗a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤
ik ≤ nk} and B1 ⊗B2 ⊗ ...⊗Bk = {b∗1j1 ⊗ b∗2j2 ⊗ ...⊗ b∗kjk | 1 ≤ j1 ≤ n1, 1 ≤
j2 ≤ n2, ..., 1 ≤ jk ≤ nk}. Theorem 3.3.3 implies that A1 ⊗ A2 ⊗ ... ⊗ Ak

and B1 ⊗B2 ⊗ ...⊗Bk form bases of L (V1 × V2 × ...× Vk → C). ∀ x1 ∈ V1

∀ x2 ∈ V2 ... ∀ xk ∈ Vk we get,

u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]
A1x1 [i1]

A2x2 [i2] ...
Akxk [ik]

=

n1∑
j1=1

n2∑
j2=1

...

nk∑
jk=1

B1⊗B2⊗...⊗Bku [j1, j2, ..., jk]
B1x1 [j1]

B2x2 [j2] ...
Bkxk [jk]

2. It is easy to observe that ∀ (x1, x2, ..., xk) ∈ V1×V2× ...×Vk u (x1, x2, ..., xk)

can be completely determined by the coordinates of u i.e,
A1⊗A2⊗...⊗Aku [i1, i2, ..., ik].

Hence if we fix computations with respect to orthonormal bases A1, A2, ...,

Ak of V1, V2, ..., Vk respectively we can identify u with its coordinates
A1⊗A2⊗...⊗Aku [i1, i2, ..., ik].

3. Let dim (Vi) = ni then ∀ u ∈ L (V1 × V2 × ...× Vk → R),

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik] = u (a1i1 , a2i2 , ..., akik)

Hence k−fold tensor product space L (V1 × V2 × ...× Vk → C) is isomorphic

to Cn1×n2×...×nk . (It is straight-forward to verify and is left to the reader.

For the proof technique you may refer Lemma 1.1.9)
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Illustration :

Consider Vi = C2 over C ∀ i ∈ {1, 2, ..., k} with standard dot product as inner

product. Let A = {a1 =
[

1√
2

i√
2

]T
, a2 =

[
1√
2

− i√
2

]T
}. Verify that A forms

orthonormal basis of each Vi = C2. Let B = {b1 =
[
1 0

]T
, b2 =

[
0 1

]T
}.

Notice that B is the standard orthonormal bases of C2.

∀ i1, i2, ..., ik ∈ {1, 2} ∀ x1, x2, ..., xk ∈ C2,[
a∗i1 ⊗ a∗i2 ⊗ ...⊗ a∗ik

]
(x1, x2, ..., xk) = a∗i1 (x1) · a∗i2 (x2) · ... · a∗ik (xk)

=
(

Aai1 ⊙
A

x1

)
·
(

Aai2 ⊙
A

x2

)
· ... ·

(
Aaik ⊙

A

xk

)
=

A

x1 [i1] ·
A

x2 [i2] · ... ·
A

xk [ik]

Let A⊗ A⊗ ...⊗ A︸ ︷︷ ︸
k times

= ⊗k
i=1A = {a∗i1 ⊗ a∗i2 ⊗ ... ⊗ a∗ik | 1 ≤ i1, i2, ..., ik ≤ 2}.

Similarly ∀ j1, j2, ..., jk ∈ {1, 2} we have

[
b∗j1 ⊗ b∗j2 ...⊗ b∗jk

]
(x1, x2, ..., xk) =

B

x1 [j1] ·
B

x2 [j2] · ... ·
B

xk [jk]

Let B ⊗B ⊗ ...⊗B︸ ︷︷ ︸
k times

= ⊗k
i=1B = {b∗j1⊗b∗j2 ...⊗b∗jk | 1 ≤ j1, j2, ..., jk ≤ 2}. Theorem

3.3.3 implies that⊗k
i=1A and⊗k

j=1B form bases of L
(
(C2)

k → C
)
. In the previous

illustration, we have already shown that the basis transformation matrix M from

A to B is

M =

[
1√
2

1√
2

i√
2

− i√
2

]
∀ x ∈ C2,

B

x = M · A

x

In this illustration we show that ∀ u1, u2, ..., uk ∈ C2, [u1 ⊗ u2 ⊗ ...⊗ uk] has the

same value irrespective of the choice of orthonormal basis and this is sufficient to

claim that any v ∈ L
(
(C2)

k → C
)
has the same value irrespective of the choice

of orthonormal basis since any v ∈ L
(
(C2)

k → C
)

can be written as a linear
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combination of tensor products in ⊗k
i=1A.

[u1 ⊗ u2 ⊗ ...⊗ uk] (x1, x2, ..., xk) = u1 (x1) · u2 (x2) · ... · uk (xk)

=
(

Bu1 ⊙
B

x1

)
·
(

Bu2 ⊙
B

x2

)
· ... ·

(
Buk ⊙

B

xk

)
=

k∏
i=1

(
Bui ⊙

B

xi

)
=

k∏
i=1

(
M · Aui

)
⊙
(
M · A

xi

)
=

k∏
i=1

((
A

ui

)T
· A

xi

)
=

k∏
i=1

(
Aui ⊙

A

xi

)

2.3.6 Inner products on k-fold tensor product spaces

In this section we define a function () : (V1 ⊗ V2 ⊗ ...⊗ Vk)×(V1 ⊗ V2 ⊗ ...⊗ Vk) →
C in terms of inner products defined on V ∗

1 , V
∗
2 , ..., V

∗
k and prove that this function

is an inner product.

Definition 2.3.4. Let V1, V2, ..., Vk be any finite dimensional inner product

space where dim(Vi) = ni ∀ i ∈ {1, 2, ..., k}. ∀ u11, ..., u1r, v11, ..., v1s ∈ V ∗
1 ∀

u21, ..., u2r, v21, ..., v2s ∈ V ∗
2 ... ∀ uk1, ..., ukr, vk1, ..., vks ∈ V ∗

k ∀ α1, ..., αr, β1, ..., βs ∈
C Define the following function () : (V1 ⊗ V2 ⊗ ...⊗ Vk)×(V1 ⊗ V2 ⊗ ...⊗ Vk) → C,

(
r∑

i=1

αi [u1i ⊗ ...⊗ uki] ,
s∑

j=1

βj [v1i ⊗ ...⊗ vki]

)
=

r∑
i=1

s∑
j=1

αiβj

k∏
l=1

(uli, vlj)l

(2.5)

Note that for any l ∈ {1, 2, ..., k} ()l is an inner product on V ∗
l . In the subsequent

analysis we drop the subscripts since we believe that the context of usage shall be

clear.

In this lemma it is shown that how above definition can be used to compute

(u, v) ∀ u, v ∈ V1 ⊗ V2 ⊗ ...⊗ Vk.

Lemma 2.3.8. Let V1, V2, ..., Vk be any finite dimensional inner product spaces

where dim(Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A11 = {a11, a12, ..., a1n1} be any

orthonormal basis of V1, A2 = {a21, a22, ..., a2n2} be any orthonormal basis of V2,

..., Ak = {ak1, ak2, ..., aknk
} be any orthonormal basis of Vk. ∀ u, v ∈ V1⊗V2⊗...⊗Vk
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since A1⊗A2⊗...⊗Ak is a basis of V1⊗V2⊗...⊗Vk there exist αi1,i2,...,ik , βj1,j2,...,jk ∈
C such that,

u =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
a∗1i1 ⊗ ...⊗ a∗kik

]
v =

n1∑
j1=1

...

nk∑
jk=1

βj1,...,jk

[
a∗1j1 ⊗ ...⊗ a∗kjk

]

(u, v) =

n1∑
i1=1

...

nk∑
ik

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
(2.6)

Proof. Proof is straight forward and left to reader (use equation 2.5).

Remark :

1. The existence of inner products on dual space i.e, ()1, ()2, ..., ()k is already

shown in section 2.1.6. Also It is already shown that with respect to the

inner product defined in section 2.1.6 A∗
1, A

∗
2, ..., A

∗
k are orthonormal bases

which implies that,

(u, v) =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ikβi1,...,ik (2.7)

2. Note that in the subsequent analysis we consider arbitrary inner products

on V ∗
1 , V

∗
2 , ..., V

∗
k in order to make the theory more general. Hence equation

2.6 is used instead of equation 2.7.

Lemma 2.3.9. ∀ u, v ∈ V1 ⊗ V2 ⊗ ...⊗ Vk,

(u, v) =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
is well-defined

Proof. Let B11 = {b11, b12, ..., b1n1} be any another orthonormal basis of V1, B2 =

{b21, b22, ..., b2n2} be any another orthonormal basis of V2, ..., Bk = {bk1, bk2, ..., bknk
}

be any another orthonormal basis of Vk. Since B1 ⊗ B2 ⊗ ... ⊗ Bk is a basis of

V1 ⊗ V2 ⊗ ...⊗Bk there exist γp1,p2,...,pk , δq1,q2,...,qk ∈ C such that,

u =

n1∑
p1=1

...

nk∑
pk=1

γp1,...,pk
[
b∗1p1 ⊗ ...⊗ b∗kpk

]
v =

n1∑
q1=1

...

nk∑
qk=1

δq1,...,qk
[
b∗1q1 ⊗ ...⊗ b∗kqk

]
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Inner product of u and v using basis B∗
1 , B

∗
2 , ..., B

∗
k is

(u, v) =

n1∑
p1=1

...

nk∑
pk=1

n1∑
q1=1

...

nk∑
qk=1

γp1,...,pk
δq1....,qk

(
b∗1p1 , b

∗
1q1

)
...
(
b∗kpk , b

∗
kqk

)
To claim (u, v) is well-defined it is enough to show that

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
=

n1∑
p1=1

...

nk∑
pk=1

n1∑
q1=1

...

nk∑
qk=1

γp1,...,pk
δq1....,qk

(
b∗1p1 , b

∗
1q1

)
...
(
b∗kpk , b

∗
kqk

)
Let

1
M ∈ Cn1×n1 be the transformation matrix from basis A1 to B1. Theorem

2.1.5 implies that,[
a∗11 a∗12 . . a∗1n1

]
=
[
b∗11 b∗12 . . b∗1n1

]
1

M

=⇒ a∗1i1 =

n1∑
p1=1

1

Mp1i1b
∗
1p1

and a∗1j1 =

n1∑
q1=1

1

M q1j1b
∗
1q1

...,

Let
k
M ∈ Cnk×nk be the transformation matrix from basis Ak to Bk. Theorem

2.1.5 implies that,[
a∗k1 a∗k2 . . a∗knk

]
=
[
b∗k1 b∗k2 . . b∗knk

]
k

M

=⇒ a∗kik =

nk∑
pk=1

k

Mpkikb
∗
kpk

and a∗kjk =

nk∑
qk=1

k

M qkjkb
∗
kqk
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Above two equations imply that,

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
=

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

n1∑
p1=1

...

nk∑
pk=1

n1∑
q1=1

...

nk∑
qk=1

αi1,...,ikβj1....,jk

1

Mp1i1 ...
k

Mpkik

1

M q1j1 ...
k

M qkjk

(
b∗1p1 , b

∗
1q1

)
...
(
b∗kpk , b

∗
kqk

)
=

n1∑
p1=1

...

nk∑
pk=1

n1∑
q1=1

...

nk∑
qk=1

(
n1∑

i1=1

...

nk∑
ik=1

αi1,i2,...,ik
1Mp1i1 ...

kMpkik

)
(

n1∑
j1=1

...

nk∑
jk=1

βj1....,jk

1

M q1j1 ...
k

M qkjk

)(
b∗1p1 , b

∗
1q1

)
...
(
b∗kpk , b

∗
kqk

)
Note that

A1⊗A2⊗...⊗Aku [i1, i2, ..., ik] = αi1,i2,...,ik

B1⊗B2⊗...⊗Bku [p1, p2, ..., pk] = γp1,...,pk

A1⊗A2⊗...⊗Akv [j1, j2, ..., jk] = βj1,j2,...,jk

B1⊗B2⊗...⊗Bkv [q1, q2, ..., qk] = δq1,...,qk

From theorem 2.3.6 we get,

B1⊗B2⊗...⊗Bku [p1, p2, ..., pk] =

n1∑
i1=1

...

nk∑
ik=1

1

Mp1i1 ...
k

Mpkik
A1⊗...⊗Aku [i1, ..., ik]

B1⊗B2⊗...⊗Bkv [q1, q2, ..., qk] =

n1∑
j1=1

...

nk∑
jk=1

1

M q1j1 ...
k

M qkjk
A1⊗...⊗Akv [j1, ..., jk]

=⇒

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
=

n1∑
p1=1

...

nk∑
pk=1

n1∑
q1=1

...

nk∑
qk=1

γp1,...,pk
δq1....,qk

(
b∗1p1 , b

∗
1q1

)
...
(
b∗kpk , b

∗
kqk

)
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Lemma 2.3.10. ∀ u, v ∈ V1 ⊗ V2 ⊗ ...⊗ Vk,

(u, v) =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1....,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
is an inner product

Proof. Linearity : ∀ u, v, w ∈ V1 ⊗ V2 ⊗ ...⊗ Vk ∀ δ ∈ C,

(u, v + w) =

(
n1∑

i1=1

..

nk∑
ik=1

αi1,..,ika
∗
1i1

⊗ ..⊗ a∗kik ,

n1∑
j1=1

..

nk∑
jk=1

(βj1,..,jk + γj1..,jk) a
∗
1j1

⊗ ..⊗ a∗kjk

)

=

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ik (βj1,...,jk + γj1,...,jk)
(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
= (u, v) + (u,w)

(u, δv) =

(
n1∑

i1=1

..

nk∑
ik=1

αi1,..,ika
∗
1i1

⊗ ..⊗ a∗kik ,

n1∑
j1=1

..

nk∑
jk=1

(δβj1,..,jk) a
∗
1j1

⊗ ..⊗ a∗kjk

)

=

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikδβj1,...,jk

(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
= δ (u, v)

Conjugate Symmetry : ∀ u, v ∈ V1 ⊗ V2 ⊗ ...⊗ Vk,

(u, v) =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ik (βj1,...,jk + γj1,...,jk)
(
a∗1i1 , a

∗
1j1

)
...
(
a∗kik , a

∗
kjk

)
=

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

αi1,...,ikβj1,...,jk

(
a∗1j1 , a

∗
1i1

)
...
(
a∗kjk , a

∗
kik

)
= (v, u)

Positive Definiteness : Since each V ∗
i over C is an inner product space us-

ing Gram Schmidt process there exist an orthonormal basis for V ∗
i . Without

loss of generality assume A∗
1, A

∗
2, ..., A

∗
k form orthonormal bases of V ∗

1 , V
∗
2 , ..., V

∗
k

respectively.

(u, u) = 0 ⇐⇒ (

n1∑
i1=1

..

nk∑
ik=1

αi1,..,ik

[
a∗1i1 ⊗ ..⊗ a∗kik

]
,

n1∑
j1=1

..

nk∑
jk=1

αj1,..,jk

[
a∗1j1 ⊗ ..⊗ a∗kjk

]
) = 0
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⇐⇒
n1∑

i1=1

...

nk∑
ik=1

αi1,...,ikαi1,...,ik =

n1∑
i1=1

...

nk∑
ik=1

|αi1,...,ik |
2 = 0

⇐⇒ u = 0

We end this section showing how inner products can be used in giving an alternate

proof for the linear independence of the set A1⊗A2⊗ ...⊗Ak. Consider the inner

product on dual space defined as in section 2.1.6. ∀ i1, j1 ∈ {1, 2, ..., n1} ... ∀
ik, jk ∈ {1, 2, ..., nk},(
a∗1i1 ⊗ ..⊗ a∗kik , a

∗
1j1

⊗ ..⊗ a∗kjk
)
=
(
a∗1i1 , a

∗
1j1

)
..
(
a∗kik , a

∗
kjk

)
= 1 if (i1, .., ik) = (j1, .., jk)

= 0 otherwise

From lemma 1.1.7 it is straight forward to verify linear independence of the set

A1 ⊗ A2 ⊗ ...⊗ Ak.

2.3.7 Linear operators on k-fold tensor product spaces

Definition 2.3.5. Let L (V1 ⊗ ...⊗ Vk) denote the set of all linear operators over

the tensor product space of V1, V2, ..., Vk L (V1 × V2 × ...× Vk → C) = V1 ⊗ V2 ⊗
... ⊗ Vk. Define addition and scalar multiplication on the set L (V1 ⊗ ...⊗ Vk) as

follows ∀ T,W ∈ L (V1 ⊗ ...⊗ Vk) ∀ u ∈ V1 ⊗ ...⊗ Vk ∀ α ∈ C,

[T +W ]u = T (u) +W (u)

[αT ]u = α · T (u)

Remark :

1. It is straight forward to verify that L (V1 ⊗ ...⊗ Vk) is a vector space over

C and is left to reader (refer lemma 2.3.1).

2. Note that L (V1 ⊗ V2 ⊗ ...⊗ Vk) is also called tensor product space of oper-

ators on the dual space V1 ⊗ V2 ⊗ ...⊗ Vk.

Next we define tensor product of k operators and show that any operator on

V1 ⊗ ...⊗ Vk can be expressed in terms of tensor products.
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Definition 2.3.6. Let V1, V2, ..., Vk be any finite dimensional inner product

spaces over field C where dim(Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let T1 be an operator

on V ∗
1 , ..., Tk be an operator on V ∗

k . Define the tensor product of T1, ..., Tk on

V1⊗V2⊗...⊗Vk i.e, T1⊗...⊗Tk : (V1 ⊗ ...⊗ Vk) → (V1 ⊗ ...⊗ Vk) ∀ x11, ..., x1l ∈ V ∗
1

... ∀ xk1, ..., xkl ∈ V ∗
k ∀ α1, α2, ..., αl ∈ C,

[T1 ⊗ ...⊗ Tk]

(
l∑

i=1

αix1i ⊗ x2i ⊗ ...⊗ xki

)
=

l∑
i=1

αi [T1 (x1i)]⊗ [T2 (x2i)]⊗ ...⊗ [Tk (xki)]

(2.8)

In this lemma it is shown that how above definition can be used to compute

[T1 ⊗ ...⊗ Tk] (x) ∀ x ∈ V1 ⊗ V2 ⊗ ...⊗ Vk.

Lemma 2.3.11. Let A1 = {a11, a12, ..., a1n1} be any orthonormal basis of V1 and

A∗
1 = {a∗11, a∗12, ..., a∗1n1

} be the corresponding dual basis, A2 = {a21, a22, ..., a2n2}
be any orthonormal basis of V2 and A∗

2 = {a∗21, a∗22, ..., a∗2n2
} be the corresponding

dual basis, ..., Ak = {ak1, ak2, ..., aknk
} be any orthonormal basis of Vk and A∗

k =

{a∗k1, a∗k2, ..., a∗knk
} be the corresponding dual basis. ∀ x ∈ V1 ⊗ V2 ⊗ ...⊗ Vk since

A1 ⊗A2 ⊗ ...⊗Ak is a basis of V1 ⊗ V2 ⊗ ...⊗ Vk there exist unique αi1,i2,...,ik ∈ C
such that,

x =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ika
∗
1i1

⊗ a∗2i2 ⊗ ...⊗ a∗kik

∀ T1 ∈ L (V ∗
1 ) ∀ T2 ∈ L (V ∗

2 ) ... ∀ Tk ∈ L (V ∗
k ),

[T1 ⊗ ...⊗ Tk] (x) =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
T
(
a∗1i1
)]

⊗ ...⊗
[
T
(
a∗kik
)]

Proof. Proof is straight forward and left to reader (use equation 2.8).
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Remark :

1. ∀ T1 ∈ L (V ∗
1 ) ∀ T2 ∈ L (V ∗

2 ) ... ∀ Tk ∈ L (V ∗
k ) [T1 ⊗ T2 ⊗ ...⊗ Tk] is multi-

linear. ∀ x, y ∈ V1 ⊗ V2 ⊗ ... ⊗ Vk since A1 ⊗ A2 ⊗ ... ⊗ Ak is a basis of

V1 ⊗ V2 ⊗ ...⊗ Vk there exist unique αi1,i2,...,ik , βi1,i2,...,ik ∈ C such that,

x =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ika
∗
1i1

⊗ ...⊗a∗kik y =

n1∑
i1=1

...

nk∑
ik=1

βi1,...,ika
∗
1i1

⊗ ...⊗a∗kik

∀ γ ∈ C,

[T1 ⊗ ...⊗ Tk] (x+ γy) = [T1 ⊗ ...⊗ Tk]

(
n1∑

i1=1

...

nk∑
ik=1

(αi1,...,ik + γβj1,...,jk) a
∗
1i1

⊗ ...⊗ a∗kik

)

=

n1∑
i1=1

...

nk∑
ik=1

(αi1,...,ik + γβi1,...,ik)
[
T1

(
a∗1i1
)]

⊗ ...⊗
[
T
(
a∗kik
)]

= [T1 ⊗ ...⊗ Tk] (x) + γ [T1 ⊗ ...⊗ Tk] (y)

2. ∀ T1 ∈ L (V ∗
1 ) ... ∀ Ti, T̃i ∈ L (V ∗

i ) ... ∀ Tk ∈ L (V ∗
k ) ∀ α ∈ C,

T1⊗...⊗
[
Ti + αT̃i

]
⊗...⊗Tk = [T1 ⊗ ...⊗ Ti ⊗ ...⊗ Tk]+α

[
T1 ⊗ ...⊗ T̃i ⊗ ...⊗ Tk

]
This property is straight forward to verify left to reader.

Lemma 2.3.12. ∀ T1 ∈ L (V ∗
1 ) ∀ T2 ∈ L (V ∗

2 ) ... ∀ Tk ∈ L (V ∗
k ), [T1 ⊗ ...⊗ Tk] is

well-defined

Proof. Let B1 = {b11, b12, ..., b1n1} be any orthonormal basis of V1 and B∗
1 =

{b∗11, b∗12, ..., b∗1n1
} be the corresponding dual basis, B2 = {b21, b22, ..., b2n2} be any

orthonormal basis of V2 and B∗
2 = {b∗21, b∗22, ..., b∗2n2

} be the corresponding dual

basis, ..., Bk = {bk1, bk2, ..., bknk
} be any orthonormal basis of Vk and B∗

k =

{b∗k1, b∗k2, ..., b∗knk
} be the corresponding dual basis. Since B1 ⊗ B2 ⊗ ... ⊗ Bk is

a basis of V1 ⊗ V2 ⊗ ...⊗ Vk there exist unique βj1,j2,...,jk ∈ C such that,

x =

n1∑
j1=1

n2∑
j2=1

...

nk∑
jk=1

βj1,j2,...,jkb
∗
1j1

⊗ b∗2j2 ⊗ ...⊗ b∗kjk

83



2. Tensor products

Applying x ∈ V1 ⊗ V2 ⊗ ...⊗ Vk expressed in terms of basis B1, B2, ..., Bk to the

operator [T ⊗ T2 ⊗ ...⊗ Tk] we get that,

[T1 ⊗ ...⊗ Tk] (x) =

n1∑
j1=1

...

nk∑
jk=1

βj1,...,jk

[
T1

(
b∗1j1
)]

⊗ ...⊗
[
Tk

(
b∗kjk
)]

To claim (T ⊗ U) is well-defined it is enough to show that

n1∑
j1=1

...

nk∑
jk=1

βj1,...,jk

[
T1

(
b∗1j1
)]
⊗...⊗

[
Tk

(
b∗kjk
)]

=

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
T1

(
a∗1i1
)]
⊗...⊗

[
Tk

(
a∗kik
)]

Let
1
M ∈ Cn1×n1 be the transformation matrix from basis A1 to B1. Theorem

2.1.5 implies that,[
a∗11 a∗12 . . a∗1n1

]
=
[
b∗11 b∗12 . . b∗1n1

]
1

M

=⇒ a∗1i1 =

n1∑
j1=1

1

M j1i1b
∗
1j1

=⇒ T
(
a∗1i1
)
=

nk∑
j1=1

1

M j1i1T
(
b∗1j1
)

...,

Let
k
M ∈ Cnk×nk be the transformation matrix from basis Ak to Bk. Theorem

2.1.5 implies that,[
a∗k1 a∗k2 . . a∗knk

]
=
[
b∗k1 b∗k2 . . b∗knk

]
k

M

=⇒ a∗kik =

nk∑
jk=1

k

M jkikb
∗
kjk

=⇒ T
(
a∗kik
)
=

nk∑
jk=1

k

M jkikT
(
b∗1j1
)

Above equations imply that,

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
T1

(
a∗1i1
)]

⊗ ...⊗
[
Tk

(
a∗kik
)]

=

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

1

M j1i1 ...
k

M jkikαi1,...,ik

[
T1

(
b∗1j1
)]

⊗ ...⊗
[
Tk

(
b∗kjk
)]
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=

n1∑
j1=1

...

nk∑
jk=1

(
n1∑

i1=1

...

nk∑
ik=1

αi1,...,ik

1

M j1i1 ...
k

M jkik

)[
T1

(
b∗1j1
)]

⊗ ...⊗
[
Tk

(
b∗kjk
)]

Note that

B1⊗B2⊗...⊗Bkx [j1, ..., jk] = βj1,...,jk

A1⊗A2⊗...⊗Akx [i1, ..., ik] = αi1,...,ik

From theorem 2.3.6 we get,

B1⊗B2⊗...⊗Bku [j1, j2, ..., jk] =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M j1i1

2

M j2i2 ...
k

M jkik
A1⊗A2⊗...⊗Aku [i1, i2, ..., ik]

=⇒
n1∑

j1=1

...

nk∑
jk=1

βj1,...,jk

[
T1

(
b∗1j1
)]
⊗...⊗

[
Tk

(
b∗kjk
)]

=

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
T1

(
a∗1i1
)]
⊗...⊗

[
Tk

(
a∗kik
)]

we shall find a basis of L (V1 ⊗ V2 ⊗ ...⊗ Vk). Note that L (V1 ⊗ V2 ⊗ ...⊗ Vk) is

also called tensor product space of operators on V1 ⊗ V2 ⊗ ...⊗ Vk.

Definition 2.3.7. Let V1, V2, ..., Vk be any finite dimensional inner product spaces

over field C where dim(Vi) = ni ∀ i ∈ {1, 2, ..., k}. Let A1 = {a11, a12, ..., a1n1}
be any orthonormal basis of V1 and A∗

1 = {a∗11, a∗12, ..., a∗1n1
} be the correspond-

ing dual basis, A2 = {a21, a22, ..., a2n2} be any orthonormal basis of V2 and A∗
2 =

{a∗21, a∗22, ..., a∗2n2
} be the corresponding dual basis, ..., Ak = {ak1, ak2, ..., aknk

}
be any orthonormal basis of Vk and A∗

k = {a∗k1, a∗k2, ..., a∗knk
} be the correspond-

ing dual basis. Let B1 = {b11, b12, ..., b1n1} be any orthonormal basis of V1 and

B∗
1 = {b∗11, b∗12, ..., b∗1n1

} be the corresponding dual basis, B2 = {b21, b22, ..., b2n2}
be any orthonormal basis of V2 and B∗

2 = {b∗21, b∗22, ..., b∗2n2
} be the correspond-

ing dual basis, ..., Bk = {bk1, bk2, ..., bknk
} be any orthonormal basis of Vk and

B∗
k = {b∗k1, b∗k2, ..., b∗knk

} be the corresponding dual basis. Let T ∗
1 = {1

Ti1j1 | 1 ≤
i1, j1 ≤ n1} where ∀ i1, j1, l1 ∈ {1, 2, ..., n1}

1
Ti1j1 ∈ L(V ∗

1 ) is defined as follows,

1

Ti1j1

(
a∗1l1
)
= a∗1j1 if l1 = i1

= 0 if l1 ̸= i1

...,
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2. Tensor products

Let T ∗
k = {k

Tikjk | 1 ≤ ik, jk ≤ nk} where ∀ ik, jk, lk ∈ {1, 2, ..., nk}
k
Tikjk ∈ L(V ∗

k )

is defined as follows,

k

Tikjk

(
a∗klk
)
= a∗kjk if lk = ik

= 0 if lk ̸= ik

Define T ∗
1 ⊗T ∗

2 ⊗ ...⊗T ∗
k = {1

T ∗
i1j1

⊗ 2
T ∗
i2j2

⊗ ...⊗k
T ∗
ikjk

| 1 ≤ i1, j1 ≤ n1, 1 ≤ i2, j2 ≤
n2, ..., 1 ≤ ik, jk ≤ nk}. Note that each

1
Ti1j1⊗

2
Ti2j2⊗...⊗k

Tikjk ∈ T ∗
1 ⊗T ∗

2 ⊗...⊗T ∗
k

is well-defined and a linear operator on V1 ⊗ V2 ⊗ ...⊗ Vk.

Theorem 2.3.13. T ∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
k forms a basis of L (V1 ⊗ V2 ⊗ ...⊗ Vk).

Proof. Span :

∀ x ∈ V1 ⊗ V2 ⊗ ... ⊗ Vk since A1 ⊗ A2 ⊗ ... ⊗ Ak is a basis of V1 ⊗ V2 ⊗ ... ⊗ Vk

there exist unique αi1,i2,...,ik ∈ C such that,

x =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ik

[
a∗1i1 ⊗ ...⊗ a∗kik

]
∀ W ∈ L (V1 ⊗ V2 ⊗ ...⊗ Vk) since W is a linear operator we get,

W (x) =

n1∑
i1=1

...

nk∑
ik=1

αi1,...,ikW
(
a∗1i1 ⊗ ...⊗ a∗kik

)
Since W is an operator ∀ i1 ∈ {1, 2, ..., n1} i2 ∈ {1, 2, ..., n2} ... ik ∈ {1, 2, ..., nk}
there exist βi1,...,ik,j1,...,jk ∈ C such that,

W
(
a∗1i1 ⊗ ...⊗ a∗kik

)
=

n1∑
j1=1

...

nk∑
jk=1

βi1,...,ik,j1,...,jka
∗
1j1

⊗ ...⊗ a∗kjk

=⇒ W (x) =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

βi1,...,ik,j1,...,jkαi1,...,ika
∗
1j1

⊗ ...⊗ a∗kjk

Note that ∀ i1, j1 ∈ {1, 2, ..., n1} ∀ i2, j2 ∈ {1, 2, ..., n2} ... ∀ ik, jk ∈ {1, 2, ..., nk}
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2. Tensor products

since
1
Ti1j1 ⊗

2
Ti2j2 ⊗ ...⊗ k

Tikjk is multi-linear,

[
1

Ti1j1 ⊗ ...⊗ k

Tikjk

]
(x) =

[
1

Ti1j1 ⊗ ...⊗ k

Tikjk

]( n1∑
l1=1

...

nk∑
lk=1

αl1,...lka
∗
1l1

⊗ ...⊗ a∗klk

)

=

n1∑
l1=1

...

nk∑
lk=1

αl1,...lk

[
1

Ti1j1

(
a∗1l1
)]

⊗ ...⊗
[
k

Tikjk

(
a∗klk
)]

= αi1,...,ika
∗
1j1

⊗ ...a∗kjk

=⇒ W (x) =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

βi1,...,ik,j1,...,jk

[
1

Ti1j1 ⊗ ...⊗ k

Tikjk

]
(x)

=⇒ W =

n1∑
i1=1

...

nk∑
ik=1

n1∑
j1=1

...

nk∑
jk=1

βi1,...,ik,j1,...,jk

[
1

Ti1j1 ⊗ ...⊗ k

Tikjk

]

=⇒ T ∗
1 ⊗ T ∗

2 ⊗ ...⊗ T ∗
k spans L(V1 ⊗ V2 ⊗ ...⊗ Vk)

Linear Independence :

∀ i1, j1 ∈ {1, 2, ..., n1} ∀ i2, j2 ∈ {1, 2, ..., n2} ... ∀ ik, jk ∈ {1, 2, ..., nk}. Con-

sider,
n1∑

i1=1

n1∑
j1=1

...

nk∑
ik=1

nk∑
jk=1

αi1,j1,...,ik,jk

1

Ti1j1 ⊗ ...⊗ k

Tikjk = 0

∀ l1 ∈ {1, 2, ..., n1} ∀ l2 ∈ {1, 2, ..., n2} ... ∀ lk ∈ {1, 2, ..., nk}

Applying a∗1l1 ⊗ a∗2l2 ⊗ ...⊗ a∗klk we get,

n1∑
i1=1

n1∑
j1=1

...

nk∑
ik=1

nk∑
jk=1

αi1,j1,...,ik,jk

[
1

Ti1j1

(
a∗1l1
)]

⊗ ...⊗
[
k

Tikjk

(
a∗klk
)]

= 0

=⇒
n1∑

j1=1

...

nk∑
jk=1

αl1,j1,...,lk,jk

[
a∗1j1 ⊗ ...⊗ a∗kjk

]
= 0
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2. Tensor products

Since A1 ⊗ A2 ⊗ ...⊗ Ak is a basis of V1 ⊗ V2 ⊗ ...⊗ Vk we get that,

αl1,j1,...,lk,jk = 0 ∀ j1 ∈ {1, 2, ..., n1} ... ∀ jk ∈ {1, 2, ..., nk}

=⇒ T ∗
1⊗...⊗T ∗

k is a linearly independent set and forms a basis of L (V1 ⊗ ...⊗ Vk)

Corollary 2.3.14.

dim (L (V1 ⊗ ...⊗ Vk)) = (dim (V1 ⊗ ...⊗ Vk))
2
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Chapter 3

Appendix

This chapter aims at generalizing the theory of tensor product spaces to arbitrary

bases and fields over finite dimensional vector spaces. Observe that the only con-

straint placed is that the vector spaces under consideration are finite dimensional.

In this chapter proofs are not very detailed which we believe the reader can fill

up with the intuition acquainted in the previous chapter.

3.1 1-fold tensor product spaces - dual spaces

3.1.1 Linear Functions

Definition 3.1.1. Let V be a vector space over field F. A function u : V → F is

called linear if ∀ x, y ∈ V ∀ α ∈ F,

u (x+ y) = u (x) + u (y)

u (α · x) = α · u (x)

Let set S = {u : V → F | u is linear}. Define addition and scalar multiplication

on the set S as follows, ∀ u, v ∈ S ∀ x ∈ V ∀ α ∈ F,

[u+ v] (x) = u (x) + v (x)

[α · u] (x) = α · u (x)
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3. Appendix

A linear function u ∈ S is called a 1-tensor or a linear map on V . It is easy

to verify that S is a vector space over field F (Using lemma 2.1.1 we get S is

closed under addition and scalar multiplication and rest of the axioms of vector

space are easy to verify and are left to reader). The vectorspace of all 1-tensors

is defined to be the 1−fold tensor product space of V denoted by L (V → F) or
V ∗. In addition, 1−fold tensor product space is also called dual space of V .

3.1.2 Existence of 1-tensors

Definition 3.1.2. Let V be a finite dimensional inner product space over field

F with dim (V ) = n. Let A = {a1, a2, ..., an} be a basis of V . Define A∗ =

{a∗1, a∗2, ..., a∗n} ∀ i, j ∈ {1, 2, ..., n} a∗i ∈ L (V → F) is defined as follows ∀ x ∈ V ,

a∗i (aj) = 1 if i = j

= 0 if i ̸= j

Lemma 3.1.1. Let V be a finite dimensional inner product space over field F
with dim (V ) = n. Let A = {a1, a2, ..., an} be a basis of V . There exist A∗ =

{a∗1, a∗2, ..., a∗n} such that ∀ i, j ∈ {1, 2, ..., n} a∗i ∈ L (V → F) and ∀ x ∈ V ,

a∗i (aj) = 1 if i = j

= 0 if i ̸= j

Proof. ∀ i ∈ {1, 2, ..., n} let a∗i be a row vector in Fn. That is there exist

αi1, αi2, ..., αin ∈ F such that,

a∗i =
[
αi1 αi2 . . αin

]
Let B = {b1, b2, ..., bn} be any another basis of V . ∀ x ∈ V since B is a basis of

V there exist unique βj ∈ F such that,

x =
n∑

j=1

βjbj =⇒ B

x =
[
β1 β2 . . βn

]T
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Action of a∗i on x is defined as

a∗i (x) =
n∑

j=1

αijβj =
[
αi1 . . αin

]

β1

.

.

βn

 =
[
αi1 . . αin

]
· B

x

Next we need to find αi1, αi2, ..., αin ∈ F such that,

a∗i (aj) = 1 if i = j

= 0 if i ̸= j

∀ i, j ∈ {1, 2, ..., n}. Fix i.[
αi1 . . αin

]
· B

aj = 1 if i = j

= 0 if i ̸= j

Since B is a basis of V there exist unique βij ∈ F such that,

aj =
n∑

i=1

βijbi =⇒ B

aj =
[
β1j . . βnj

]T
=⇒

[
αi1 . . αin

]

β11 β12 . . β1n

β21 β22 . . β2n

. . . . .

βn1 βn2 . . βnn

 = ei

Let M =


β11 β12 . . β1n

β21 β22 . . β2n

. . . . .

βn1 βn2 . . βnn

. Recall from linear algebra that Since A is a basis

of V we get that M is non-singular.

=⇒
[
αi1 . . αin

]
= ei ·M−1

This concludes the existence of a∗i . Linearity of each a∗i directly follows from the

linearity of coordinates of input arguments. Note that each a∗i is well-defined since

we used arbitrary basis B to obtain a∗i .
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Remark :

1. Observe that M−1 is the transformation matrix from basis A to B for the

linear function a∗i .

2. If A is an orthonormal basis and F = C then

a∗i (x) =
Bai ⊙

B

x

This general theory when constrained to orthonormal basis is same as the

theory developed as in section 2.1.2

3.1.3 Basis of 1-fold tensor product spaces

Lemma 3.1.2. ∀ x ∈ V ,

x =
n∑

i=1

a∗i (x)ai

Proof. ∀ x ∈ V there exist unique αi ∈ C such that,

x =
n∑

i=1

αiai

∀ j ∈ {1, 2, ..., n},

a∗j(x) =
n∑

i=1

αia
∗
j (ai) = αj

Theorem 3.1.3. A∗ forms a basis of L (V → F)

Proof. Span : ∀ x ∈ V .

x =
n∑

i=1

a∗i (x) ai

∀ u ∈ L (V → F),

u (x) =
n∑

i=1

u (ai) a
∗
i (x) =⇒ u =

n∑
i=1

u (ai) a
∗
i
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Linear Independence : Consider,

n∑
i=1

αia
∗
i = 0

∀ j ∈ {1, 2, ..., n},
n∑

i=1

αia
∗
i (ai) = αj = 0

3.1.4 Basis transformation

Theorem 3.1.4. Let B = {b1, b2, ..., bn} be any another basis of V and B∗ =

{b∗1, b∗2, ..., b∗n} be the corresponding dual basis. Let M ∈ Fn×n be the transforma-

tion matrix from basis A to B i.e,[
a1 a2 . . an

]
=
[
b1 b2 . . bn

]
M

∀ u ∈ L (V → F),
B∗

u =
(
M−1

)T · A∗

u

Proof. Since M is the transformation from basis A to B we get that M−1 is the

transformation matrix from basis B to A i.e,

[
b1 b2 . . bn

]
=
[
a1 a2 . . an

]
M−1 =⇒ bi =

n∑
j=1

M−1
ji aj

∀ u ∈ L (V → F),

u (bi) =
n∑

j=1

M−1
ji aj =⇒


u (b1)

u (b2)

.

.

u (bn)

 =


M−1

11 M−1
21 . . M−1

n1

M−1
12 M−1

22 . . M−1
n2

. . . . .

M−1
1n M−1

2n . . M−1
nn




u (a1)

u (a2)

.

.

u (an)


=⇒ B∗

u =
(
M−1

)T · A∗

u
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3.1.5 Invariance of computation of 1−tensors under basis

transformations

Theorem 3.1.5. ∀ u ∈ L (V → F) ∀ x ∈ V ,

u (x) =
n∑

r=1

A∗

u[r] · A

x[r] =
(

A∗

u
)T

·
(

A

x
)

Proof. Proof is same as in theorem 2.1.6. Here we provide an alternate proof.

Let B = {b1, b2, ..., bn} be any another basis of V and B∗ = {b∗1, b∗2, ..., b∗n} be the

corresponding dual basis. It is enough to show that(
A∗

u
)T

·
(

A

x
)
=
(

B∗

u
)T

·
(

B

x
)

Let M ∈ Fn×n be the transformation matrix from basis A to B. Then,

B

x = M · A

x
B∗

u =
(
M−1

)T · A∗

u

(
B∗

u
)T

·
(

B

x
)
=
((

M−1
)T · A∗

u
)T

·
(
M · A

x
)
=
(

A∗

u
)T

· A

x
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3.2 2-fold tensor product spaces

Definition 3.2.1. Let V ,W be vector spaces over field F. A function u : V×W →
F is called bi-linear if the following holds,

1. ∀ x, y ∈ V ∀ z ∈ W ,

u (x+ y, z) = u (x, z) + u (y, z)

2. ∀ x ∈ V ∀ y, z ∈ W ,

u (x, y + z) = u (x, y) + u (x, z)

3. ∀ x ∈ V ∀ y ∈ W ∀ α ∈ F,

u (αx, y) = αu (x, y) = u (x, αy)

Let set S = {u : V ×W → F | u is bi-linear}. Define addition and multiplication

on the set S as follows, ∀ u, v ∈ S ∀ x ∈ V ∀ y ∈ W ∀ α ∈ F,

[u+ v] (x, y) = u (x, y) + v (x, y)

[αu] (x, y) = αu (x, y)

A bi-linear function u ∈ S is called a 2-tensor or a bi-linear map on V × W .

It is easy to verify that S is a vector space over field F (Using lemma 2.2.1 we

get S is closed under addition and scalar multiplication and rest of the axioms of

vector space are easy to verify and are left to the reader). The vector space of all

2-tensors is defined to be the 2-fold tensor product space of V and W denoted by

L (V ×W → F) or V ⊗W .
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3.2.1 Tensor products on vector spaces V and W

Definition 3.2.2. Let V , W be any two finite dimensional vector spaces over

field F where dim (V ) = n and dim (W ) = m. ∀ u ∈ L (V → F) ∀ v ∈ L (W → F)
Define the tensor product of u and v as a function [u⊗ v] : V ×W → F as follows

∀ x ∈ V ∀ y ∈ W ,

[u⊗ v] (x, y) = u (x) · v (y)

Remark :

1. ∀ u, v ∈ L (V → F) notice that u⊗ v ̸= v ⊗ u in general.

Lemma 3.2.1. ∀ u ∈ L (V → F) ∀ v ∈ L (W → F), [u⊗ v] is bi-linear.

Proof. Proof is same as in lemma 2.2.2

Lemma 3.2.2. 1. ∀ u, v ∈ L (V → F) ∀ w ∈ L (W → F),

[u+ v]⊗ w = u⊗ w + v ⊗ w

2. ∀ u ∈ L (V → F) ∀ v, w ∈ L (W → F),

u⊗ [v + w] = u⊗ v + u⊗ w

3. ∀ u ∈ L (V → F) ∀ v ∈ L (W → F) ∀ α ∈ F,

[αu]⊗ v = u⊗ [αv] = α[u⊗ v]

Proof. Proof is same as lemma 2.2.3

Remark :

1. u ⊗ v = 0 ⇐⇒ u = 0 or v = 0. It is straight forward to verify and left to

reader.

96



3. Appendix

3.2.2 Basis of 2-fold tensor product spaces

Definition 3.2.3. Let A = {a1, a2, ..., an} be a basis of V and B = {b1, b2, ..., bm}
be a basis of W . Define A⊗ B = {a∗i ⊗ b∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} where a∗i and

b∗j are defined as in section 3.1.2.

Theorem 3.2.3. A⊗B is a basis for vector space L (V ×W → F)

Proof. Span : ∀ x ∈ V there exist unique αi ∈ F such that

x =
n∑

i=1

αiai

∀ y ∈ W there exist unique βj ∈ F such that

y =
m∑
j=1

βjbj

∀ u ∈ L (V ×W → C),

u (x, y) = u

(
n∑

i=1

αiai,
m∑
j=1

βjbj

)
=

n∑
i=1

m∑
j=1

αiβju (ai, bj)

∀ i ∈ {1, 2, ..., n} ∀ j ∈ {1, 2, ...,m},

[a∗i ⊗ b∗j ] (x, y) = a∗i (x) · b∗j (y) = αiβj

=⇒ u =
n∑

i=1

m∑
j=1

u (ai, bj) [a
∗
i ⊗ b∗j ]

=⇒ A⊗B spans L (V ×W → F)

Linear Independence : Consider,

n∑
i=1

m∑
j=1

αij[a
∗
i ⊗ b∗j ] = 0
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∀ p ∈ {1, 2, ..., n} ∀ q ∈ {1, 2, ...,m},

n∑
i=1

m∑
j=1

αij[a
∗
i ⊗ b∗j ] (ap, bq) = 0 =⇒

n∑
i=1

m∑
j=1

αija
∗
i (ap) b

∗
j (bq) = αpq = 0

=⇒ A⊗B is a linearly independent set and a basis of L (V ×W → F)

3.2.3 Basis transformation

Theorem 3.2.4. Let C = {c1, ..., cn} be any another basis of V . Let D =

{d1, ..., dm} be any another basis of W . Let C ⊗ D = {c∗i ⊗ d∗j | 1 ≤ i ≤ n, 1 ≤
j ≤ m}. Theorem 3.2.3 implies that both A ⊗ B and C ⊗ D form bases of

L (V ×W → F). Let M ∈ Fn×n be the transformation matrix from basis A to C

i.e, [
a1 a2 . . . an

]
=
[
c1 c2 . . . cn

]
M

Let N ∈ Fm×m be the transformation matrix from basis B to D i.e,[
b1 b2 . . . bm

]
=
[
d1 d2 . . . dm

]
N

∀ u ∈ L (V ×W → F),

C⊗D

u =
(
M−1

)T · A⊗B

u ·N−1

Proof. Since M is the transformation matrix from basis A to C we get that M−1

is the transformation matrix from basis C to A i.e,

[
c1 c2 . . . cn

]
=
[
a1 a2 . . . an

]
M−1 =⇒ cp =

n∑
i=1

M−1
ip ai

Since N is the transformation matrix from basis B to D we get that N−1 is the

transformation matrix from basis D to B i.e,

[
d1 d2 . . . dm

]
=
[
b1 b2 . . . bm

]
N−1 =⇒ dq =

m∑
j=1

N−1
jq bj
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∀ u ∈ L (V × w → F),

u (cp, dq) = u

(
n∑

i=1

M−1
ip ai,

m∑
j=1

N−1
jq bj

)
=

n∑
i=1

m∑
j=1

M−1
ip N−1

jq u (ai, bj)

=⇒ u (cp, dq) =
[
M−1

1p . . M−1
np

]u (a1, b1) . . u (a1, bm)

. . . .

u (an, b1) . . u (an, bm)



N−1

1q

.

.

N−1
mq


u (c1, d1) .. u (c1, dm)

. .. .

u (cn, d1) .. u (cn, dm)

 =

M
−1
11 .. M−1

n1

. .. .

M−1
1n .. M−1

nn


u (a1, b1) .. u (a1, bm)

. .. .

u (an, b1) .. u (an, bm)


N

−1
11 .. N−1

1m

. .. .

N−1
m1 .. N−1

mm



=⇒ C⊗D

u =
(
M−1

)T · A⊗B

u ·N−1

3.2.4 Invariance of computation of 2−tensor under basis

transformations

Theorem 3.2.5. ∀ u ∈ L (V ×W → F) ∀ x ∈ V ∀ y ∈ W ,

u (x, y) =
n∑

r=1

m∑
s=1

A

x[r] · A⊗B

u[r, s] · B

y[s] =
(

A

x
)T

· A⊗B

u · B

y

Proof. Proof is same as in theorem 2.2.7. Here we provide an alternate proof.

Let C = {c1, c2, ..., cn} be any another basis of V and D = {d1, d2, ..., dm} be any

another basis of W . It is enough to show that(
A

x
)T

· A⊗B

u · B

y =
(

C

x
)T

· C⊗D

u · D

y

Let M ∈ Fn×n be the transformation matrix from basis A to C. Then,

C

x = M · A

x
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Let N ∈ Fm×m be the transformation matrix from basis B to D. Then,

D

y = N · D

y

It is also shown that
C⊗D

u =
(
M−1

)T · A⊗B

u ·N−1(
C

x
)T

· C⊗D

u · D

y =
(
M · A

x
)T

·
(
M−1

)T · A⊗B

u ·N−1 ·N · B

y

=
(

A

x
)T

·MT ·
(
M−1

)T · A⊗B

u ·N−1 ·N · B

y

=
(

A

x
)T

· A⊗B

u · B

y
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3.3 k-fold tensor product spaces

3.3.1 Multi-linear Functions

Definition 3.3.1. Let V1, V2, ..., Vk be vector spaces over field F. A function

u : V1 × V2 × ...× Vk → F is called multi-linear if the following holds,

1. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi, x̃i ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k,

u (x1, x2, ..., xi + x̃i, ..., xk) = u (x1, x2, ..., xi, ..., xk) + u (x1, x2, ..., x̃i, ..., xk)

2. ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xi ∈ Vi ... ∀ xk ∈ Vk where 1 ≤ i ≤ k ∀ α ∈ F,

u (x1, x2, ..., αxi, ..., xk) = αu (x1, x2, ..., xk)

Let set S = {u : V1 × V2 × ... × Vk → F | u is multi-linear}. Define addition and

multiplication on the set S as follows ∀ u, v ∈ S ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀ xk ∈ Vk

∀ α ∈ F,

[u+ v] (x1, x2, ..., xk) = u (x1, x2, ..., xk) + v (x1, x2, ..., xk)

[αu] (x1, x2, ..., xk) = αu (x1, x2, ..., xk)

A multi-linear function u ∈ S is called a k−tensor or a multi-linear map on

V1 × V2 × ...× Vk. It is easy to verify that S is a vector space over field F (Using

lemma 2.3.1 we get S is closed under addition and scalar multiplication and rest

of the axioms of vector space are easy to verify and are left to the reader). The

vector space of all k−tensors is defined as the tensor product space of V1, V2, ...,

Vk denoted by L (V1 × V2 × ...× Vk → F) or V1 ⊗ V2 ⊗ ...⊗ Vk.
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3.3.2 Tensor products on vector spaces V1, V2, ..., Vk

Definition 3.3.2. Let V1, V2, ..., Vk be finite dimensional inner product spaces

over field C where dim (Vi) = ni ∀ i ∈ {1, 2, ..., k}. ∀ u1 ∈ L (V1 → F) ∀ u2 ∈
L (V2 → F) ... ∀ uk ∈ L (Vk → F) Define the tensor product of u1, u2, ..., uk as a

function [u1 ⊗ u2 ⊗ ...⊗ uk] : V1 × V2 × ...× Vk → F as follows ∀ x1 ∈ V1 ∀ x2 ∈ V2

... ∀ xk ∈ Vk,

[u1 ⊗ u2 ⊗ ...⊗ uk] (x1, x2, ..., xk) = u1 (x1) · u2 (x2) · ... · uk (xk) =
k∏

i=1

ui (xi)

Lemma 3.3.1. ∀ u1 ∈ L (V1 → F) ∀ u2 ∈ L (V2 → F) ... ∀ uk ∈ L (Vk → F),
[u1 ⊗ u2 ⊗ ...⊗ uk] is multi-linear.

Proof. Proof is same as in lemma 2.3.2

Lemma 3.3.2. 1. ∀ u1 ∈ L (V1 → F) ... ∀ ui, ũi ∈ L (Vi → F) ... ∀ uk ∈
L (Vk → F) where 1 ≤ i ≤ k,

[u1⊗ ...⊗ [ui+ ũi]⊗ ...⊗uk] = [u1⊗ ...⊗ui⊗ ...⊗uk]+ [u1⊗ ...⊗ ũi⊗ ...⊗uk]

2. ∀ u1 ∈ L (V1 → F) ... ∀ ui ∈ L (Vi → F) ... ∀ uk ∈ L (Vk → F) where

1 ≤ i ≤ k ∀ α ∈ F,

[u1 ⊗ ...⊗ [αui]⊗ ...⊗ uk] = α[u1 ⊗ ...⊗ ui ⊗ ...⊗ uk]

Proof. Proof is same as in lemma 3.3.2

Remark :

1. u1⊗ ...⊗uk = 0 ⇐⇒ at least one of ui = 0. It is straight forward to verify

and left to reader.
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3.3.3 Basis of k-fold tensor product spaces

Definition 3.3.3. LetA1 = {a11, a12, ..., a1n1} be a basis of V1, A2 = {a21, a22, ..., a2n2}
be a basis of V2, ..., Ak = {ak1, ak2, ..., aknk

} be a basis of Vk. Define A1 ⊗ A2 ⊗
...⊗ Ak = {a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik | 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ ik ≤ nk}.

Theorem 3.3.3. A1⊗A2⊗...⊗Ak is a basis for vector space L (V1 × V2...× Vk → F)

Proof. Span :

∀ x1 ∈ V1 there exist unique α1i1 ∈ F such that,

x1 =

n1∑
i1=1

α1i1a1i1

∀ x2 ∈ V2 there exist unique α2i2 ∈ F such that,

x2 =

n2∑
i2=1

α2i2a2i2

...,

∀ xk ∈ Vk there exist unique αkik ∈ F such that,

xk =

nk∑
i1=1

αkikakik

∀ u ∈ L (V1 × V2 × ...× Vk → F),

u (x1, x2, ..., xk) = u

(
n1∑

i1=1

α1i1a1i1 ,

n2∑
i2=1

α2i2a2i2 , ...,

n3∑
ik=1

αkikakik

)

=

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

α1i1α2i2 ...αkiku (a1i1 , a2i2 , ..., akik)

∀ i1 ∈ {1, ..., n1} i2 ∈ {1, ..., n2} ... ik ∈ {1, ..., nk},

[a∗1i1 ⊗ a∗2i2 ⊗ ...⊗ a∗kik ] (x1, x2, ..., xk) = a∗1i1 (x1) · a∗2i2 (x2) · ... · a∗kik (xk) =
k∏

j=1

αjij

103



3. Appendix

=⇒ u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik) [a
∗
1i1
⊗a∗2i2⊗...⊗a∗kik ] (x1, x2, ..., xk)

=⇒ u =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

u (a1i1 , a2i2 , ..., akik) [a
∗
1i1

⊗ a∗2i2 ⊗ ...⊗ a∗kik ]

=⇒ A1 ⊗ A2 ⊗ ...⊗ Ak spans L (V1 × V2...× Vk → F)

Linear Independence :

Let αi1,i2,...,ik ∈ F ∀ i1 ∈ {1, ..., n1} i2 ∈ {1, ..., n2} ... ik ∈ {1, ..., nk}. Consider,

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ik [a
∗
1i1

⊗ a∗2i2 ⊗ ...⊗ a∗kik ] = 0

∀ j1 ∈ {1, ..., n1} j2 ∈ {1, ..., n2} ... jk ∈ {1, ..., nk},

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ik [a
∗
1i1

⊗ a∗2i2 ⊗ ...⊗ a∗kik ] (a1j1 , a2j2 , ..., akjk) = 0

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

αi1,i2,...,ika
∗
1i1

(a1j1) a
∗
2i2

(a2j2) ...a
∗
kik

(akjk) = αj1,j2,...,jk = 0

=⇒ A1⊗A2⊗...⊗Ak is a linearly independent set and a basis of L (V1 × V2 × ...× Vk → F)

3.3.4 Basis transformation

Theorem 3.3.4. Let B1 = {b11, ..., b1n1} be any another basis of V1, let B2 =

{b21, ..., b2n2} be any another basis of V2, ..., let Bk = {bk1, ..., bknk
} be any another

basis of Vk. Let B1 ⊗ B2 ⊗ ... ⊗ Bk = {b∗1j1 ⊗ b∗2j2 ⊗ ... ⊗ b∗kjk | 1 ≤ j1 ≤ n1, 1 ≤
j2 ≤ n2, ..., 1 ≤ jk ≤ nk}. Theorem 3.3.3 implies that A1 ⊗ A2 ⊗ ... ⊗ Ak and

B1 ⊗ B2 ⊗ ...⊗ Bk form bases of L (V1 × V2 × ...× Vk → F). Let i
M ∈ Fni×ni be

the transformation matrix from Ai to Bi i.e,[
ai1 ai2 . . . aini

]
=
[
bi1 bi2 . . . bini

]
i

M
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where 1 ≤ i ≤ k. ∀ u ∈ L (V1 × V2 × ...× Vk → F),

B1⊗B2⊗...⊗Bku[j1, j2, ..., jk] =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M−1
i1j1

· 2

M−1
i2j2

· ... · k

M−1
ikjk

A1⊗A2⊗...⊗Aku[i1, i2, ..., ik]

where 1 ≤ j1 ≤ n11 ≤ j2 ≤ n2...1 ≤ jk ≤ nk.

Proof. Since
1
M is the transformation matrix from basis A1 to B1 we get that

1
M−1 is the transformation from B1 to A1 i.e,

[
b11 b12 . . . b1n1

]
=
[
a11 a12 . . . a1n1

]
1

M−1 =⇒ b1j1 =

n1∑
i1=1

1

M−1
i1j1

a1i1

Since
2
M is the transformation matrix from basis A2 to B2 we get that

2
M−1 is

the transformation from B2 to A2 i.e,

[
b21 b22 . . . b2n2

]
=
[
a21 a22 . . . a2n2

]
2

M−1 =⇒ b2j2 =

n2∑
i2=1

2

M−1
i2j2

a2i2

...,

Since
k
M is the transformation matrix from basis Ak to Bk, we get that

k
M−1 is

the transformation from Bk to Ak i.e,

[
bk1 bk2 . . . bknk

]
=
[
ak1 ak2 . . . aknk

]
k

M−1 =⇒ bkjk =

n1∑
ik=1

1

M−1
ikjk

akik

∀ u ∈ L (V1 × V2 × ...× Vk → F),

u (b1j1 , b2j2 , ..., bkjk) = u

(
n1∑

i1=1

1

M−1
i1j1

a1i1 ,

n2∑
i2=1

2

M−1
i1j2

a2i2 , ...,

nk∑
ik=1

k

M−1
ikjk

akik

)

=

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M−1
i1j1

2

M−1
i2j2

...
k

M−1
ikjk

u (a1i1 , a2i2 , ..., akik)

=⇒ B1⊗B2⊗...⊗Bku[j1, j2, ..., jk] =

n1∑
i1=1

n2∑
i2=1

...

nk∑
ik=1

1

M−1
i1j1

2

M−1
i2j2

...
k

M−1
ikjk

A1⊗A2⊗...⊗Aku[i1, i2, ..., ik]
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3.3.5 Invariance of computation of k-tensors under basis

transformations

Theorem 3.3.5. ∀ u ∈ L (V1 × V2 × ...× Vk → F) ∀ x1 ∈ V1 ∀ x2 ∈ V2 ... ∀
xk ∈ Vk,

u (x1, x2, ..., xk) =

n1∑
i1=1

n2∑
i2=2

...

nk∑
ik=1

A1⊗A2⊗...⊗Aku[i1, i2, ..., ik]
A

x1[i1]
A

x2[i2]...
A

xk[ik]

Proof. Proof is same as in 2.3.7. Here we provide an alternate proof. It is enough

to show that

n1∑
i1=1

...

nk∑
i1=k

A1⊗...⊗Aku[i1, ..., ik]
A

x1[i1]...
A

xk[ik] =

n1∑
j1=1

...

nk∑
jk=1

B1⊗...⊗Bku[j1, ..., jk]
B1x1[j1]...

Bkxk[jk]

Using the previous theorem we have,

n1∑
j1=1

...

nk∑
jk=1

B1⊗...⊗Bku[j1, ..., jk]
B1x1[j1]...

Bkxk[jk]

=

n1∑
j1=1

...

nk∑
jk=1

n1∑
i1=1

...

nk∑
ik=1

1

M−1
i1j1

...
k

M−1
ikjk

u (a1i1 , ..., akik)
B1x1[j1]...

Bkxk[jk]

=

n1∑
i1=1

...

nk∑
ik=1

u (a1i1 , ..., akik)

(
n1∑

j1=1

1

M−1
i1j1

B1x1[j1]

)
...

(
nk∑

jk=1

k

M−1
ikjk

Bkxk[jk]

)

∀ j ∈ {1, 2, ..., k},

Bj
xj =

j

M ·
Aj
xj =⇒ j

M−1 ·
Bj
xj =

Aj
xj

=

n1∑
i1=1

...

nk∑
ik=1

u (a1i1 , ..., akik)
A1x1[i1]...

Akxk[ik]
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