Tensor products in finite dimensional complex inner product spaces

By

Kallupalli Sai Mineesh Reddy (B190305CS)

Under the Guidance of

Dr. Murali Krishnan K
Associate Professor

Department of Computer Science and Engineering

National Institute of Technology Calicut
Calicut, Kerala, India - 673601
May 2023

Contents

1 Introduction 3
1.1 Prerequisites 4
2 Tensor products 17
2.1 1-fold tensor product spaces - dual spaces 17
2.1.1 Linear functions 17
2.1.2 1 -tensors using inner product 18
2.1.3 Basis of 1 -fold tensor product spaces 19
2.1.4 Basis Transformation 22
2.1.5 Invariance of computation of 1 -tensors under any orthonor-mal basis transformations25
2.1.6 Inner products on 1 -fold tensor product spaces 28
2.1.7 Linear operators on 1-fold tensor product spaces 30
$2.2 \quad$ 2-fold tensor product spaces 33
2.2.1 Bi-linear functions 33
2.2.2 \quad Tensor products on vector spaces V and W 35
2.2.3 Basis of 2-fold tensor product spaces 38
2.2.4 Basis Transformation 41
2.2.5 Invariance of computation of 2 -tensor under any orthonor-mal basis transformations45
2.2.6 Inner products on 2-fold tensor product spaces 49
2.2.7 Linear operators on 2-fold tensor product spaces 53
$2.3 \quad k$-fold tensor product spaces 60
2.3.1 Multi-linear Functions 60
2.3.2 Tensor products on vector spaces $V_{1}, V_{2}, \ldots, V_{k}$ 62

0. Contents

2.3.3 Basis of k-fold tensor product spaces 64
2.3.4 Basis transformation 68
2.3.5 Invariance of computation of k-tensors under any orthonor-mal basis transformations72
2.3.6 Inner products on k-fold tensor product spaces 76
2.3.7 Linear operators on k-fold tensor product spaces 81
3 Appendix 89
3.1 1-fold tensor product spaces - dual spaces 89
3.1.1 Linear Functions 89
3.1.2 Existence of 1-tensors 90
3.1.3 Basis of 1-fold tensor product spaces 92
3.1.4 Basis transformation 93
3.1.5 Invariance of computation of 1 -tensors under basis trans-formations94
3.2 2-fold tensor product spaces 95
3.2.1 Tensor products on vector spaces V and W 96
3.2.2 Basis of 2-fold tensor product spaces 97
3.2.3 Basis transformation 98
3.2.4 Invariance of computation of 2 -tensor under basis transfor- mations 99
$3.3 \quad k$-fold tensor product spaces 101
3.3.1 Multi-linear Functions 101
3.3.2 Tensor products on vector spaces $V_{1}, V_{2}, \ldots, V_{k}$ 102
3.3.3 Basis of k-fold tensor product spaces 103
3.3.4 Basis transformation 104
3.3.5 Invariance of computation of k-tensors under basis transfor-mations106
References 107

Chapter 1

Introduction

This monograph primarily focuses on introducing tensor product spaces over finite dimensional complex inner product spaces when constrained orthonormal bases. We believe that placement of these constraints over general theory helps in developing a more accessible material for computer science audience without compromising on mathematical rigour and practical applicability. Tensor product spaces are typically introduced using concepts that use abstract algebra. In this notes an intuitive approach is used by defining the set of all multi-linear functions as the tensor product space. This approach is historically well-known but owing to the generality in developing the theory, mathematicians use abstract algebra. Most of the engineering applications, in particular machine learning and quantum computation in computer science require working on finite dimensional real or complex inner product spaces. Moreover working on orthonormal basis is sufficient to work on most of the applications. Hence, we initially focus on developing the theory of tensor product spaces of complex inner product spaces limiting to orthonormal bases. For those mathematically inclined or interested more in general theory can refer appendix to understand the theory of tensor product spaces over any finite dimensional vector spaces. The exposition is written in an incremental manner in order to gain more intuition into the k-fold tensors theory.
We expect reader to be familiar with basic notions in linear algebra. In this section, some properties of orthonormal bases of finite dimensional complex inner product spaces are shown which help in simplifying proofs provided in the next chapter. Notice that this theory works for vector spaces over real fields also.

1.1 Prerequisites

Definition 1.1.1. Let V be a finite dimensional vector space over field \mathbb{C}. A function () : $V \times V \rightarrow \mathbb{C}$ is called an inner product if it satisfies the following, Linearity : $\forall x, y, z \in V, \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
(x, y+z)=(x, y)+(x, z) \\
(x, \alpha y)=\alpha(x, y)
\end{gathered}
$$

Conjugate symmetry: $\forall x, y \in V$,

$$
(x, y)=\overline{(y, x)}
$$

Positive definiteness : $\forall x \in V$,

$$
\text { if } x \neq 0 \text { then }(x, x)>0
$$

Remark :

1. $\forall x, y, z \in V,(x+y, z)=(x, z)+(y, z)$

$$
(x+y, z)=\overline{(z, x+y)}=\overline{(z, x)}+\overline{(z, y)}=(x, z)+(y, z)
$$

2. $\forall x, y \in V, \forall \alpha \in \mathbb{C},(\alpha x, y)=\bar{\alpha}(x, y)$

$$
(\alpha x, y)=\overline{(y, \alpha x)}=\bar{\alpha} \cdot \overline{(y, x)}=\bar{\alpha} \cdot(x, y)
$$

3. $\forall x \in V,(0, x)=(x, 0)=0$

$$
(x, 0)=(x, 0+0)=(x, 0)+(x, 0) \Longrightarrow(x, 0)=0 \Longrightarrow(0, x)=\overline{(0, x)}=0
$$

4. Let $x \in V$, using the above remark 3 , we get $(x, x)=0 \Longleftrightarrow x=0$

Let $\operatorname{dim}(V)=n<\infty$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. Then, $\forall i, j \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
\left(a_{i}, a_{j}\right) & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

Lemma 1.1.1. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. \forall $x \in V$,

$$
x=\sum_{i=1}^{n}\left(a_{i}, x\right) a_{i}
$$

Proof. $\forall x \in V$, since A is a basis of V, there exist unique $\alpha_{i} \in \mathbb{C}$ such that,

$$
\begin{equation*}
x=\sum_{i=1}^{n} \alpha_{i} a_{i} \tag{1.1}
\end{equation*}
$$

$\forall j \in\{1,2, \ldots, n\}$,

$$
\left(a_{j}, x\right)=\left(a_{j}, \sum_{i=1}^{n} \alpha_{i} a_{i}\right)
$$

Using linearity of inner product we get,

$$
\left(a_{j}, x\right)=\sum_{i=1}^{n}\left(a_{j}, \alpha a_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left(a_{j}, a_{i}\right)
$$

Since A is an orthonormal basis of V we get,

$$
\begin{equation*}
\left(a_{j}, x\right)=\alpha_{j} \tag{1.2}
\end{equation*}
$$

Combining equations 1.1 and 1.2 we get,

$$
x=\sum_{i=1}^{n}\left(a_{i}, x\right) a_{i}
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal bases of $V . \forall x \in V$ using Lemma 1.1.1 we get,

$$
x=\sum_{i=1}^{n}\left(a_{i}, x\right) a_{i}=\sum_{j=1}^{n}\left(b_{j}, x\right) b_{j}
$$

We set the convention that the coordinates of any vector $x \in V$ with respect to a basis A is a column vector. Formally,

Definition 1.1.2. Let V be a finite dimensional vector space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a basis of $V . \forall x \in V$ there exist unique $\alpha_{i} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \alpha_{i} a_{i}=\left[\begin{array}{llll}
a_{1} & a_{2} & . & . \\
a_{n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
. \\
\alpha_{n}
\end{array}\right]
$$

We denote the coordinates of the vector x with respect to basis A as follows,

$$
{ }^{A} x=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdot & \cdot \\
\alpha_{n}
\end{array}\right]^{T} \in \mathbb{C}^{n}
$$

We denote the r-th coordinate of vector x with respect to basis A as follows,

$$
{ }^{A} x[r]=\alpha_{r} \in \mathbb{C}
$$

Remark :

1. If A is an orthonormal basis of $V . \forall x \in V$ using Lemma 1.1.1 we get,

$$
x=\sum_{r=1}^{n}\left(a_{i}, x\right) a_{i} \Longrightarrow{ }^{A} x[i]=\alpha_{i}=\left(a_{i}, x\right) \forall i \in\{1,2, \ldots, n\}
$$

Lemma 1.1.2. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. \forall $x, y \in V$,

$$
(x, y)=\sum_{r=1}^{n} \overline{{ }^{A} x[r]} \cdot{ }^{A} y[r]
$$

Proof. $\forall x, y \in V$ since A is an orthonormal basis of V there exist unique α_{r}, $\beta_{s} \in \mathbb{C}$ such that,

$$
\begin{aligned}
& x=\sum_{r=1}^{n} \alpha_{r} a_{r} \quad y=\sum_{s=1}^{n} \beta_{s} a_{s} \\
&(x, y)=\left(\sum_{r=1}^{n} \alpha_{r} a_{r}, \sum_{s=1}^{n} \beta_{s} a_{s}\right) \\
&= \sum_{r=1}^{n} \sum_{s=1}^{n} \overline{\alpha_{r}} \cdot \beta_{s} \cdot\left(a_{r}, a_{s}\right) \\
&= \sum_{r=1}^{n} \overline{\alpha_{r}} \cdot \beta_{r} \quad \quad(\text { since } A \text { is an orthonormal basis of } V \text {) }
\end{aligned}
$$

We already know that,

$$
\begin{array}{r}
{ }^{A} x[r]=\alpha_{r} \\
\Longrightarrow(x, y)=\sum_{r=1}^{n} \overline{{ }^{A}} x[r] \cdot{ }^{A} y[r]=\beta_{r}
\end{array}
$$

Definition 1.1.3. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of $V . \forall$ $x, y \in V$ we define the dot product of x and y with respect to basis A as

$$
{ }^{A} x \odot{ }^{A} y=\sum_{r=1}^{n} \overline{{ }^{A} x[r]} \cdot{ }^{A} y[r]=\left({ }^{A} x\right)^{*} \cdot\left({ }^{A} y\right)
$$

Remark :

1. Lemma 1.1.2 implies that the dot product of any two vectors $x, y \in V$ has the same value irrespective of the choice of orthonormal basis. More concretely, Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal bases of $V . \forall x, y \in V$ using Lemma 1.1.1 and Lemma 1.1.2 we get,

$$
{ }^{A} x \odot{ }^{A} y=(x, y)={ }^{B} x \odot{ }^{B} y
$$

Definition 1.1.4. A matrix $M \in \mathbb{C}^{n \times n}$ is called non-singular if $\forall \alpha \in \mathbb{C}^{n}$,

$$
M \cdot \alpha=0 \Longrightarrow \alpha=0
$$

Remark :

1. Several equivalent definitions for the non-singularity of a matrix M can be found in various textbooks. In the above definition we define M to be non-singular if and only if Nullspace $(M)=\{0\}\}^{1}$.

Theorem 1.1.3. Let V be a finite dimensional vector space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two bases of V. Then there exists a non-singular matrix $M \in \mathbb{C}^{n \times n}$ such that,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M
$$

Note that the matrix M is called the basis transformation matrix from A to B.

Proof. Since B is a basis of $V \forall j \in\{1, \ldots, n\}$ there exist unique $M_{i j} \in \mathbb{C}$ such that,

$$
a_{j}=\sum_{i=1}^{n} M_{i j} b_{i}=\left[\begin{array}{llll}
b_{1} & b_{2} & . & b_{n}
\end{array}\right]\left[\begin{array}{c}
M_{1 j} \\
M_{2 j} \\
\cdot \\
\cdot \\
M_{n j}
\end{array}\right]
$$

[^0]\[

\Longrightarrow\left[$$
\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}
$$\right]=\left[$$
\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}
$$\right]\left[$$
\begin{array}{ccccc}
M_{11} & M_{12} & . & . & M_{1 n} \\
M_{21} & M_{22} & . & . & M_{2 n} \\
\cdot & . & . & . & \cdot \\
\cdot & \cdot & . & \cdot & \cdot \\
M_{n 1} & M_{n 2} & . & . & M_{n n}
\end{array}
$$\right]
\]

Let $M=\left[\begin{array}{ccccc}M_{11} & M_{12} & . & . & M_{1 n} \\ M_{21} & M_{22} & \cdot & \cdot & M_{2 n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ M_{n 1} & M_{n 2} & . & . & M_{n n}\end{array}\right] \in \mathbb{C}^{n \times n}$. Then,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M
$$

It remains to show that M is non-singular. $\forall \alpha \in \mathbb{C}^{n}$,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & \cdot & a_{n}
\end{array}\right] \cdot \alpha=\left[\begin{array}{llll}
b_{1} & b_{2} & . & .
\end{array} b_{n}\right] M \cdot \alpha
$$

If $M \cdot \alpha=0$ then

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \cdot & \cdot \\
a_{n}
\end{array}\right] \cdot \alpha=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M \cdot \alpha=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] 0=0
$$

Let $\alpha=\left[\begin{array}{lllll}\alpha_{1} & \alpha_{2} & . & \alpha_{n}\end{array}\right]^{T}$. Then,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdot & \cdot & a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\cdot \\
\cdot \\
\alpha_{n}
\end{array}\right]=0 \Longrightarrow \sum_{i=1}^{n} \alpha_{i} a_{i}=0
$$

Since A is a linearly independent set we get,

$$
\alpha_{i}=0 \forall\{1,2, \ldots, n\} \Longrightarrow \alpha=0
$$

Corollary 1.1.4. Let V be a finite dimensional vector space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two bases of V. Let $M \in \mathbb{C}^{n \times n}$ be the basis transformation matrix from A to B i.e,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M
$$

$\forall x \in V$,

$$
{ }^{B} x=M \cdot{ }^{A} x
$$

Proof. $\forall x \in V$,

$$
x=\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdot & \cdot & a_{n}
\end{array}\right] \cdot{ }^{A} x=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdot & \cdot \\
b_{n}
\end{array}\right] \cdot{ }^{B} x
$$

Since M is the basis transformation from A to B we get

$$
\left.\begin{array}{l}
{\left[\begin{array}{lllll}
b_{1} & b_{2} & \cdot & \cdot & b_{n}
\end{array}\right] M \cdot{ }^{A} x=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdot & \cdot
\end{array} b_{n}\right.}
\end{array}\right]^{B} x x+\left[\begin{array}{llll}
b_{1} & b_{2} & \cdot & b_{n}
\end{array}\right]\left({ }^{B} x-M \cdot{ }^{A} x\right)=0 \quad \$
$$

Since B is a linearly independnent set, we get

$$
{ }^{B} x=M \cdot{ }^{A} x
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two bases of V. If M is the basis transformation matrix from basis A to basis B then M^{-1} is the basis transformation matrix from B to A. Note that M^{-1} is well defined since M is non-singular. More concretely, $\forall x \in V$,

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdot & \cdot & a_{n}
\end{array}\right]=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdot & \cdot \\
b_{n}
\end{array}\right] M \Longrightarrow{ }^{B} x=M \cdot{ }^{A} x } \\
\Longrightarrow & { }^{A} x=M^{-1} \cdot{ }^{B} x
\end{aligned}>\left[\begin{array}{llll}
b_{1} & b_{2} & \cdot & \cdot \\
b_{n}
\end{array}\right]=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdot & a_{n}
\end{array}\right] M^{-1} .
$$

Theorem 1.1.5. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal bases of V. Let $M \in \mathbb{C}^{n \times n}$ be the basis transformation matrix from A to B i.e.,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & \cdot & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M
$$

Then, M is an orthogonal matrix. That is,

$$
M \cdot M^{*}=M^{*} \cdot M=I \Longrightarrow M^{-1}=M^{*}
$$

Proof. Let $E=\left\{e_{1}=\left[\begin{array}{lllll}1 & 0 & . & . & 0\end{array}\right]^{T}, e_{2}=\left[\begin{array}{llll}0 & 1 & . & .\end{array}\right]^{T}, \ldots, e_{n}=\left[\begin{array}{lllll}0 & 0 & . & . & 1\end{array}\right]^{T}\right\}$.
Note that E is the standard orthonormal basis of \mathbb{C}^{n}. It is easy to notice that \forall $i \in\{1,2, \ldots, n\}$,

$$
{ }^{A} a_{i}=e_{i}
$$

Since M is the basis transformation matrix from A to B we get that $\forall j \in$ $\{1,2, \ldots, n\}$,

$$
{ }^{B} a_{j}=M \cdot{ }^{A} a_{j}=M \cdot e_{j}
$$

Using Lemma 1.1 .2 we get that $\forall i, j \in\{1,2, \ldots, n\}$,

$$
\begin{gathered}
\left(a_{i}, a_{j}\right)=\overline{\left({ }^{B} a_{i}\right)} \odot\left({ }^{B} a_{j}\right) \\
\Longrightarrow\left(a_{i}, a_{j}\right)=\overline{\left(M \cdot e_{i}\right)} \odot\left(M \cdot e_{j}\right)=e_{i}^{*} \cdot M^{*} \cdot M \cdot e_{j}
\end{gathered}
$$

Note that $\forall N \in \mathbb{C}^{n \times n}$,

$$
\begin{aligned}
e_{i}^{*} N e_{j} & =N_{i j} \\
\Longrightarrow\left(a_{i}, a_{j}\right) & =\left[M^{*} \cdot M\right]_{i j}
\end{aligned}
$$

Since A is an orthonormal basis of V we get that

$$
\begin{array}{r}
{\left[M^{*} \cdot M\right]_{i j}=1 \text { if } i=j} \\
=0 \text { if } i \neq j \\
\Longrightarrow M^{*} \cdot M=I
\end{array}
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal bases of V. If M is the basis transformation matrix from A to B then, $M^{-1}=M^{*}$ is the basis transformation matrix from B to A.

Definition 1.1.5. Let V be a finite dimensional inner product space over \mathbb{C}. \forall $u \in V$ with $\|u\|=\sqrt{(u, u)}=1$ (i.e, u is a unit vector) the projection operator is defined along $u, P_{u}: V \rightarrow V$ as follows, $\forall x \in V$,

$$
P_{u}(x)=(u, x) u
$$

Remark :

1. Note that $P_{u}(x) \in \operatorname{Span}\{u\}$

Lemma 1.1.6. Let V be a finite dimensional inner product space over \mathbb{C}. \forall $u \in V$ with $\|u\|=1, \forall x \in V$,

$$
\left(u, x-P_{u}(x)\right)=0
$$

(which means that $x-P_{u}(x)$ is orthogonal to u)
Proof. $\forall u \in V$ with $\|u\|=1, \forall x \in V$, from Definition 1.1.5 we get that,

$$
\begin{aligned}
\left(u, x-P_{u}(x)\right) & =(u, x-(u, x) u) \\
& =(u, x)-(u, x)(u, u)
\end{aligned}
$$

Since $\|u\|=\sqrt{(u, u)}=1$,

$$
\left(u, x-P_{u}(x)\right)=(u, x)-(u, x)=0
$$

Lemma 1.1.7. If $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is an orthonormal set of vectors in V, then A is a linearly independent set.

Proof. If $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is an orthonormal set of vectors in V then, $\forall i, j \in$ $\{1,2, \ldots, n\}$,

$$
\begin{aligned}
\left(a_{i}, a_{j}\right) & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

Let $\alpha_{i} \in \mathbb{C} \forall i \in\{1,2, \ldots, n\}$. Consider,

$$
\sum_{i=1}^{n} \alpha_{i} a_{i}=0
$$

$\forall j \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
& 0=\left(a_{j}, a_{i}\right)=\left(a_{j}, \sum_{i=1}^{n} \alpha_{i} a_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left(a_{j}, a_{i}\right)=\alpha_{j} \\
& \Longrightarrow \alpha_{j}=0 \forall j \in\{1,2, \ldots, n\} \\
& \Longrightarrow A \text { is a linearly independent set }
\end{aligned}
$$

Theorem 1.1.8. (Gram Schmidt Orthogonalization) Every finite dimensional inner product space over \mathbb{C} has an orthonormal basis.

Proof. Let V be a finite dimensional inner product space over \mathbb{C}. Let $(V)=n<$ ∞. Since $\operatorname{dim}(V)=n$ there exist a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that A spans V and A is a linearly independent set. Now we use Gram-Schmidt process to define the following vectors,

$$
\tilde{b}_{1}=a_{1} \quad b_{1}=\frac{\tilde{b}_{1}}{\left\|\tilde{b}_{1}\right\|}
$$

$a_{1} \neq 0$ since A is a linearly independent set $\Longrightarrow\left\|\tilde{b}_{1}\right\| \neq 0 \Longrightarrow b_{1}$ is well defined.

$$
\begin{array}{cc}
\tilde{b}_{2}=a_{2}-P_{b_{1}}\left(a_{2}\right) & b_{2}=\frac{\tilde{b}_{2}}{\left\|\tilde{b}_{2}\right\|} \\
\tilde{b}_{i}=a_{i}-\sum_{j=1}^{i-1} P_{b_{j}}\left(a_{i}\right) & b_{i}=\frac{\tilde{b}_{i}}{\left\|\tilde{b}_{i}\right\|} \\
\tilde{b}_{n}=a_{n}-\sum_{j=1}^{n-1} P_{b_{j}}\left(a_{n}\right) & b_{n}=\frac{\tilde{b}_{n}}{\left\|\tilde{b}_{n}\right\|}
\end{array}
$$

From Remark 1.1 it follows that $\operatorname{Span}\left\{b_{1}, b_{2}, \ldots, b_{i}\right\}=\operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{i}\right\} \forall i \in$ $\{1,2, \ldots, n\}$.

For $b_{2}, b_{3}, \ldots, b_{n}$ to be well-defined it is necessary to prove the following claim,

Claim : $\forall i \in\{2, \ldots, n\}$,

$$
\tilde{b}_{i}=a_{i}-\sum_{j=1}^{i-1} P_{b_{j}}\left(a_{i}\right) \neq 0
$$

If not then,

$$
a_{i}=\sum_{j=1}^{i-1} P_{b_{j}}\left(a_{i}\right)=\sum_{j=1}^{i-1}\left(a_{i}, b_{j}\right) b_{j} \in \operatorname{Span}\left\{b_{1}, b_{2}, \ldots, b_{i-1}\right\}=\operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}
$$

This is a contradiction to the fact that A is a linearly independent set. Hence,

$$
a_{i}-\sum_{j=1}^{i-1} P_{b_{j}}\left(a_{i}\right) \neq 0 \Longrightarrow\left\|\tilde{b}_{i}\right\| \neq 0 \Longrightarrow \quad \text { each } b_{i} \text { is well defined }
$$

From definition we get $\forall i \in\{1,2, \ldots, n\}$,

$$
\left\|b_{i}\right\|=\frac{\left\|\tilde{b}_{i}\right\|}{\left\|\tilde{b}_{i}\right\|}=1
$$

Hence it remains to show that $\left(b_{i}, b_{j}\right)=0 \forall i, j \in\{1,2, \ldots, n\}$ where $i<j$.
Claim : $\forall i \in\{1,2, \ldots, n-1\}$ if $\left\{b_{1}, b_{2}, \ldots, b_{i}\right\}$ is an orthonormal set then,

$$
\begin{aligned}
& \left(b_{k}, b_{i+1}\right)=0 \forall 1 \leq k \leq i \\
& \left(b_{k}, \tilde{b}_{i+1}\right)=\left(b_{k}, a_{i+1}-\sum_{j=1}^{i} P_{b_{j}}\left(a_{i+1}\right)\right)=\left(b_{k}, a_{i+1}\right)-\left(b_{k}, \sum_{j=1}^{i} P_{b_{j}}\left(a_{i+1}\right)\right) \\
& =\left(b_{k}, a_{i+1}\right)-\sum_{j=1}^{i}\left(b_{k}, P_{b_{j}}\left(a_{i+1}\right)\right)=\left(b_{k}, a_{i+1}\right)-\sum_{j=1}^{i}\left(b_{k},\left(b_{j}, a_{i+1}\right) b_{j}\right) \\
& =\left(b_{k}, a_{i+1}\right)-\sum_{j=1}^{i}\left(b_{j}, a_{i+1}\right)\left(b_{k}, b_{j}\right)
\end{aligned}
$$

Since $\left\{b_{1}, b_{2}, \ldots, b_{i}\right\}$ is an orthonormal set, then

$$
\left(b_{k}, \tilde{b}_{i+1}\right)=\left(b_{k}, a_{i+1}\right)-\left(b_{k}, a_{i+1}\right)=0 \Longrightarrow\left(b_{k}, b_{i+1}\right)=\frac{\left(b_{k}, \tilde{b}_{i+1}\right)}{\left\|\tilde{b}_{i+1}\right\|}=0
$$

Using Lemma 1.1.7, B is a linearly independent set. Since $\operatorname{dim}(V)=n=|B|$ and B is a linearly independent set, B forms a basis of V. Hence, we have shown the existence of an orthonormal basis for V.

Lemma 1.1.9. Any finite dimensional inner product space over \mathbb{C} with dimension n is isomorphic to the vector space \mathbb{C}^{n} over \mathbb{C}.

Proof. Let V be any finite dimensional inner product space over \mathbb{C}. Let $\operatorname{dim}(V)=$ $n<\infty$. To establish an isomorphism between V and \mathbb{C}^{n}, it is enough to provide a linear transformation that maps the basis vectors of V to basis vectors of \mathbb{C}^{n} bijectively. Consider the standard orthonormal basis $E=\left\{\begin{array}{llll}e_{1}=\left[\begin{array}{llll}1 & 0 & . & \end{array}\right]^{T} \text {, }, \text {, } 10\end{array}\right.$ $\left.e_{2}=\left[\begin{array}{llll}0 & 1 & . & .\end{array}\right]^{T}, \ldots, e_{n}=\left[\begin{array}{lllll}0 & 0 & . & . & 1\end{array}\right]^{T}\right\}$ of \mathbb{C}^{n} over \mathbb{C}. Since $\operatorname{dim}(V)=n$, there exists a basis $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of V. Consider the linear transformation $T: V \rightarrow \mathbb{C}^{n}$ defined as follows,

$$
T\left(a_{i}\right)=e_{i}
$$

Note that if a linear transformation is defined over each basis vector of V then
the linear transformation is well defined $\forall x \in V$. It remains to show that T is a bijection in order to establish the isomorphism.
Claim : If $T(x)=0$ then $x=0$
From linear algebra it is already known that the above claim implies that T is injective. Since $\operatorname{dim}(V)=\operatorname{dim}\left(\mathbb{C}^{n}\right)=n$ we get that if T is injective then T is surjective. Let's prove the above claim. $\forall x \in V$ since A is a basis of V there exist unique $\alpha_{i} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \alpha_{i} a_{i}
$$

Applying the linear transformation T we get,

$$
T(x)=0 \Longrightarrow T\left(\sum_{i=1}^{n} \alpha_{i} a_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(a_{i}\right)=\sum_{i=1}^{n} \alpha_{i} e_{i}=0
$$

Since E is a linearly independent set we get,

$$
\alpha_{i}=0 \forall i \in\{1,2, \ldots, n\} \Longrightarrow x=0
$$

As a concluding remark, we can see that if we limit our framework to orthonormal basis, any finite dimensional inner product space over \mathbb{C} with dimension n can be identified with \mathbb{C}^{n} over \mathbb{C} with standard dot product as the inner product.

Chapter 2

Tensor products

2.1 1-fold tensor product spaces - dual spaces

2.1.1 Linear functions

Definition 2.1.1. Let V be a vector space over field \mathbb{C} with inner product () : $V \times V \rightarrow \mathbb{C}$. A function $u: V \rightarrow \mathbb{C}$ is called linear if $\forall x, y \in V \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
u(x+y)=u(x)+u(y) \\
u(\alpha \cdot x)=\alpha \cdot u(x)
\end{gathered}
$$

Let set $S=\{u: V \rightarrow \mathbb{C} \mid u$ is linear $\}$. Define addition and scalar multiplication on the set S as follows, $\forall u, v \in S, \forall x \in V, \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[u+v](x)=u(x)+v(x)} \\
{[\alpha \cdot u](x)=\alpha \cdot u(x)}
\end{gathered}
$$

Lemma 2.1.1. S is closed under addition and scalar multiplication
Proof. Claim 1 : $\forall u, v \in S,[u+v] \in S$

1. $\forall x, y \in V$,

$$
\begin{aligned}
{[u+v](x+y) } & =u(x+y)+v(x+y) \\
& =u(x)+u(y)+v(x)+v(y)=[u+v](x)+[u+v](y)
\end{aligned}
$$

2. $\forall x \in V, \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
& {[u+v](\alpha x) }=u(\alpha x)+v(\alpha x) \\
&=\alpha u(x)+\alpha v(x)=\alpha[u+v](x) \\
& \Longrightarrow[u+v] \text { is linear } \Longrightarrow[u+v] \in S \Longrightarrow S \text { is closed under addition }
\end{aligned}
$$

Claim 2: $\forall u \in V, \alpha \in \mathbb{C},[\alpha u] \in S$,

1. $\forall x, y \in V$,

$$
\begin{aligned}
{[\alpha u](x+y) } & =\alpha u(x+y) \\
& =\alpha u(x)+\alpha u(y)=[\alpha u](x)+[\alpha u](y)
\end{aligned}
$$

2. $\forall x \in V, \beta \in \mathbb{C}$,

$$
\begin{aligned}
{[\alpha u](\beta x) } & =\alpha u(\beta x) \\
& =\beta \alpha u(x)=\beta[\alpha u](x)
\end{aligned}
$$

$\Longrightarrow[\alpha u]$ is linear $\Longrightarrow[\alpha u] \in S \Longrightarrow S$ is closed under scalar multiplication

A linear function $u \in S$ is called a 1 -tensor or a linear map on V. It is easy to verify that S is a vector space over field \mathbb{C} (We already proved that S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to reader). The vectorspace of all 1-tensors is defined to be the 1 -fold tensor product space of V denoted by $\mathcal{L}(V \rightarrow \mathbb{C})$ or V^{*}. In addition, 1 -fold tensor product space is also called dual space of V.

2.1.2 1-tensors using inner product

Definition 2.1.2. Let V be a finite dimensional inner product space over field \mathbb{C} with $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of $V . \forall$ $i \in\{1,2, \ldots, n\}$ Define $a_{i}^{*}: V \rightarrow \mathbb{C}$ as follows $\forall x \in V$,

$$
a_{i}^{*}(x)=\left(a_{i}, x\right)
$$

Remark :

1. a_{i}^{*} is linear $\forall i$ and it follows from the definition of inner product 1.1.1

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} with standard dot product as inner product. Let $A=$ $\left\{a_{1}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Let $E=\left\{e_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, e_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$ denote the standard orthonormal basis of \mathbb{C}^{2}. Verify that A forms an orthonormal basis of V. From definition 3.1.2 $a_{i}^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined as follows $\forall x \in V$,

$$
a_{i}^{*}(x)=\left(a_{i}, x\right)=\overline{{ }^{A} a_{i}} \odot{ }^{A} x \text { where } 1 \leq i \leq 2
$$

Note that ${ }^{A} a_{i}=e_{i}$

$$
\Longrightarrow a_{i}^{*}(x)=\bar{e}_{i} \odot^{A} x={ }^{A} x[i]
$$

1. $\forall x, y \in V$,

$$
\begin{aligned}
a_{i}^{*}(x+y) & ={ }^{A}(x+y)[i] \\
& ={ }^{A} x[i]+{ }^{A} y[i]=a_{i}^{*}(x)+a_{i}^{*}(y)
\end{aligned}
$$

2. $\forall x \in V \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
a_{i}^{*}(\alpha x) & ={ }^{A}(\alpha x)[i] \\
& =\alpha \cdot{ }^{A} x[i]=\alpha \cdot a_{i}^{*}(x) \\
& \Longrightarrow a_{i}^{*} \text { is linear }
\end{aligned}
$$

The linearity of coordinates of vectors $\left({ }^{A}(x+y)={ }^{A} x+{ }^{A} y\right.$ and ${ }^{A}(\alpha x)=\alpha \cdot{ }^{A} x$ can be easily verified by expressing vectors x and y in terms of basis A.

2.1.3 Basis of 1 -fold tensor product spaces

Let V be a finite dimensional inner product space over field \mathbb{C} with $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$. From remark 2.1.2 we get that $\forall i \in\{1,2, \ldots, n\} a_{i}^{*}$ is linear.

2. Tensor products

Lemma 2.1.2. $\forall x \in V$,

$$
x=\sum_{i=1}^{n} a_{i}^{*}(x) a_{i}
$$

Proof. Follows directly from lemma 1.1.1 and the definition of a_{i}^{*}. Observe that $a_{i}^{*}(x)$ gives the i-th coordinate of vector x with respect to basis A.

Theorem 2.1.3. A^{*} is a basis for vector space $\mathcal{L}(V \rightarrow \mathbb{C})$.
Proof. Span : From the above lemma we have that $\forall x \in V$,

$$
x=\sum_{i=1}^{n} a_{i}^{*}(x) a_{i}
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$ since u is linear we get,

$$
\begin{gathered}
u(x)=u\left(\sum_{i=1}^{n} a_{i}^{*}(x) a_{i}\right)=\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}(x) \\
\Longrightarrow A^{*} \text { spans } \mathcal{L}(V \rightarrow \mathbb{C})
\end{gathered}
$$

Linear Independence : Let $\alpha_{i} \in \mathbb{C} \forall 1 \leq i \leq n$. Consider,

$$
\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}=0
$$

$\forall j \in\{1,2, \ldots, n\}$ since A is an orthonormal basis we get that,

$$
\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}\left(a_{j}\right)=\sum_{i=1}^{n} \alpha_{i}\left(a_{i}, a_{j}\right)=\alpha_{j}=0
$$

$\Longrightarrow A^{*}$ is a linearly independent set and a basis of $\mathcal{L}(V \rightarrow \mathbb{C})$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$. A^{*} is defined to be the dual basis of V.

Corollary 2.1.4.

$$
\operatorname{dim}(\mathcal{L}(V \rightarrow \mathbb{C}))=\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)
$$

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} with standard dot product as inner product. Let $A=$ $\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ where each $a_{i}^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined as follows $\forall x \in V$,

$$
a_{i}^{*}(x)=\left(a_{i}, x\right)=\overline{{ }^{A} a_{i}} \odot{ }^{A} x={ }^{A} x[i] \text { where } 1 \leq i \leq 2
$$

From the above theorem we get that A^{*} is a basis of $\mathcal{L}\left(\mathbb{C}^{2} \rightarrow \mathbb{C}\right)$. Consider the following linear function,

$$
u\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=x+y \quad \text { where }\left[\begin{array}{ll}
x & y
\end{array}\right]^{T} \in \mathbb{C}^{2}
$$

It is straight forward to verify that u is linear. Since A is a basis of $V \forall\left[\begin{array}{ll}x & y\end{array}\right]^{T} \in$ \mathbb{C}^{2} there exist unique $\alpha, \beta \in \mathbb{C}$ such that,

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}=\alpha a_{1}+\beta a_{2} \Longrightarrow a_{1}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=\alpha \text { and } a_{2}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=\beta
$$

Since u is linear we get that,

$$
u\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=a_{1}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right) u\left(a_{1}\right)+a_{2}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right) u\left(a_{2}\right)
$$

From the above expression it is quite clear that computing $u\left(a_{1}\right)$ and $u\left(a_{2}\right)$ is sufficient to determine the action of u on any $\left[\begin{array}{ll}x & y\end{array}\right]^{T}$.

$$
\begin{aligned}
u\left(a_{1}\right) & =u\left(\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]^{T}\right)=\frac{1+i}{\sqrt{2}} \quad u\left(a_{2}\right)=u\left(\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]^{T}\right)=\frac{1-i}{\sqrt{2}} \\
& \Longrightarrow u\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=\frac{1+i}{\sqrt{2}} a_{1}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)+\frac{1-i}{\sqrt{2}} a_{2}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)
\end{aligned}
$$

$$
\Longrightarrow u\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)=u\left(a_{1}\right) a_{1}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)+u\left(a_{2}\right) a_{2}^{*}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right)
$$

With this illustration, observe how $\left\{a_{1}^{*}, a_{2}^{*}\right\}$ works as a basis of $\mathcal{L}\left(\mathbb{C}^{2} \rightarrow \mathbb{C}\right)$ and also note that the values $u\left(a_{1}\right), u\left(a_{2}\right)$ is sufficient to compute $u\left(\left[\begin{array}{ll}x & y\end{array}\right]^{T}\right)$ for any $\left[\begin{array}{ll}x & y\end{array}\right]^{T} \in \mathbb{C}^{2}$

Remark :

1. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$ from theorem 2.1.3 we get that,

$$
u=\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}
$$

From definition 1.1.2 we get coordinates of the vector $u \in \mathcal{L}(V \rightarrow \mathbb{C})$ with respect to basis A^{*} as follows,

$$
A^{A^{*}} u=\left[\begin{array}{llll}
u\left(a_{1}\right) & u\left(a_{2}\right) & . & \cdot u\left(a_{n}\right)
\end{array}\right]^{T}
$$

2.1.4 Basis Transformation

Theorem 2.1.5. Let V be a finite dimensional inner product space over field \mathbb{C} with $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$. Theorem 2.1.3 implies that A^{*} and B^{*} form bases of $\mathcal{L}(V \rightarrow \mathbb{C})$. Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to B i.e,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdot & \cdot & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & \cdot & b_{n}
\end{array}\right] M
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
{ }^{B^{*}} u=\bar{M} \cdot{ }^{A^{*}} u
$$

Proof. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$ since A^{*} and B^{*} form bases of $\mathcal{L}(V \rightarrow \mathbb{C})$ we get,

$$
u=\sum_{j=1}^{n} u\left(a_{j}\right) a_{j}^{*}=\sum_{i=1}^{n} u\left(b_{i}\right) b_{i}^{*}
$$

$$
\begin{aligned}
& \Longrightarrow{ }^{A^{*}} u=\left[\begin{array}{ll}
u\left(a_{1}\right) & u\left(a_{2}\right)
\end{array} \quad . \quad . u\left(a_{n}\right)\right]^{T} \\
& { }^{B^{*}} u=\left[\begin{array}{llll}
u\left(b_{1}\right) & u\left(b_{2}\right) & . & . \\
\left(b_{n}\right)
\end{array}\right]^{T}
\end{aligned}
$$

Since M is the transformation matrix from basis A to B we get that M^{*} is the transformation matrix from B to A i.e,

$$
\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right]=\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right] M^{*}
$$

$\forall i \in\{1,2, \ldots, n\}$,

$$
b_{i}=\sum_{j=1}^{n} M_{j i}^{*} a_{j}=\sum_{j=1}^{n} \bar{M}_{i j} \cdot a_{j}
$$

Since u is linear we get,

$$
\begin{gathered}
u\left(b_{i}\right)=u\left(\sum_{j=1}^{n} \bar{M}_{i j} \cdot a_{j}\right)=\sum_{j=1}^{n} \bar{M}_{i j} \cdot u\left(a_{j}\right) \\
\Longrightarrow u\left(b_{i}\right)=\left[\begin{array}{lllll}
\bar{M}_{i 1} & \bar{M}_{i 2} & \cdot & \cdot & \bar{M}_{i n}
\end{array}\right]\left[\begin{array}{c}
u\left(a_{1}\right) \\
u\left(a_{2}\right) \\
\cdot \\
\cdot \\
u\left(a_{n}\right)
\end{array}\right] \\
\Longrightarrow\left[\begin{array}{c}
u\left(b_{1}\right) \\
u\left(b_{2}\right) \\
\cdot \\
\cdot \\
u\left(b_{n}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
\bar{M}_{11} & \bar{M}_{12} & \cdot & \cdot & \bar{M}_{1 n} \\
\bar{M}_{21} & \bar{M}_{22} & \cdot & \cdot & \bar{M}_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\bar{M}_{n 1} & \bar{M}_{n 2} & \cdot & \cdot & \bar{M}_{n n}
\end{array}\right]\left[\begin{array}{c}
u\left(a_{1}\right) \\
u\left(a_{2}\right) \\
\cdot \\
\cdot \\
u\left(a_{n}\right)
\end{array}\right] \\
\Longrightarrow{ }^{B^{*}} u=\bar{M}^{A^{*}} u
\end{gathered}
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal basis of V. Then, $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$ form bases of $\mathcal{L}(V \rightarrow \mathbb{C})$. Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to B. Then, \bar{M} is the basis transformation matrix from basis A^{*} to basis B^{*} and $(\bar{M})^{-1}=M^{T}$ is the basis transformation matrix from B to A. More concretely $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a_{1}^{*} & a_{2}^{*} & . & . & a_{n}^{*}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1}^{*} & b_{2}^{*} & . & . & b_{n}^{*}
\end{array}\right] \bar{M} \Longrightarrow{ }^{B^{*}} u=\bar{M} \cdot{ }^{A *} u} \\
& \Longrightarrow \begin{array}{|c}
A^{*} u=M^{T} \cdot{ }^{B} u
\end{array}\left[\begin{array}{llll}
b_{1}^{*} & b_{2}^{*} & \cdot & . \\
b_{n}^{*}
\end{array}\right]=\left[\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & . & \\
a_{n}^{*}
\end{array}\right] M^{T}
\end{aligned}
$$

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} with standard dot product as inner product. Let $A=$ $\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ where each $a_{i}^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined as follows $\forall x \in V$,

$$
a_{i}^{*}(x)=\left(a_{i}, x\right)={ }^{A} a_{i} \odot^{A} x={ }^{A} x[i] \text { where } 1 \leq i \leq 2
$$

Let $B=\left\{b_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$. Let $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}\right\}$ where each $b_{i}^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined as follows $\forall x \in V$,

$$
b_{i}^{*}(x)=\left(b_{i}, x\right)={ }^{B} b_{i} \odot{ }^{B} x={ }^{B} x[i] \text { where } 1 \leq i \leq 2
$$

Verify that both A and B are orthonormal bases of \mathbb{C}^{2}. From theorem 2.1.3 we get that A^{*} and B^{*} form bases of $\mathcal{L}(V \rightarrow \mathbb{C})$.
$\underline{\text { Computing the basis transformation matrix from } A^{*} \text { to } B^{*}}$

$$
\begin{aligned}
& a_{1}=\frac{1}{\sqrt{2}} b_{1}-\frac{i}{\sqrt{2}} b_{2} \quad a_{2} \\
&=\frac{1}{\sqrt{2}} b_{1}+\frac{i}{\sqrt{2}} b_{2} \\
& {\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right] }=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right] \Longrightarrow M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

We get that M is the transformation matrix from basis A to B of \mathbb{C}^{2} which implies that M^{*} is the transformation matrix from basis B to A i.e,

$$
\begin{array}{r}
{\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]} \\
\Longrightarrow b_{1}=\frac{1}{\sqrt{2}} a_{1}+\frac{1}{\sqrt{2}} a_{2} \quad b_{2}=\frac{i}{\sqrt{2}} a_{1}-\frac{i}{\sqrt{2}} a_{2}
\end{array}
$$

$\forall u \in \mathcal{L}\left(\mathbb{C}^{2} \rightarrow \mathbb{C}\right)$ since A^{*} and B^{*} form bases of $\mathcal{L}\left(\mathbb{C}^{2} \rightarrow \mathbb{C}\right)$ we get,

$$
u=u\left(a_{1}\right) a_{1}^{*}+u\left(a_{2}\right) a_{2}^{*}=u\left(b_{1}\right) b_{1}^{*}+u\left(b_{2}\right) b_{2}^{*}
$$

Since u is linear we get that,

$$
\begin{aligned}
u\left(b_{1}\right) & =\frac{1}{\sqrt{2}} u\left(a_{1}\right)+\frac{1}{\sqrt{2}} u\left(a_{2}\right) \quad u\left(b_{2}\right)=\frac{i}{\sqrt{2}} u\left(a_{1}\right)-\frac{i}{\sqrt{2}} u\left(a_{2}\right) \\
& \Longrightarrow\left[\begin{array}{l}
u\left(b_{1}\right) \\
u\left(b_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
u\left(a_{1}\right) \\
u\left(a_{2}\right)
\end{array}\right] \Longrightarrow{ }^{B^{*}} u=\bar{M} \cdot{ }^{A^{*}} u
\end{aligned}
$$

2.1.5 Invariance of computation of 1 -tensors under any orthonormal basis transformations

Theorem 2.1.6. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$. Theorem 2.1.3 implies that A^{*} forms a basis of $\mathcal{L}(V \rightarrow \mathbb{C})$. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall x \in V$,

$$
u(x)=\sum_{r=1}^{n}{ }^{A^{*}} u[r] \cdot{ }^{A} x[r]=\overline{A^{*}} u \odot{ }^{A} x
$$

Proof. $\forall x \in V$ since A is a basis of V there exist unique $\alpha_{r} \in \mathbb{C}$ such that,

$$
x=\sum_{r=1}^{n} \alpha_{r} a_{r}
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$ since u is linear we get,

$$
u(x)=u\left(\sum_{r=1}^{n} \alpha_{r} a_{r}\right)=\sum_{r=1}^{n} \alpha_{r} u\left(a_{r}\right)
$$

Since A^{*} is a basis of $\mathcal{L}(V \rightarrow \mathbb{C})$ and A is a basis of V we get,

$$
\begin{array}{cl}
u\left(a_{r}\right)={ }^{A^{*}} u[r] & \alpha_{r}={ }^{A} x[r] \\
\Longrightarrow u(x)=\sum_{r=1}^{n}{ }^{A^{*}} u[r] \cdot{ }^{A} x[r]=\overline{A^{*}} u \odot{ }^{A} x
\end{array}
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any two orthonormal bases of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$. Note that both A^{*} and B^{*} form bases of $\mathcal{L}(V \rightarrow \mathbb{C}) . \forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall x \in V$,

$$
u(x)=\overline{A^{*}} u \odot{ }^{A} x=\overline{B^{*}} u \odot{ }^{B} x
$$

2. It is easy to observe that $\forall x \in V u(x)$ can be determined by the euclidean dot product of ${ }^{A^{*}} u$ and ${ }^{A} x$. Hence if we fix computations with respect to an orthonormal basis A we can identify u with ${ }^{A^{*}} u$
3. Let $\operatorname{dim}(V)=n . \forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
\left({ }^{A^{*}} u\right)^{T}=\left[\begin{array}{llll}
u\left(a_{1}\right) & u\left(a_{2}\right) & . & .
\end{array} u\left(a_{n}\right)\right]^{T}
$$

is a $1 \times n$ row vector in \mathbb{C}^{n}. Hence it is easy to show that 1 -fold tensor product space i.e, $\mathcal{L}(V \rightarrow \mathbb{C})$ is isomorphic to $\mathbb{C}^{1 \times n} \cong \mathbb{C}^{n}$. (It is straightforward to verify and left to reader. For proof technique refer lemma 1.1.9
4.

$$
\begin{gathered}
u(x)=\overline{ }^{\overline{B^{*}} u} \odot{ }^{B} x=\left(M \cdot \overline{A^{*}} u\right) \odot\left(M \cdot{ }^{A} x\right)=\overline{A^{*}} u \odot{ }^{A} x \\
\Longrightarrow u(x)=\overline{B^{*}} u \odot{ }^{B} x=\overline{A^{*}} u \odot{ }^{A} x
\end{gathered}
$$

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} with standard dot product as inner product. Let $A=$ $\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ where each $a_{i}^{*}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as follows $\forall x \in V$,

$$
a_{i}^{*}(x)=\left(a_{i}, x\right)={ }^{A} a_{i} \odot^{A} x={ }^{A} x[i] \text { where } 1 \leq i \leq 2
$$

Let $B=\left\{b_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$. Let $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}\right\}$ where each $b_{i}^{*}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is defined as follows $\forall x \in V$,

$$
b_{i}^{*}(x)=\left(b_{i}, x\right)={ }^{B} b_{i} \odot{ }^{B} x={ }^{B} x[i] \text { where } 1 \leq i \leq 2
$$

Verify that both A and B form orthonormal bases of \mathbb{C}^{2}. From Theorem 2.1.3 we get A^{*} and B^{*} form bases of $\mathcal{L}(V \rightarrow \mathbb{C})$. In the previous illustration we have already shown that the basis transformation matrix M from A to B i.e,

$$
M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]
$$

We have also seen that $\forall x \in \mathbb{C}^{2} \forall u \in \mathcal{L}\left(\mathbb{C}^{2} \rightarrow \mathbb{C}\right)$,

$$
{ }^{B} x=M \cdot{ }^{A} x \quad B^{B^{*}} u=\bar{M} \cdot{ }^{A^{*}} u
$$

Since B is a basis of \mathbb{C}^{2} we get,

$$
x={ }^{B} x[1] b_{1}+{ }^{B} x[2] b_{2}
$$

Since u is linear we get that,

$$
\begin{gathered}
u(x)=u\left({ }^{B} x[1] b_{1}+{ }^{B} x[2] b_{2}\right)={ }^{B} x[1] u\left(b_{1}\right)+{ }^{B} x[2] u\left(b_{2}\right)=\overline{B^{*}} u \odot{ }^{B} x \\
\Longrightarrow u(x)=\left(M \cdot \overline{A^{*}} u\right) \odot\left(M \cdot{ }^{A} x\right)=\overline{A^{*}} u \odot{ }^{A} x \\
\Longrightarrow u(x)=\overline{{ }^{B}} u \odot{ }^{B} x=\overline{{ }^{A}} u \\
\Longrightarrow
\end{gathered}{ }^{A} x .
$$

2.1.6 Inner products on 1 -fold tensor product spaces

In this section we define a function ()$: V^{*} \times V^{*} \rightarrow \mathbb{C}$ and prove that this function is an inner product which shows the existence of inner product on dual space V^{*} i.e, V^{*} is an inner product space.

Definition 2.1.3. Let V be a finite dimensional inner product space where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V and $A^{*}=$ $\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the corresponding dual basis. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C})$ we define the following function () : $V^{*} \times V^{*} \rightarrow \mathbb{C}$ as follows,

$$
(u, v)={ }^{A^{*}} u \odot^{A^{*}} v
$$

Lemma 2.1.7. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
(u, v)={ }^{A^{*}} u \odot^{A^{*}} v \text { is an inner product. }
$$

Proof. Linearity : $\forall u, v, w \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
(u, v+w) & ={ }^{A^{*}} u \odot{ }^{A^{*}}(v+w)={ }^{A^{*}} u \odot\left({ }^{A^{*}} v+{ }^{A^{*}} w\right)={ }^{A^{*}} u \odot{ }^{A^{*}} v+{ }^{A^{*}} u \odot{ }^{A^{*}} w \\
& =(u, v)+(u, w) \\
(u, \alpha v) & ={ }^{A^{*}} u \odot{ }^{A^{*}}(\alpha v)={ }^{A^{*}} u \odot\left(\alpha \cdot{ }^{A^{*}} v\right)=\alpha \cdot{ }^{A^{*}} u \odot{ }^{A^{*}} v=\alpha(u, v)
\end{aligned}
$$

Conjugate Symmetry : $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
\begin{aligned}
&(u, v)={ }^{A^{*}} u \odot \odot^{A^{*}} v=\sum_{r=1}^{n} \overline{A^{*}} u[r] \\
&{ }^{A^{*}} v[r]=\overline{\sum_{r=1}^{n} \overline{A^{*}} v[r]} \cdot{ }^{A^{*}} u[r] \\
&=\overline{A^{*}} v \odot^{A^{*}} u \\
&=\overline{(v, u)}
\end{aligned}
$$

Positive Definiteness : $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
(u, u)=0 \Longleftrightarrow A^{A^{*}} u \odot^{A^{*}} u=\left.0 \Longleftrightarrow \sum_{r=1}^{n}| |^{A^{*}} u[r]\right|^{2}=0 \Longleftrightarrow A^{A^{*}} u=0 \Longleftrightarrow u=0
$$

Lemma 2.1.8. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C})$,

$$
(u, v)={ }^{A^{*}} u \odot{ }^{A^{*}} v \text { is well-defined. }
$$

Proof. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any another orthonormal basis of V. Let $B^{*}=$ $\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$ be the corresponding dual basis. To claim (u, v) is well-defined it is enough to show that

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}, \sum_{j=1}^{n} v\left(a_{j}\right) a_{j}^{*}\right)=\left(\sum_{p=1}^{n} u\left(b_{p}\right) b_{p}^{*}, \sum_{q=1}^{n} v\left(b_{q}\right) b_{q}^{*}\right) \\
& \left(\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}, \sum_{j=1}^{n} v\left(a_{j}\right) a_{j}^{*}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \overline{u\left(a_{i}\right)} u\left(a_{j}\right)\left(a_{i}^{*}, a_{j}^{*}\right)
\end{aligned}
$$

Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to B. Theorem 2.1.5 implies that

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
a_{1}^{*} & a_{2}^{*} & . & . & a_{n}^{*}
\end{array}\right]=\left[\begin{array}{llll}
b_{1}^{*} & b_{2}^{*} & . & . \\
n
\end{array}\right] \bar{M} } \\
& \Longrightarrow a_{i}^{*}=\sum_{p=1}^{n} \bar{M}_{p i} b_{p}^{*} \quad a_{j}^{*}=\sum_{q=1}^{n} \bar{M}_{q j} b_{q}^{*} \\
&\left(\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}, \sum_{j=1}^{n} v\left(a_{j}\right) a_{j}^{*}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{p=1}^{n} \sum_{q=1}^{n} M_{p i} \bar{M}_{q j} \overline{u\left(a_{i}\right)} u\left(a_{j}\right)\left(a_{i}^{*}, a_{j}^{*}\right) \\
&=\sum_{p=1}^{n} \sum_{q=1}^{n} \overline{\left(\sum_{i=1}^{n} \bar{M}_{p i} u\left(a_{i}\right)\right)}\left(\sum_{j=1}^{n} \bar{M}_{q j} u\left(a_{j}\right)\right)\left(b_{p}^{*}, b_{q}^{*}\right)
\end{aligned}
$$

Theorem 2.1.5 implies that,

$$
\begin{aligned}
{ }^{B^{*}} u & =\bar{M} \cdot{ }^{A^{*}} u \Longrightarrow u\left(b_{p}\right)=\sum_{i=1}^{n} \bar{M}_{p i} u\left(a_{i}\right) \text { and } u\left(b_{q}\right)=\sum_{j=1}^{n} \bar{M}_{q j} u\left(a_{j}\right) \\
& \Longrightarrow\left(\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}, \sum_{j=1}^{n} v\left(a_{j}\right) a_{j}^{*}\right)=\left(\sum_{p=1}^{n} u\left(b_{p}\right) b_{p}^{*}, \sum_{q=1}^{n} v\left(b_{q}\right) b_{q}^{*}\right)
\end{aligned}
$$

We end this section showing how inner products can be used in giving an alternate proof for the linear independence of dual basis. $\forall i, j \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
\left.\left(a_{i}^{*}, a_{j}^{*}\right)\right)^{A^{*}} a_{i}^{*} \odot{ }^{A^{*}} a_{j}^{*}=e_{i} \odot e_{j} & =1 & & \text { if } i=j \\
& =0 & & \text { if } i \neq j
\end{aligned}
$$

From lemma 1.1 .7 it is straight forward to verify linear independence of dual basis.

2.1.7 Linear operators on 1-fold tensor product spaces

Definition 2.1.4. Let $\mathcal{L}\left(V^{*}\right)$ denote the set of all linear operators over the dual space $\mathcal{L}(V \rightarrow \mathbb{C})=V^{*}$. Define addition and scalar multiplication on the set $\mathcal{L}\left(V^{*}\right)$ as follows $\forall T, W \in \mathcal{L}\left(V^{*}\right) \forall x \in V^{*} \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[T+W] x=T(x)+W(x)} \\
{[\alpha T] x=\alpha \cdot T(x)}
\end{gathered}
$$

Remark :

1. It is straight forward to verify that $\mathcal{L}\left(V^{*}\right)$ is a vector space over \mathbb{C} and is left to reader (refer lemma 2.1.1).
2. Note that $\mathcal{L}\left(V^{*}\right)$ is also called tensor product space of operators on the dual space V^{*}.

Next we shall find a basis of $\mathcal{L}\left(V^{*}\right)$.
Definition 2.1.5. Let V be a finite dimensional inner product space over field \mathbb{C} where $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the corresponding dual basis. Define $T^{*}=\left\{T_{i j} \mid 1 \leq\right.$ $i, j \leq n\}$ where $\forall i, j, k \in\{1,2, \ldots, n\} T_{i j} \in \mathcal{L}\left(V^{*}\right)$ is defined as follows,

$$
\begin{aligned}
T_{i j}\left(a_{k}^{*}\right) & =a_{j}^{*} & & \text { if } k=i \\
& =0 & & \text { if } k \neq i
\end{aligned}
$$

Remark :

1. Note that each $T_{i j} \in T^{*}$ is well-defined since A^{*} is a basis of V^{*} and $T_{i j}$ is defined on each basis element of V^{*} (Recall that in order to define a linear operator it is enough to define the operator on a basis of the vector space).
2. Note that by definition each $T_{i j}$ is linear.

Theorem 2.1.9. T^{*} forms a basis of $\mathcal{L}\left(V^{*}\right)$.
Proof. Span : $\forall u \in V^{*}$ since A^{*} is a basis of V^{*} there exist unique $\alpha_{i} \in \mathbb{C}$ such that,

$$
u=\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}
$$

$\forall W \in \mathcal{L}\left(V^{*}\right)$ since W is a linear operator we get,

$$
W(u)=\sum_{i=1}^{n} \alpha_{i} W\left(a_{i}^{*}\right)
$$

Since W is an operator $\forall i \in\{1,2, \ldots, n\}$ there exist $\beta_{i j} \in \mathbb{C}$ such that,

$$
\begin{aligned}
W\left(a_{i}^{*}\right) & =\sum_{j=1}^{n} \beta_{i j} a_{j}^{*} \\
\Longrightarrow W(u) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} \alpha_{i} a_{j}^{*}
\end{aligned}
$$

Note that $\forall i, j \in\{1,2, \ldots, n\}$ since $T_{i j}$ is linear,

$$
\begin{gathered}
T_{i j}(u)=\sum_{k=1}^{n} \alpha_{k} T_{i j}\left(a_{k}^{*}\right)=\alpha_{i} a_{j}^{*} \\
\Longrightarrow W(u)=\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} T_{i j}(u) \Longrightarrow W=\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} T_{i j} \\
\Longrightarrow T^{*} \operatorname{spans} \mathcal{L}\left(V^{*}\right)
\end{gathered}
$$

Linear Independence : $\forall i, j \in\{1,2, \ldots, n\}$. Consider,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} T_{i j}=0
$$

$\forall k \in\{1,2, \ldots, n\}$ applying a_{k}^{*} we get,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} T_{i j}\left(a_{k}^{*}\right)=0 \Longrightarrow \sum_{j=1}^{n} \alpha_{k j} a_{j}^{*}=0
$$

Since A^{*} is a basis of V^{*} we get that,

$$
\alpha_{k j}=0 \quad \forall j \in\{1,2, \ldots, n\}
$$

$\Longrightarrow T^{*}$ is a linearly independent set and forms a basis of $\mathcal{L}\left(V^{*}\right)$

Corollary 2.1.10.

$$
\operatorname{dim}\left(\mathcal{L}\left(V^{*}\right)\right)=\left(\operatorname{dim}\left(V^{*}\right)\right)^{2}
$$

It will be evident in the next sections on how the basis T^{*} is used to construct the basis of $2,3, k$-fold tensor product space of operators.

2.2 2-fold tensor product spaces

2.2.1 Bi-linear functions

Definition 2.2.1. Let V, W be vector spaces over field \mathbb{C} with inner products ()$_{1}: V \times V \rightarrow \mathbb{C}$ and ()$_{2}: W \times W \rightarrow \mathbb{C}$. Note that subscripts ()$_{1}$ and ()$_{2}$ will be dropped if the context is clear. A function $u: V \times W \rightarrow \mathbb{C}$ is called bi-linear if the following holds,

1. $\forall x, y \in V \forall z \in W$,

$$
u(x+y, z)=u(x, z)+u(y, z)
$$

2. $\forall x \in V \forall y, z \in W$,

$$
u(x, y+z)=u(x, y)+u(x, z)
$$

3. $\forall x \in V \forall y \in W \forall \alpha \in \mathbb{C}$,

$$
u(\alpha x, y)=\alpha u(x, y)=u(x, \alpha y)
$$

Let set $S=\{u: V \times W \rightarrow \mathbb{C} \mid u$ is bi-linear $\}$. Define addition and multiplication on the set S as follows, $\forall u, v \in S \forall x \in V \forall y \in W \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[u+v](x, y)=u(x, y)+v(x, y)} \\
{[\alpha u](x, y)=\alpha u(x, y)}
\end{gathered}
$$

Lemma 2.2.1. S is closed under addition and scalar multiplication
Proof. Claim 1: $\forall u, v \in S[u+v] \in S$,

1. $\forall x, y \in V, \forall z \in W$,

$$
\begin{aligned}
{[u+v](x+y, z) } & =u(x+y, z)+v(x+y, z)=u(x, z)+u(y, z)+v(x, z)+v(y, z) \\
& =[u+v](x, z)+[u+v](y, z)
\end{aligned}
$$

2. $\forall x \in V \forall y, z \in W$,

$$
\begin{aligned}
{[u+v](x, y+z) } & =u(x, y+z)+v(x, y+z)=u(x, y)+u(x, z)+v(x, y)+v(x, z) \\
& =[u+v](x, y)+[u+v](x, z)
\end{aligned}
$$

3. $\forall x \in V \forall y \in W \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
{[u+v](\alpha x, y) } & =u(\alpha x, y)+v(\alpha x, y)=\alpha u(x, y)+\alpha v(x, y)=\alpha[u+v](x, y) \\
& =u(x, \alpha y)+v(x, \alpha y)=[u+v](x, \alpha y)
\end{aligned}
$$

$$
[u+v] \text { is bi-linear } \Longrightarrow[u+v] \in S \Longrightarrow S \text { is closed under addition }
$$

Claim 2: $\forall u \in S \alpha \in \mathbb{C}[\alpha u] \in S$,

1. $\forall x, y \in V \forall z \in W$,

$$
[\alpha u](x+y, z)=\alpha u(x+y, z)=\alpha u(x, z)+\alpha u(y, z)=[\alpha u](x, z)+[\alpha u](y, z)
$$

2. $\forall x \in V \forall y, z \in W$,

$$
[\alpha u](x, y+z)=\alpha u(x, y+z)=\alpha u(x, y)+\alpha u(x, z)=[\alpha u](x, y)+[\alpha u](x, z)
$$

3. $\forall x \in V \forall y \in W \forall \beta \in \mathbb{C}$,

$$
[\alpha u](\beta x, y)=\alpha u(\beta x, y)=\alpha \beta u(x, y)=\beta[\alpha u](x, y)=\alpha u(x, \beta y)=[\alpha u](x, \beta y)
$$

$[\alpha u]$ is bi-linear $\Longrightarrow[\alpha u] \in S \Longrightarrow S$ is closed under scalar multiplication

A bi-linear function $u \in S$ is called a 2-tensor or a bi-linear map on $V \times W$. It is easy to verify that S is a vector space over field \mathbb{C} (We already proved that S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to the reader). The vector space of all 2-tensors is defined to be the 2-fold tensor product space of V and W denoted by $\mathcal{L}(V \times W \rightarrow \mathbb{C})$ or $V \otimes W$.

2.2.2 Tensor products on vector spaces V and W

Definition 2.2.2. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m . \forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall v \in$ $\mathcal{L}(W \rightarrow \mathbb{C})$ Define the tensor product of u and v as a function $[u \otimes v]: V \times W \rightarrow \mathbb{C}$ as follows $\forall x \in V \forall y \in W$,

$$
[u \otimes v](x, y)=u(x) \cdot v(y)
$$

Remark :

1. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C})$ notice that $u \otimes v \neq v \otimes u$ in general.

Lemma 2.2.2. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C}. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall v \in \mathcal{L}(W \rightarrow \mathbb{C}),[u \otimes v]$ is bi-linear.

Proof. 1. $\forall x, y \in V \forall z \in W$,

$$
\begin{aligned}
{[u \otimes v](x+y, z) } & =u(x+y) \cdot v(z)=u(x) \cdot v(z)+u(y) \cdot v(z) \\
& =[u \otimes v](x, z)+[u \otimes v](y, z)
\end{aligned}
$$

2. $\forall x \in V \forall y, z \in W$,

$$
\begin{aligned}
{[u \otimes v](x, y+z) } & =u(x) \cdot v(y+z)=u(x) \cdot v(y)+u(x) \cdot v(z) \\
& =[u \otimes v](x, y)+[u \otimes v](x, z)
\end{aligned}
$$

3. $\forall x \in V \forall y \in W \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
& {[u \otimes v](\alpha x, y)=u(\alpha x) \cdot v(y)=u(x) \cdot v(\alpha y)=[u \otimes v](x, \alpha y)} \\
& =\alpha u(x) \cdot v(y)=\alpha[u \otimes v](x, y) \\
& \Longrightarrow[u \otimes v] \text { is bi-linear } \Longrightarrow[u \otimes v] \in \mathcal{L}(V \times W \rightarrow \mathbb{C})
\end{aligned}
$$

Lemma 2.2.3. Let V, W be any two vector spaces over field \mathbb{C}.

1. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall w \in \mathcal{L}(W \rightarrow \mathbb{C})$,

$$
[u+v] \otimes w=u \otimes w+v \otimes w
$$

2. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall v, w \in \mathcal{L}(W \rightarrow \mathbb{C})$,

$$
u \otimes[v+w]=u \otimes v+u \otimes w
$$

3. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) \forall v \in \mathcal{L}(W \rightarrow \mathbb{C}) \forall \alpha \in \mathbb{C}$,

$$
[\alpha u] \otimes v=u \otimes[\alpha v]=\alpha[u \otimes v]
$$

Proof. $\forall x \in V \forall y \in W$,

1. $\forall u, v \in V \forall w \in W$,

$$
\begin{aligned}
{[[u+v] \otimes w](x, y) } & =[u+v](x) \cdot w(y)=u(x) \cdot w(y)+v(x) \cdot w(y) \\
& =[u \otimes w](x, y)+[v \otimes w](x, y)
\end{aligned}
$$

2. $\forall u \in V \forall v, w \in W$,

$$
\begin{aligned}
{[u \otimes[v+w]](x, y) } & =u(x) \cdot[v+w](y)=u(x) \cdot v(y)+u(x) \cdot w(y) \\
& =[u \otimes v](x, y)+[u \otimes w](x, y)
\end{aligned}
$$

3. $\forall u \in V \forall v \in W \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
{[[\alpha u] \otimes v](x, y) } & =[\alpha u](x) \cdot v(y)=\alpha u(x) \cdot v(y)=\alpha[u \otimes v](x, y) \\
& =u(x) \cdot[\alpha v](y)=[u \otimes[\alpha v]](x, y)
\end{aligned}
$$

Remark :

1. $u \otimes v=0 \Longleftrightarrow u=0$ or $v=0$. It is straight forward to verify and left to reader.
2. Note that the tensor products don't have unique representations for instance $\forall u \in \mathcal{L}(V \rightarrow \mathbb{C}) v \in \mathcal{L}(W \rightarrow \mathbb{C}) \forall \alpha \neq 0 \in \mathbb{C}$,

$$
u \otimes v=\frac{u}{\alpha} \otimes(\alpha v)
$$

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} and $W=\mathbb{C}^{3}$ over \mathbb{C} with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$ and $B=\left\{b_{1}=\right.$ $\left.\left[\begin{array}{lll}\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}}\end{array}\right]^{T}, b_{2}=\left[\begin{array}{lll}\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0\end{array}\right]^{T}, b_{3}=\left[\begin{array}{lll}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right]^{T}\right\}$. Verify that A and B form orthonormal basis of \mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right\}$. Recall that A^{*} and B^{*} are dual bases of V^{*} and W^{*} respectively. Theorem 2.1.6 implies that $\forall u \in V^{*} \forall v \in W^{*} \forall x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
u(x)=\overline{A^{*}} u \odot{ }^{A} x \quad v(y)=\overline{B^{*}} v \odot{ }^{B} y
$$

Let $u=\left[\begin{array}{ll}a_{1}^{*} & a_{2}^{*}\end{array}\right]\left[\begin{array}{c}1 \\ 2 i\end{array}\right], v=\left[\begin{array}{lll}b_{1}^{*} & b_{2}^{*} & b_{3}^{*}\end{array}\right]\left[\begin{array}{c}3 \\ 2 i \\ 1\end{array}\right]$.
$\forall x \in \mathbb{C}^{2}, \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
& {[u \otimes v](x, y)=u(x) \cdot v(y)=\left(\overline{A^{*}} u \odot{ }^{A} x\right) \cdot\left(\overline{B^{*}} v \odot{ }^{B} y\right)={ }^{A} x^{T} \cdot A^{A^{*}} u \cdot{ }^{B^{*}} v^{T} \cdot{ }^{B} y} \\
& \Longrightarrow[u \otimes v](x, y)=\left[\begin{array}{ll}
{ }^{A} x[1] & { }^{A} x[2]
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 i
\end{array}\right] \cdot\left[\begin{array}{lll}
3 & 2 i & 1
\end{array}\right] \cdot\left[\begin{array}{l}
{ }^{B} y[1] \\
{ }^{B} y[2] \\
{ }^{B} y[3]
\end{array}\right] \\
& \Longrightarrow[u \otimes v](x, y)=\left[\begin{array}{ll}
{ }^{A} x[1] & { }^{A} x[2]
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & 2 i & 1 \\
6 i & -4 & 2 i
\end{array}\right]\left[\begin{array}{l}
{ }^{B} y[1] \\
{ }^{B} y[2] \\
{ }^{B} y[3]
\end{array}\right]
\end{aligned}
$$

From the linearity of coordinates of vectors x, y it is straight forward to conclude that $[u \otimes v]$ is bi-linear and all the properties in lemma 2.2 .3 hold. Note that computing ${ }^{A^{*}} u \cdot\left({ }^{B^{*}} v\right)^{T}$ is sufficient to determine the action of $[u \otimes v]$ on any $(x, y) \in \mathbb{C}^{2} \times \mathbb{C}^{3}$.

2.2.3 Basis of 2-fold tensor product spaces

Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of V and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be an orthonormal basis of W. Define $A \otimes B=$ $\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Lemma 2.2 .2 implies that $\forall i \in\{1,2, \ldots, n\} \forall$ $j \in\{1,2, \ldots, m\} a_{i}^{*} \otimes b_{j}^{*}$ is bi-linear.

Theorem 2.2.4. $A \otimes B$ is a basis for vector space $\mathcal{L}(V \times W \rightarrow \mathbb{C})$

Proof. Span :

$\forall x \in V$ since A is a basis of V there exist unique $\alpha_{i} \in \mathbb{C}$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} a_{i}
$$

$\forall y \in W$ since B is a basis of W there exist unique $\beta_{j} \in \mathbb{C}$ such that

$$
y=\sum_{j=1}^{m} \beta_{j} b_{j}
$$

$\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$ since u is bi-linear we get that,

$$
u(x, y)=u\left(\sum_{i=1}^{n} \alpha_{i} a_{i}, \sum_{j=1}^{m} \beta_{j} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} u\left(a_{i}, b_{j}\right)
$$

$\forall i \in\{1,2, \ldots, n\} \forall j \in\{1,2, \ldots, m\}$ from definition 1.1.2 we get

$$
\begin{gathered}
{\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y)=\left(a_{i}, x\right)\left(b_{j}, y\right)={ }^{A} x[i] \cdot{ }^{B} y[j]=\alpha_{i} \beta_{j}} \\
\Longrightarrow u(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{m} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y) \Longrightarrow u=\sum_{i=1}^{n} \sum_{j=1}^{m} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right] \\
\Longrightarrow A \otimes B \operatorname{spans} \mathcal{L}(V \times W \rightarrow \mathbb{C})
\end{gathered}
$$

Linear Independence :

Let $\alpha_{i j} \in \mathbb{C} \forall i \in\{1,2, \ldots, n\} \forall j \in\{1,2, \ldots, m\}$. Consider,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[a_{i}^{*} \otimes b_{j}^{*}\right]=0
$$

$\forall p \in\{1,2, \ldots, n\} \forall q \in\{1,2, \ldots, m\}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[a_{i}^{*} \otimes b_{j}^{*}\right]\left(a_{p}, b_{q}\right)=0 \Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left(a_{i}, a_{p}\right)\left(b_{j}, b_{q}\right)=0
$$

Since A and B are orthonormal bases we get that,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left(a_{i}, a_{p}\right)\left(b_{j}, b_{q}\right)=\alpha_{p q}=0
$$

$\Longrightarrow A \otimes B$ is a linearly independent set and a basis of $\mathcal{L}(V \times W \rightarrow \mathbb{C})$

Corollary 2.2.5.

$$
\operatorname{dim}(\mathcal{L}(V \times W \rightarrow \mathbb{C}))=\operatorname{dim}(V \otimes W)=\operatorname{dim}(V) \cdot \operatorname{dim}(W)
$$

Illustration :

Consider $V=\mathbb{C}^{2}$ over \mathbb{C} and $W=\mathbb{C}^{3}$ over \mathbb{C} with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$ and $B=\left\{b_{1}=\right.$ $\left.\left[\begin{array}{ccc}\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}}\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ccc}\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0\end{array}\right]^{T}, b_{3}=\left[\begin{array}{lll}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right]^{T}\right\}$. Verify that A and B form orthonormal basis of \mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right\}$. Recall that A^{*} and B^{*} are dual bases of V^{*} and W^{*} respectively. $\forall i \in\{1,2\} \forall j \in\{1,2,3\} \forall x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
{\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y) } & =\left(a_{i}, x\right)\left(b_{j}, y\right) \\
& =\left(\overline{{ }^{A}} a_{i}\right. \\
& \left.{ }^{A} x\right) \cdot\left(\overline{{ }^{B}} b_{j}\right. \\
& \left.{ }^{B} y\right) \\
& ={ }^{A} x[i] \cdot{ }^{B} y[j]
\end{aligned}
$$

Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq 2,1 \leq j \leq 3\right\}$. Above theorem implies that $A \otimes B$ is a basis of $\mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$. Consider the following bi-linear function,

$$
u\left(\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T},\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{T}\right)=\left(x_{1}+2 i \cdot x_{2}\right) \cdot\left(3 i \cdot y_{1}+y_{3}\right)
$$

where $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{C}^{2}$ and $\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T} \in \mathbb{C}^{3}$.

It is straight forward to verify that u is bi-linear. Since A and B form bases of V and W respectively we get that,
$\forall\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{C}^{2}$ there exist unique $\alpha_{1}, \alpha_{2} \in \mathbb{C}$ such that,

$$
\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T}=\alpha_{1} a_{1}+\alpha_{2} a_{2}
$$

$\forall\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T} \in \mathbb{C}^{3}$ there exist unique $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{C}$ such that,

$$
\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{*}=\beta_{1} b_{1}+\beta_{2} b_{2}+\beta_{3} b_{3}
$$

Since u is bi-linear we get that,

$$
u\left(\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T},\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{T}\right)=u\left(\sum_{i=1}^{2} \alpha_{i} a_{i}, \sum_{j=1}^{3} \beta_{j} b_{j}\right)=\sum_{i=1}^{2} \sum_{j=1}^{3} \alpha_{i} \beta_{j} u\left(a_{i}, b_{j}\right)
$$

It is quite clear that computing $u\left(a_{i}, b_{j}\right)$ is sufficient to determine the action of u on any $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{C}^{2}\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T} \in \mathbb{C}^{3}$.

$$
\Longrightarrow u\left(\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T},\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{T}\right)=\sum_{i=1}^{2} \sum_{j=1}^{3} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y)
$$

With this illustration observe how $A \otimes B$ works as a basis of $\mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$ and also note that the values of $u\left(a_{i}, b_{j}\right)$ is sufficient to compute $u\left(\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T},\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T}\right)$ for any $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{C}^{2}$ and $\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{T} \in \mathbb{C}^{3}$.

2.2.4 Basis Transformation

Definition 2.2.3. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of V and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be an orthonormal basis of W. Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Theorem 2.2.4 implies that $A \otimes B$ forms a basis of $\mathcal{L}(V \times W \rightarrow \mathbb{C})$. Hence $\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$,

$$
u=\sum_{i=1}^{n} \sum_{j=1}^{m} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right]
$$

Define coordinates of the bi-linear function u as follows,

$$
{ }^{A \otimes B} u=\left[\begin{array}{cccccc}
u\left(a_{1}, b_{1}\right) & u\left(a_{1}, b_{2}\right) & . & . & . & u\left(a_{1}, b_{m}\right) \\
u\left(a_{2}, b_{1}\right) & u\left(a_{2}, b_{2}\right) & . & . & . & u\left(a_{2}, b_{m}\right) \\
\cdot & \cdot & . & \cdot & . & \cdot \\
u\left(a_{n}, b_{1}\right) & u\left(a_{n}, b_{2}\right) & . & . & . & u\left(a_{n}, b_{m}\right)
\end{array}\right]
$$

Note :

1. Note that column vector representation is used for 1 -tensors and matrix representation is used for 2 -tensors.

Theorem 2.2.6. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be any two orthonormal basis of V. Let $B=\left\{b_{1}, \ldots, b_{m}\right\}$ and $D=\left\{d_{1}, \ldots, d_{m}\right\}$ be any two orthonormal basis of W. Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq\right.$ $i \leq n, 1 \leq j \leq m\}$ and $C \otimes D=\left\{c_{i}^{*} \otimes d_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Theorem2.2.4 implies that $A \otimes B$ and $C \otimes D$ form bases of $\mathcal{L}(V \times W \rightarrow \mathbb{C})$. Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to C i.e,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1} & c_{2} & . & . & c_{n}
\end{array}\right] M
$$

Let $N \in \mathbb{C}^{m \times m}$ be the transformation matrix from basis B to D i.e,

$$
\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & .
\end{array} b_{m}\right]=\left[\begin{array}{lllll}
d_{1} & d_{2} & . & . & d_{m}
\end{array}\right] N
$$

$\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$,

$$
{ }^{C \otimes D} u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*}
$$

Proof. $\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$ since $A \otimes B, C \otimes D$ form bases of $\mathcal{L}(V \times W \rightarrow \mathbb{C})$ we get that,

$$
\begin{gathered}
u=\sum_{i=1}^{n} \sum_{j=1}^{m} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right]=\sum_{p=1}^{n} \sum_{q=1}^{m} u\left(c_{p}, d_{q}\right)\left[c_{p}^{*} \otimes d_{q}^{*}\right] \\
\Longrightarrow{ }^{A \otimes B} u=\left[\begin{array}{cccc}
u\left(a_{1}, b_{1}\right) & . & . & u\left(a_{1}, b_{m}\right) \\
\cdot & . & . & \cdot \\
u\left(a_{n}, b_{1}\right) & . & . & u\left(a_{n}, b_{m}\right)
\end{array}\right] \quad{ }^{C \otimes D} u=\left[\begin{array}{cccc}
u\left(c_{1}, d_{1}\right) & . & . & u\left(c_{1}, d_{m}\right) \\
\cdot & . & . & \cdot \\
u\left(c_{n}, d_{1}\right) & . & . & u\left(c_{n}, d_{m}\right)
\end{array}\right]
\end{gathered}
$$

Since M is the transformation matrix from basis A to C, we get that M^{*} is the transformation matrix from basis C to A i.e,

$$
\left[\begin{array}{llllll}
c_{1} & c_{2} & . & . & . & c_{n}
\end{array}\right]=\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right] M^{*}
$$

$\forall p \in\{1,2, \ldots, n\}$,

$$
c_{p}=\sum_{i=1}^{n} M_{i p}^{*} a_{i}=\sum_{i=1}^{n} \bar{M}_{p i} a_{i}
$$

Since N is the transformation matrix from basis B to D, we get that N^{*} is the transformation matrix from basis D to B i.e,

$$
\left[\begin{array}{lllll}
d_{1} & d_{2} & . & . & .
\end{array} d_{m}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & .
\end{array} b_{m}\right] N^{*}
$$

$\forall q \in\{1,2, \ldots, m\}$,

$$
d_{q}=\sum_{j=1}^{m} N_{j q}^{*} b_{j}=\sum_{j=1}^{m} \bar{N}_{q j} \cdot b_{j}
$$

Since u is bi-linear we get that,

$$
u\left(c_{p}, d_{q}\right)=u\left(\sum_{i=1}^{n} \bar{M}_{p i} a_{i}, \sum_{j=1}^{m} \bar{N}_{q j} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{M}_{p i} \bar{N}_{q j} u\left(a_{i}, b_{j}\right)
$$

$$
\begin{aligned}
& \Longrightarrow u\left(c_{p}, d_{q}\right)=\left[\begin{array}{llll}
\bar{M}_{p 1} & \cdot & \bar{M}_{p n}
\end{array}\right]\left[\begin{array}{cccc}
u\left(a_{1}, b_{1}\right) & \cdot & \cdot & u\left(a_{1}, b_{m}\right) \\
\cdot & \cdot & \cdot & \cdot \\
u\left(a_{n}, b_{1}\right) & \cdot & \cdot & u\left(a_{n}, b_{m}\right)
\end{array}\right]\left[\begin{array}{c}
\bar{N}_{q 1} \\
\cdot \\
\cdot \\
\bar{N}_{q m}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
u\left(c_{1}, d_{1}\right) & . . & u\left(c_{1}, d_{m}\right) \\
. & . . & . \\
u\left(c_{n}, d_{1}\right) & . . & u\left(c_{n}, d_{m}\right)
\end{array}\right]=\left[\begin{array}{ccc}
\bar{M}_{11} & . . & \bar{M}_{1 n} \\
. & . . & . \\
\bar{M}_{n 1} & . . & \bar{M}_{n n}
\end{array}\right]\left[\begin{array}{ccc}
u\left(a_{1}, b_{1}\right) & . . & u\left(a_{1}, b_{m}\right) \\
. & . . & . \\
u\left(a_{n}, b_{1}\right) & . . & u\left(a_{n}, b_{m}\right)
\end{array}\right]\left[\begin{array}{ccc}
\bar{N}_{11} & . . & \bar{N}_{m 1} \\
. & . . & . \\
\bar{N}_{1 m} & . . & \bar{N}_{m m}
\end{array}\right]} \\
& \Longrightarrow{ }^{C \otimes D} u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*}
\end{aligned}
$$

Illustration :

Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$ and $B=\left\{b_{1}=\left[\begin{array}{lll}\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}}\end{array}\right]^{T}, b_{2}=\right.$ $\left.\left[\begin{array}{lll}\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0\end{array}\right]^{T}, b_{3}=\left[\begin{array}{lll}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right]^{T}\right\}$. Verify that A and B form orthonormal basis of \mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right\}$. Recall that A^{*} and B^{*} are dual bases of V^{*} and W^{*} respectively. $\forall i \in\{1,2\} \forall$ $j \in\{1,2,3\} \forall x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
{\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y) } & =\left(a_{i}, x\right)\left(b_{j}, y\right)=\left(\overline{{ }^{A} a_{i}} \odot{ }^{A} x\right) \cdot\left(\overline{{ }^{B} b_{j}} \odot{ }^{B} y\right) \\
& ={ }^{A} x[i] \cdot{ }^{B} y[j]
\end{aligned}
$$

Let $C=\left\{c_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, c_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$ and $D= \begin{cases}d_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}, d_{2}= \\ & \end{cases}$ $\left.\left[\begin{array}{ccc}0 & 1 & 0\end{array}\right]^{T}, d_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}\right\}$. Verify that C and D form orthonormal basis of
\mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $C^{*}=\left\{c_{1}^{*}, c_{2}^{*}\right\}$ and $D^{*}=\left\{d_{1}^{*}, d_{2}^{*}, d_{3}^{*}\right\}$. Recall that C^{*} and D^{*} are dual bases of V^{*} and W^{*} respectively. $\forall p \in\{1,2\} \forall q \in\{1,2,3\} \forall$ $x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
{\left[c_{p}^{*} \otimes d_{q}^{*}\right](x, y) } & =\left(c_{p}, x\right)\left(d_{q}, y\right)=\left(\overline{{ }^{c} c_{p}} \odot{ }^{C} x\right) \cdot\left(\overline{{ }^{D} d_{q}} \odot{ }^{D} y\right) \\
& ={ }^{C} x[i] \cdot{ }^{D} y[j]
\end{aligned}
$$

Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq 2,1 \leq j \leq 3\right\}$ and $C \otimes D=\left\{c_{p}^{*} \otimes d_{q}^{*} \mid 1 \leq\right.$
$p \leq 2,1 \leq q \leq 3\}$. Above theorem implies that $A \otimes B$ and $C \otimes D$ is a basis of $\mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$.

Computing the basis transformation matrix from basis A to C

$$
\begin{aligned}
& a_{1}=\frac{1}{\sqrt{2}} c_{1}+\frac{i}{\sqrt{2}} c_{2} \quad a_{2} \\
&=\frac{1}{\sqrt{2}} c_{1}-\frac{i}{\sqrt{2}} c_{2} \\
& {\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right] }=\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right] \Longrightarrow M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

We get that M is the transformation matrix from basis A to C of \mathbb{C}^{2} which implies that M^{*} is the transformation matrix from basis C to A i.e,

$$
\begin{gathered}
{\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]} \\
\Longrightarrow c_{1}=\frac{1}{\sqrt{2}} a_{1}+\frac{1}{\sqrt{2}} a_{2} \quad c_{2}=-\frac{i}{\sqrt{2}} a_{1}+\frac{i}{\sqrt{2}} a_{2}
\end{gathered}
$$

Computing the basis transformation matrix from basis B to D

$$
\begin{array}{r}
b_{1}=\frac{i}{\sqrt{3}} d_{1}+\frac{i}{\sqrt{3}} d_{2}+\frac{i}{\sqrt{3}} d_{3} \quad b_{2}=\frac{i}{\sqrt{2}} d_{1}-\frac{i}{\sqrt{2}} d_{2} \quad b_{1}=\frac{1}{\sqrt{6}} d_{1}+\frac{1}{\sqrt{6}} d_{2}-\frac{2}{\sqrt{6}} d_{3} \\
{\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]=\left[\begin{array}{lll}
d_{1} & d_{2} & d_{3}
\end{array}\right]\left[\begin{array}{ccc}
\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right] \Longrightarrow N=\left[\begin{array}{ccc}
\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right]}
\end{array}
$$

We get that N is the transformation matrix from basis B to D of \mathbb{C}^{3} which implies that N^{*} is the transformation matrix from basis D to B i.e,

$$
\begin{gathered}
{\left[\begin{array}{lll}
d_{1} & d_{2} & d_{3}
\end{array}\right]=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{ccc}
-\frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{3}} \\
-\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}
\end{array}\right]} \\
\Longrightarrow d_{1}=-\frac{i}{\sqrt{3}} b_{1}-\frac{i}{\sqrt{2}} b_{2}+\frac{1}{\sqrt{6}} b_{3} \quad d_{2}=-\frac{i}{\sqrt{3}} b_{1}+\frac{i}{\sqrt{2}} b_{2}+\frac{1}{\sqrt{6}} b_{3} \quad d_{3}=-\frac{i}{\sqrt{3}} b_{1}-\frac{2}{\sqrt{6}} b_{3}
\end{gathered}
$$

$\forall u \in \mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$ since u is bi-linear $\forall p \in\{1,2\} \forall q \in\{1,2,3\}$,

$$
\begin{aligned}
& u\left(c_{p}, d_{q}\right)=u\left(\sum_{i=1}^{2} M_{i p}^{*} a_{i}, \sum_{j=1}^{3} N_{j q}^{*} b_{i}\right) \\
&=\sum_{i=1}^{2} \sum_{j=1}^{3} \bar{M}_{p i} \bar{N}_{q j} u\left(a_{i}, b_{j}\right) \\
&=\left[\begin{array}{ll}
\bar{M}_{p 1} & \bar{M}_{p 2}
\end{array}\right]\left[\begin{array}{lll}
u\left(a_{1}, b_{1}\right) & u\left(a_{1}, b_{2}\right) & u\left(a_{1}, b_{3}\right) \\
u\left(a_{2}, b_{1}\right) & u\left(a_{2}, b_{2}\right) & u\left(a_{2}, b_{3}\right)
\end{array}\right]\left[\begin{array}{l}
\bar{N}_{q 1} \\
\bar{N}_{q 2} \\
\bar{N}_{q 3}
\end{array}\right] \\
& {\left[\begin{array}{lll}
u\left(c_{1}, d_{1}\right) & u\left(c_{1}, d_{2}\right) & u\left(c_{1}, d_{3}\right) \\
u\left(c_{2}, d_{1}\right) & u\left(c_{2}, d_{2}\right) & u\left(c_{2}, d_{3}\right)
\end{array}\right]=\left[\begin{array}{lll}
\bar{M}_{11} & \bar{M}_{12} \\
\bar{M}_{21} & \bar{M}_{22}
\end{array}\right]\left[\begin{array}{lll}
u\left(a_{1}, b_{1}\right) & u\left(a_{1}, b_{2}\right) & u\left(a_{1}, b_{3}\right) \\
u\left(a_{2}, b_{1}\right) & u\left(a_{2}, b_{2}\right) & u\left(a_{2}, b_{3}\right)
\end{array}\right]\left[\begin{array}{lll}
\bar{N}_{11} & \bar{N}_{21} & \bar{N}_{31} \\
\bar{N}_{12} & \bar{N}_{22} & \bar{N}_{32} \\
\bar{N}_{13} & \bar{N}_{23} & \bar{N}_{33}
\end{array}\right] } \\
& \Longrightarrow \begin{array}{ccc}
C \otimes D \\
u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*}
\end{array}
\end{aligned}
$$

2.2.5 Invariance of computation of 2 -tensor under any orthonormal basis transformations

Theorem 2.2.7. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be any orthonormal basis of W. Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Theorem 2.2.4 implies that $A \otimes B$ forms basis of $\mathcal{L}(V \times W \rightarrow \mathbb{C}) . \forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C}) \forall x \in V \forall y \in W$,

$$
u(x, y)=\sum_{r=1}^{n} \sum_{s=1}^{m}{ }^{A} x[r] \cdot{ }^{A \otimes B} u[r, s] \cdot{ }^{B} y[s]=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y
$$

Note that ${ }^{A \otimes B} u[r, s]$ is used to denote $u\left(a_{r}, b_{s}\right)$.
Proof. $\forall x \in V$ since A is a basis of V there exist unique $\alpha_{r} \in \mathbb{C}$ such that,

$$
x=\sum_{r=1}^{n} \alpha_{r} a_{r}
$$

$\forall y \in W$ since B is a basis of W there exist unique $\beta_{s} \in \mathbb{C}$ such that,

$$
y=\sum_{s=1}^{m} \beta_{s} b_{s}
$$

$\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$ we get that,

$$
u(x, y)=u\left(\sum_{r=1}^{n} \alpha_{r} a_{r}, \sum_{s=1}^{m} \beta_{s} b_{s}\right)=\sum_{r=1}^{n} \sum_{s=1}^{m} \alpha_{r} \beta_{s} u\left(a_{r}, b_{s}\right)
$$

Since A and B form bases of V and W respectively we get that,

$$
\alpha_{r}={ }^{A} x[r] \quad \beta_{s}={ }^{B} y[s]
$$

Since $A \otimes B$ forms basis of $\mathcal{L}(V \times W \rightarrow \mathbb{C})$ we get that,

$$
\begin{gathered}
{ }^{A \otimes B} u=\left[\begin{array}{cccccc}
u\left(a_{1}, b_{1}\right) & u\left(a_{1}, b_{2}\right) & \cdot & \cdot & \cdot & u\left(a_{1}, b_{m}\right) \\
u\left(a_{2}, b_{1}\right) & u\left(a_{2}, b_{2}\right) & \cdot & \cdot & \cdot & u\left(a_{2}, b_{m}\right) \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
u\left(a_{n}, b_{1}\right) & u\left(a_{n}, b_{2}\right) & \cdot & \cdot & \cdot & u\left(a_{n}, b_{m}\right)
\end{array}\right] \\
\Longrightarrow u(x, y)=\sum_{r=1}^{n} \sum_{s=1}^{m} x[r] \cdot{ }^{A \otimes B} u[r, s] \cdot{ }^{B} y[s]
\end{gathered}
$$

Remark :

1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any two orthonormal basis of V. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ and $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be any two orthonormal basis of W. Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $C \otimes D=\left\{c_{i}^{*} \otimes d_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Theorem 2.2.4 implies that $A \otimes B$ and $C \otimes D$ form bases of $\mathcal{L}(V \times W \rightarrow \mathbb{C}) . \forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C}) \forall$ $x \in V \forall y \in W$ we get that,

$$
u(x, y)=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y=\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y
$$

2. It is easy to observe that $\forall(x, y) \in V \times W, u(x, y)$ can be determined by the action of ${ }^{A \otimes B} u$ on ${ }^{A} x$ and ${ }^{B} y$. Hence if we fix computations with respect to orthonormal bases A and B of V and W respectively we can identify u with ${ }^{A \otimes B} u$.
3. Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m . \forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$,

$$
{ }^{A \otimes B} u=\left[\begin{array}{cccccc}
u\left(a_{1}, b_{1}\right) & u\left(a_{1}, b_{2}\right) & . & . & . & u\left(a_{1}, b_{m}\right) \\
u\left(a_{2}, b_{1}\right) & u\left(a_{2}, b_{2}\right) & . & . & . & u\left(a_{2}, b_{m}\right) \\
. & . & . & . & . & . \\
u\left(a_{n}, b_{1}\right) & u\left(a_{n}, b_{2}\right) & . & . & . & u\left(a_{n}, b_{m}\right)
\end{array}\right]
$$

Hence, 2-fold tensor product space $\mathcal{L}(V \times W \rightarrow \mathbb{C})$ is isomorphic to $\mathbb{C}^{n \times m}$. (It is straight-forward to verify and is left to reader. For the proof technique you may refer lemma 1.1.9
4.

$$
\begin{aligned}
u(x, y) & =\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y=\left(M \cdot{ }^{A} x\right)^{T} \cdot \bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \cdot\left(N \cdot{ }^{B} y\right) \\
& =\left({ }^{A} x\right)^{T} \cdot M^{T} \cdot \bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \cdot N \cdot{ }^{B} y
\end{aligned}
$$

Since $M^{*} M=N^{*} N=I$ we get,

$$
\Longrightarrow u(x, y)=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y=\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y
$$

Illustration :

Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$ and $B=\left\{b_{1}=\left[\begin{array}{lll}\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}} & \frac{i}{\sqrt{3}}\end{array}\right]^{T}, b_{2}=\right.$ $\left.\left[\begin{array}{lll}\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0\end{array}\right]^{T}, b_{3}=\left[\begin{array}{lll}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right]^{T}\right\}$. Verify that A and B form orthonormal basis of \mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$ and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right\}$. Recall that A^{*} and B^{*} are dual bases of V^{*} and W^{*} respectively. $\forall i \in\{1,2\} \forall$ $j \in\{1,2,3\} \forall x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
{\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y) } & =\left(a_{i}, x\right)\left(b_{j}, y\right)=\left(\overline{{ }^{A} a_{i}} \odot{ }^{A} x\right) \cdot\left(\overline{{ }^{B} b_{j}} \odot{ }^{B} y\right) \\
& ={ }^{A} x[i] \cdot{ }^{B} y[j]
\end{aligned}
$$

Let $C=\left\{c_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$ and $D= \begin{cases}d_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}, b_{2}= \\ & =\end{cases}$ $\left.\left[\begin{array}{ccc}0 & 1 & 0\end{array}\right]^{T}, b_{3}=\left[\begin{array}{ccc}0 & 0 & 1\end{array}\right]^{T}\right\}$. Verify that C and D form orthonormal basis of \mathbb{C}^{2} and \mathbb{C}^{3} respectively. Let $C^{*}=\left\{c_{1}^{*}, c_{2}^{*}\right\}$ and $D^{*}=\left\{d_{1}^{*}, d_{2}^{*}, d_{3}^{*}\right\}$. Recall that C^{*} and D^{*} are dual bases of V^{*} and W^{*} respectively. $\forall p \in\{1,2\} \forall q \in\{1,2,3\} \forall$ $x \in \mathbb{C}^{2} \forall y \in \mathbb{C}^{3}$,

$$
\begin{aligned}
{\left[c_{p}^{*} \otimes d_{q}^{*}\right](x, y) } & =\left(c_{p}, x\right)\left(d_{q}, y\right)=\left({ }^{C} c_{p}\right. \\
& \left.{ }^{C} x\right) \cdot\left(\overline{{ }^{D} d_{q}} \odot{ }^{D} y\right) \\
& ={ }^{C} x[i] \cdot{ }^{D} y[j]
\end{aligned}
$$

Let $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq 2,1 \leq j \leq 3\right\}$ and $C \otimes D=\left\{c_{p}^{*} \otimes d_{q}^{*} \mid 1 \leq\right.$ $p \leq 2,1 \leq q \leq 3\}$. Above theorem implies that $A \otimes B$ and $C \otimes D$ is a basis of $\mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$. In the previous illustration we have already shown that the transformation matrix M from basis A to C is

$$
M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]
$$

We have also seen that $\forall x \in \mathbb{C}^{2}$,

$$
\begin{gathered}
{ }^{C} x=M \cdot{ }^{A} x \\
N=\left[\begin{array}{ccc}
\frac{i}{\sqrt{3}} & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{i}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right]
\end{gathered}
$$

We have also seen that $\forall y \in \mathbb{C}^{3}$,

$$
{ }^{D} y=N \cdot{ }^{B} y
$$

Since C and D are bases of \mathbb{C}^{2} and \mathbb{C}^{3} respectively we get that,

$$
x={ }^{C} x[1] c_{1}+{ }^{C} x[2] c_{2} \quad y={ }^{D} y[1] d_{1}+{ }^{D} y[2] d_{2}+{ }^{D} y[3] d_{3}
$$

Since u is bi-linear we get,

$$
\begin{aligned}
& u(x, y)=u\left(\sum_{i=1}^{2}{ }^{C} x[i] c_{i}, \sum_{j=1}^{3}{ }^{D} y[j] d_{j}\right)=\sum_{i=1}^{2} \sum_{j=1}^{3}{ }^{C} x[i]^{D} y[j] u\left(c_{i}, d_{j}\right) \\
& \Longrightarrow u(x, y)=\left[\begin{array}{ll}
{ }^{C} x[1] & { }^{C} x[2]
\end{array}\right]\left[\begin{array}{lll}
u\left(c_{1}, d_{1}\right) & u\left(c_{1}, d_{2}\right) & u\left(c_{1}, d_{3}\right) \\
u\left(c_{2}, d_{1}\right) & u\left(c_{2}, d_{2}\right) & u\left(c_{2}, d_{3}\right)
\end{array}\right]\left[\begin{array}{l}
{ }^{B} y[1] \\
{ }^{B} y[2] \\
{ }^{B} y[3]
\end{array}\right]
\end{aligned}
$$

$\forall u \in \mathcal{L}\left(\mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}\right)$ we have already shown in previous illustration that,

$$
\begin{aligned}
&{ }^{C \otimes D} u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \\
& u(x, y)=\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y=\left(M \cdot{ }^{A} x\right)^{T} \cdot \bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \cdot\left(N \cdot{ }^{B} y\right) \\
&=\left({ }^{A} x\right)^{T} \cdot M^{T} \cdot \bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \cdot N \cdot{ }^{B} y
\end{aligned}
$$

Since M and N are orthogonal matrices we get that,

$$
u(x, y)=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y=\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y
$$

2.2.6 Inner products on 2-fold tensor product spaces

In this section we define a function (): $V \otimes W \times V \otimes W \rightarrow \mathbb{C}$ in terms of inner products defined on V^{*} and W^{*} and prove that this function is an inner product.

Definition 2.2.4. Let V, W be any finite dimensional inner product space where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m . \forall u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{l} \in V^{*} \forall v_{1}, \ldots, v_{k}, t_{1}, \ldots, t_{l} \in$ $W^{*} \forall \alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l} \in \mathbb{C}$ Define the following function () : $V \otimes W \times V \otimes W \rightarrow$ \mathbb{C},

$$
\begin{equation*}
\left(\sum_{i=1}^{k} \alpha_{i}\left[u_{i} \otimes v_{i}\right], \sum_{j=1}^{l} \beta_{j}\left[w_{j} \otimes t_{j}\right]\right)=\sum_{i=1}^{k} \sum_{j=1}^{l} \bar{\alpha}_{i} \beta_{j}\left(u_{i}, w_{j}\right)_{1}\left(v_{i}, t_{j}\right)_{2} \tag{2.1}
\end{equation*}
$$

Note that ()$_{1}$ is an inner product on V^{*} and ()$_{2}$ is an inner product on W^{*}. In the subsequent analysis we drop the subscripts since we believe that the context of usage shall be clear.

In this lemma it is shown that how above definition can be used to compute $(u, v) \forall u, v \in V \otimes W$.

Lemma 2.2.8. Let V, W be any finite dimensional inner product space where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V and $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the corresponding dual basis. Let $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be any orthonormal basis of W and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{m}^{*}\right\}$ be the corresponding dual basis. $\forall u, v \in V \otimes W$ since $A \otimes B$ is a basis of $V \otimes W$ there exist $\alpha_{i j}, \beta_{p q} \in \mathbb{C}$ such that,

$$
\begin{gather*}
u=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j}\left[a_{i}^{*} \otimes b_{j}^{*}\right] \quad v=\sum_{p=1}^{n} \sum_{q=1}^{m} \beta_{p q}\left[a_{p}^{*} \otimes b_{q}^{*}\right] \\
(u, v)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right) \tag{2.2}
\end{gather*}
$$

Proof. Proof is straight forward and left to reader (use equation 3.1.1).

Remark :

1. The existence of inner products on dual space i.e, ()$_{1}$ and ()$_{2}$ is already shown in the previous chapter section 2.1.6. Also It is already shown that with respect to the inner product defined in section 2.1.6 A^{*} and B^{*} are orthonormal bases which implies that,

$$
\begin{equation*}
(u, v)=\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{\alpha}_{i j} \beta_{i j} \tag{2.3}
\end{equation*}
$$

2. Note that in the subsequent analysis we consider arbitrary inner products on V^{*} and W^{*} in order to make the theory more general. Hence equation 3.1.1 is used instead of equation 3.1.1.

Lemma 2.2.9. $\forall u, v \in V \otimes W$,

$$
(u, v)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right) \quad \text { is well-defined }
$$

Proof. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any another orthonormal basis of V and $C^{*}=$ $\left\{c_{1}^{*}, c_{2}^{*}, \ldots, c_{n}^{*}\right\}$ be the corresponding dual basis. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be any another orthonormal basis of W and $D^{*}=\left\{d_{1}^{*}, d_{2}^{*}, \ldots, d_{m}^{*}\right\}$ be the corresponding dual basis. Since $C \otimes D$ is a basis of $V \otimes W$ there exist $\gamma_{k l}, \delta_{r s} \in \mathbb{C}$ such that,

$$
u=\sum_{k=1}^{n} \sum_{l=1}^{n} \gamma_{k l}\left[c_{k}^{*} \otimes d_{l}^{*}\right] \quad v=\sum_{r=1}^{n} \sum_{s=1}^{m} \delta_{r s}\left[c_{r}^{*} \otimes d_{s}^{*}\right]
$$

Inner product of u and v using basis C^{*} and D^{*} is

$$
(u, v)=\sum_{k=1}^{n} \sum_{l=1}^{m} \sum_{r=1}^{n} \sum_{s=1}^{m} \bar{\gamma}_{k l} \delta_{r s}\left(c_{k}^{*}, c_{r}^{*}\right)\left(d_{l}^{*}, d_{s}^{*}\right)
$$

To claim (u, v) is well-defined it is enough to show that

$$
\sum_{k=1}^{n} \sum_{l=1}^{m} \sum_{r=1}^{n} \sum_{s=1}^{m} \bar{\gamma}_{k l} \delta_{r s}\left(c_{k}^{*}, c_{r}^{*}\right)\left(d_{l}^{*}, d_{s}^{*}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right)
$$

Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to C. Theorem 2.1.5 implies that,

$$
\left[\begin{array}{lllll}
a_{1}^{*} & a_{2}^{*} & \cdot & . & a_{n}^{*}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1}^{*} & c_{2}^{*} & . & . & c_{n}^{*}
\end{array}\right] \bar{M} \Longrightarrow a_{i}^{*}=\sum_{k=1}^{n} \bar{M}_{k i} c_{k}^{*} \text { and } a_{p}^{*}=\sum_{r=1}^{n} \bar{M}_{r p} c_{r}^{*}
$$

Let $N \in \mathbb{C}^{m \times m}$ be the transformation matrix from basis B to D. Theorem 2.1.5 implies that,

$$
\left[\begin{array}{llll}
b_{1}^{*} & b_{2}^{*} & . & . \\
b_{m}^{*}
\end{array}\right]=\left[\begin{array}{lllll}
d_{1}^{*} & d_{2}^{*} & . & . & d_{m}^{*}
\end{array}\right] \bar{N} \Longrightarrow b_{j}^{*}=\sum_{l=1}^{m} \bar{N}_{l j} d_{l}^{*} \text { and } b_{q}^{*}=\sum_{s=1}^{m} \bar{N}_{s q} d_{s}^{*}
$$

Above two equations imply that,

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \sum_{k=1}^{n} \sum_{l=1}^{m} \sum_{r=1}^{n} \sum_{s=1}^{m} \bar{\alpha}_{i j} \beta_{p q} M_{k i} \bar{M}_{r p} N_{l j} \bar{N}_{s q}\left(c_{k}^{*}, c_{r}^{*}\right)\left(d_{l}^{*}, d_{s}^{*}\right)
\end{aligned}
$$

$$
=\sum_{k=1}^{n} \sum_{l=1}^{m} \sum_{r=1}^{n} \sum_{s=1}^{m}\left(\sum_{i=1}^{n} \sum_{j=1}^{m} M_{k i} \bar{\alpha}_{i j} N_{l j}\right)\left(\sum_{p=1}^{n} \sum_{q=1}^{m} \bar{M}_{r p} \beta_{p q} \bar{N}_{s q}\right)\left(c_{k}^{*}, c_{r}^{*}\right)\left(d_{l}^{*}, d_{s}^{*}\right)
$$

Note that

$$
{ }^{C \otimes D} u[k, l]=\gamma_{k l} \quad{ }^{C \otimes D} v[r, s]=\delta_{r s} \quad{ }^{A \otimes B} u[i, j]=\alpha_{i j} \quad{ }^{A \otimes B} v[p, q]=\beta_{p q}
$$

From theorem 3.2.4 we get,

$$
\begin{gathered}
{ }^{C \otimes D} u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \quad{ }^{C \otimes D} v=\bar{M} \cdot{ }^{A \otimes B} v \cdot N^{*} \\
\Longrightarrow \gamma_{k l}=\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{M}_{k i} \alpha_{i j} N_{j l}^{*}=\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{M}_{k i} \alpha_{i j} \bar{N}_{l j} \text { and } \\
\delta_{r s}=\sum_{p=1}^{n} \sum_{q=1}^{m} \bar{M}_{r p} \beta_{p q} N_{q s}^{*}=\sum_{p=1}^{n} \sum_{q=1}^{m} \bar{M}_{r p} \beta_{p q} \bar{N}_{s q} \\
\Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right)=\sum_{k=1}^{n} \sum_{l=1}^{m} \sum_{r=1}^{n} \sum_{s=1}^{m} \bar{\gamma}_{k l} \delta_{r s}\left(c_{k}^{*}, c_{r}^{*}\right)\left(d_{l}^{*}, d_{s}^{*}\right)
\end{gathered}
$$

Lemma 2.2.10. $\forall u, v \in V \otimes W$,

$$
(u, v)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right) \quad \text { is an inner product }
$$

Proof. Linearity : $\forall u, v, w \in V \otimes W \forall \delta \in \mathbb{C}$,

$$
\begin{aligned}
&(u, v+w)=\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} a_{i}^{*} \otimes b_{j}^{*}, \sum_{p=1}^{n} \sum_{q=1}^{m}\left(\beta_{p q}+\gamma_{p q}\right) a_{p}^{*} \otimes b_{q}^{*}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j}\left(\beta_{p q}+\gamma_{p q}\right)\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right)=(u, v)+(u, w) \\
&(u, \delta v)=\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} a_{i}^{*} \otimes b_{j}^{*}, \sum_{p=1}^{n} \sum_{q=1}^{m}\left(\delta \beta_{p q}\right) a_{p}^{*} \otimes b_{q}^{*}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \delta \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right)=\delta(u, v)
\end{aligned}
$$

Conjugate Symmetry : $\forall u, v \in V \otimes W$,

$$
\begin{aligned}
(u, v) & =\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\alpha}_{i j} \beta_{p q}\left(a_{i}^{*}, a_{p}^{*}\right)\left(b_{j}^{*}, b_{q}^{*}\right) \\
& =\overline{\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{\beta}_{p q} \alpha_{i j} \beta_{p q}\left(a_{p}^{*}, a_{i}^{*}\right)\left(b_{q}^{*}, b_{j}^{*}\right)}=\overline{(v, u)}
\end{aligned}
$$

Positive Definiteness : Since both V^{*}, W^{*} over \mathbb{C} are inner product spaces using Gram Schmidt process there exist orthonormal basis for both V^{*} and W^{*}. Without loss of generality assume A^{*} and B^{*} form orthonormal bases of V^{*} and W^{*} respectively.

$$
\begin{aligned}
(u, u)=0 & \Longleftrightarrow\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[a_{i}^{*} \otimes a_{j}^{*}\right], \sum_{p=1}^{n} \sum_{q=1}^{m} \alpha_{p q}\left[a_{p}^{*} \otimes a_{q}^{*}\right]\right)=0 \\
& \Longleftrightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \bar{\alpha}_{i j} \alpha_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left|\alpha_{i j}\right|^{2}=0 \\
& \Longleftrightarrow u=0
\end{aligned}
$$

We end this section showing how inner products can be used in giving an alternate proof for the linear independence of the set $A \otimes B$. Consider the inner product on dual space defined as in section 2.1.6. $\forall i, j \in\{1,2, \ldots, n\} \forall p, q \in\{1,2, \ldots, m\}$,

$$
\begin{aligned}
\left(a_{i}^{*} \otimes b_{p}^{*}, a_{j}^{*} \otimes b_{q}^{*}\right)=\left(a_{i}^{*}, a_{j}^{*}\right)\left(b_{p}^{*}, b_{q}^{*}\right)=\left({ }^{A^{*}} a_{i}^{*} \odot^{A^{*}} a_{j}^{*}\right)\left({ }^{B^{*}} b_{p}^{*} \odot{ }^{B^{*}} b_{q}^{*}\right) & =1 \quad \text { if }(i, j)=(p, q) \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

From lemma 1.1.7 it is straight forward to verify linear independence of $A \otimes B$.

2.2.7 Linear operators on 2-fold tensor product spaces

Definition 2.2.5. Let $\mathcal{L}(V \otimes W)$ denote the set of all linear operators over the tensor product space of V and $W \mathcal{L}(V \times W \rightarrow \mathbb{C})=V \otimes W$. Define addition and scalar multiplication on the set $\mathcal{L}(V \otimes W)$ as follows $\forall T, W \in \mathcal{L}(V \otimes W) \forall$
$u \in V \otimes W \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[T+W] u=T(u)+W(u)} \\
{[\alpha T] u=\alpha \cdot T(u)}
\end{gathered}
$$

Remark :

1. It is straight forward to verify that $\mathcal{L}(V \otimes W)$ is a vector space over \mathbb{C} and is left to reader (refer lemma 2.1.1).
2. Note that $\mathcal{L}(V \otimes W)$ is also called tensor product space of operators on $V \otimes W$.

Next we define the tensor product of two operators and show that any operator on $V \otimes W$ can be expressed in terms of tensor products.

Definition 2.2.6. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let T be an operator on V^{*} and U be an operator on W^{*}. Define the tensor product of T and U as an operator on $V \otimes W$ i.e, $T \otimes U: V \otimes W \rightarrow V \otimes W \forall x_{1}, x_{2}, \ldots, x_{k} \in V^{*} \forall y_{1}, y_{2}, \ldots, y_{k} \in W^{*}$ $\forall \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{C}$,

$$
\begin{equation*}
[T \otimes U]\left(\sum_{i=1}^{k} \alpha_{i} x_{i} \otimes y_{i}\right)=\sum_{i=1}^{k} \alpha_{i}\left[T\left(x_{i}\right)\right] \otimes\left[W\left(y_{i}\right)\right] \tag{2.4}
\end{equation*}
$$

In this lemma it is shown that how above definition can be used to compute $[T \otimes U](x) \forall x \in V \otimes W$.

Lemma 2.2.11. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be any orthonormal basis of V and $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the corresponding dual basis. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be any orthonormal basis of W and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{m}^{*}\right\}$ be the corresponding dual basis. $\forall x \in V \otimes W$ since $A \otimes B$ is a basis of $V \otimes W$ there exist unique $\alpha_{i j} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} a_{i}^{*} \otimes b_{j}^{*}
$$

$\forall T \in \mathcal{L}\left(V^{*}\right) \forall U \in \mathcal{L}\left(W^{*}\right)$,

$$
[T \otimes U](x)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[T\left(a_{i}^{*}\right)\right] \otimes\left[W\left(b_{j}^{*}\right)\right]
$$

Proof. Proof is straight forward and left to reader (use equation 3.1.1).

Remark :

1. $\forall T \in \mathcal{L}\left(V^{*}\right) \forall U \in \mathcal{L}\left(W^{*}\right)[T \otimes U]$ is bi-linear. $\forall x, y \in V \otimes W$ since $A \otimes B$ is a basis of $V \otimes W$ there exist unique $\alpha_{i j}, \beta_{i j} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} a_{i}^{*} \otimes b_{j}^{*} \quad y=\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i j} a_{i}^{*} \otimes b_{j}^{*}
$$

$\forall \gamma \in \mathbb{C}$,

$$
\begin{aligned}
{[T \otimes U](x+\gamma y) } & =[T \otimes U]\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i j}+\gamma \beta_{i j}\right) a_{i}^{*} \otimes b_{j}^{*}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i j}+\gamma \beta_{i j}\right)\left[T\left(a_{i}^{*}\right)\right] \otimes\left[U\left(b_{j}^{*}\right)\right] \\
& =[T \otimes U](x)+\gamma[T \otimes U](y)
\end{aligned}
$$

2. $\forall T, U \in \mathcal{L}\left(V^{*}\right) \forall W \in \mathcal{L}\left(W^{*}\right)$,

$$
[T+U] \otimes W=T \otimes W+U \otimes W
$$

$\forall T \in \mathcal{L}\left(V^{*}\right) \forall U, W \in \mathcal{L}\left(W^{*}\right)$,

$$
T \otimes[U+W]=T \otimes U+T \otimes W
$$

$\forall T \in \mathcal{L}\left(V^{*}\right) \forall U \in \mathcal{L}\left(W^{*}\right) \forall \alpha \in \mathbb{C}$,

$$
[\alpha T] \otimes U=T \otimes[\alpha U]=\alpha[T \otimes U]
$$

These properties are straight forward to verify and are left to reader.

2. Tensor products

Lemma 2.2.12. $\forall T \in \mathcal{L}\left(V^{*}\right) \forall U \in \mathcal{L}\left(W^{*}\right),[T \otimes U]$ is well-defined
Proof. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any another orthonormal basis of V. Let $C^{*}=$ $\left\{c_{1}^{*}, c_{2}^{*}, \ldots, c_{n}^{*}\right\}$ be the corresponding dual basis. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be any another orthonormal basis of W. Let $D^{*}=\left\{d_{1}^{*}, d_{2}^{*}, \ldots, d_{m}^{*}\right\}$ be the corresponding dual basis. Since $C \otimes D$ is a basis of $V \otimes W$ there exist unique $\beta_{p q} \in \mathbb{C}$ such that,

$$
x=\sum_{p=1}^{n} \sum_{q=1}^{m} \beta_{p q} c_{p}^{*} \otimes d_{q}^{*}
$$

Applying $x \in V \otimes W$ expressed in terms of basis C and D to the operator $[T \otimes U]$ we get that,

$$
[T \otimes U](x)=\sum_{p=1}^{n} \sum_{q=1}^{m} \beta_{p q}\left[T\left(c_{p}^{*}\right)\right] \otimes\left[U\left(d_{q}^{*}\right)\right]
$$

To claim $(T \otimes U)$ is well-defined it is enough to show that

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[T\left(a_{i}^{*}\right)\right] \otimes\left[U\left(b_{j}^{*}\right)\right]=\sum_{p=1}^{n} \sum_{q=1}^{m} \beta_{p q}\left[T\left(c_{p}^{*}\right)\right] \otimes\left[U\left(d_{q}^{*}\right)\right]
$$

Let $M \in \mathbb{C}^{n \times n}$ be the transformation matrix from basis A to C. Theorem 2.1.5 implies that,

$$
\left[\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & . & .
\end{array} a_{n}^{*}\right]=\left[\begin{array}{lllll}
c_{1}^{*} & c_{2}^{*} & . & . & c_{n}^{*}
\end{array}\right] \bar{M} \Longrightarrow a_{i}^{*}=\sum_{p=1}^{n} \bar{M}_{p i} c_{p}^{*} \Longrightarrow T\left(a_{i}^{*}\right)=\sum_{p=1}^{n} \bar{M}_{p i} T\left(c_{p}^{*}\right)
$$

Let $N \in \mathbb{C}^{m \times m}$ be the transformation matrix from basis B to D. Theorem 2.1.5 implies that,

$$
\left[\begin{array}{llll}
b_{1}^{*} & b_{2}^{*} & \cdot & . \\
b_{m}^{*}
\end{array}\right]=\left[\begin{array}{lllll}
d_{1}^{*} & d_{2}^{*} & . & . & d_{m}^{*}
\end{array}\right] \bar{N} \Longrightarrow b_{j}^{*}=\sum_{q=1}^{n} \bar{N}_{q j} d_{q}^{*} \text { and } U\left(b_{j}^{*}\right)=\sum_{q=1}^{m} \bar{N}_{q j} U\left(d_{q}^{*}\right)
$$

Above two equations imply that,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[T\left(a_{i}^{*}\right)\right] \otimes\left[U\left(b_{j}^{*}\right)\right]=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{p=1}^{n} \sum_{q=1}^{m} \bar{M}_{p i} \alpha_{i j} \bar{N}_{q j}\left[T\left(c_{p}^{*}\right)\right] \otimes\left[U\left(d_{q}^{*}\right)\right]
$$

$$
=\sum_{p=1}^{n} \sum_{q=1}^{m}\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{M}_{p i} \alpha_{i j} \bar{N}_{q j}\right)\left[T\left(c_{p}^{*}\right)\right] \otimes\left[U\left(d_{q}^{*}\right)\right]
$$

Note that

$$
{ }^{C \otimes D} u[p, q]=\beta_{p q} \quad{ }^{A \otimes B} u[i, j]=\alpha_{i j}
$$

From theorem 2.3.6 we get,

$$
\begin{gathered}
{ }^{C \otimes D} u=\bar{M} \cdot{ }^{A \otimes B} u \cdot N^{*} \quad{ }^{C \otimes D} v=\bar{M} \cdot{ }^{A \otimes B} v \cdot N^{*} \\
\Longrightarrow \beta_{p q}=\sum_{i=1}^{n} \sum_{j=1}^{m} \bar{M}_{p i} \alpha_{i j} N_{q j}^{*}=\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{M}_{p i} \alpha_{i j} \bar{N}_{j q} \\
\Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[T\left(a_{i}^{*}\right)\right] \otimes\left[U\left(b_{j}^{*}\right)\right]=\sum_{p=1}^{n} \sum_{q=1}^{m} \beta_{p q}\left[T\left(c_{p}^{*}\right)\right] \otimes\left[U\left(d_{q}^{*}\right)\right]
\end{gathered}
$$

Definition 2.2.7. Let V, W be any two finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an orthonormal basis of V. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ be the corresponding dual basis. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be an orthonormal basis of W. Let $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{m}^{*}\right\}$ be the corresponding dual basis. Let $T^{*}=\left\{T_{i j} \mid 1 \leq i, j \leq n\right\}$ where $\forall i, j, k \in$ $\{1,2, \ldots, n\} T_{i j} \in \mathcal{L}\left(V^{*}\right)$ is defined as follows,

$$
\begin{array}{rlrl}
T_{i j}\left(a_{k}^{*}\right) & =a_{j}^{*} & & \\
& \text { if } k=i \\
& =0 & & \text { if } k \neq i
\end{array}
$$

Let $U^{*}=\left\{U_{p q} \mid 1 \leq p, q \leq m\right\}$ where $\forall p, q, r \in\{1,2, \ldots, m\} U_{p q} \in \mathcal{L}\left(W^{*}\right)$ is defined as follows,

$$
\begin{aligned}
U_{p q}\left(b_{r}^{*}\right) & =b_{r}^{*} & & \text { if } p=r \\
& =0 & & \text { if } p \neq r
\end{aligned}
$$

Define $T^{*} \otimes U^{*}=\left\{T_{i j} \otimes U_{p q} \mid 1 \leq i, j \leq n, 1 \leq p, q \leq m\right\}$. Note that each $T_{i j} \otimes U_{p q} \in T^{*} \otimes U^{*}$ is well-defined and a linear operator on $V \otimes W$.

2. Tensor products

Theorem 2.2.13. $T^{*} \otimes U^{*}$ forms a basis of $\mathcal{L}(V \otimes W)$.
Proof. Span :
$\forall x \in V \otimes W$ since $A \otimes B$ is a basis of $V \otimes W$ there exist unique $\alpha_{i p} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \sum_{p=1}^{m} \alpha_{i p} a_{i}^{*} \otimes b_{p}^{*}
$$

$\forall W \in \mathcal{L}(V \otimes W)$ since W is a linear operator we get,

$$
W(x)=\sum_{i=1}^{n} \sum_{p=1}^{m} \alpha_{i p} W\left(a_{i}^{*} \otimes b_{p}^{*}\right)
$$

Since W is an operator $\forall i \in\{1,2, \ldots, n\} \forall p \in\{1,2, \ldots, m\}$ there exist $\beta_{j q} \in \mathbb{C}$ such that,

$$
\begin{gathered}
W\left(a_{i}^{*} \otimes b_{p}^{*}\right)=\sum_{j=1}^{n} \sum_{q=1}^{m} \beta_{i, p, j, q} a_{j}^{*} \otimes b_{q}^{*} \\
\Longrightarrow W(x)=\sum_{i=1}^{n} \sum_{p=1}^{m} \sum_{j=1}^{n} \sum_{q=1}^{m} \beta_{i, p, j, q} \alpha_{i p} a_{j}^{*} \otimes b_{q}^{*}
\end{gathered}
$$

Note that $\forall i, j \in\{1,2, \ldots, n\} \forall p, q \in\{1,2, \ldots, m\}$ since $T_{i j} \otimes U_{p q}$ is linear,

$$
\begin{aligned}
& {\left[T_{i j} \otimes U_{p q}\right](x) }=\left[T_{i j} \otimes U_{p q}\right]\left(\sum_{k=1}^{n} \sum_{l=1}^{m} \alpha_{k l} a_{k}^{*} \otimes b_{l}^{*}\right) \\
&=\sum_{k=1}^{n} \sum_{l=1}^{m} \alpha_{k l}\left[T_{i j}\left(a_{k}^{*}\right)\right] \otimes\left[U_{p q}\left(b_{l}^{*}\right)\right] \\
&=\alpha_{i p} a_{j}^{*} \otimes b_{q}^{*} \\
& \Longrightarrow W(x)=\sum_{p=1}^{n} \sum_{q=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{i, p, j, q}\left[T_{i j} \otimes U_{p q}\right](x) \\
& \Longrightarrow W=\sum_{p=1}^{n} \sum_{q=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{i, p, j, q}\left[T_{i j} \otimes U_{p q}\right] \\
& \Longrightarrow T^{*} \otimes U^{*} \operatorname{spans} \mathcal{L}(V \otimes W)
\end{aligned}
$$

Linear Independence : $\forall i, j \in\{1,2, \ldots, n\} \forall p, q \in\{1,2, \ldots, m\}$. Consider,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{p=1}^{m} \sum_{q=1}^{m} \alpha_{i, p, j, q} T_{i j} \otimes U_{p q}=0
$$

$\forall k \in\{1,2, \ldots, n\} \forall l \in\{1,2, \ldots, m\}$ applying $a_{k}^{*} \otimes b_{l}^{*}$ we get,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{p=1}^{m} \sum_{q=1}^{m} \alpha_{i, p, j, q}\left[T_{i j}\left(a_{k}^{*}\right)\right] \otimes\left[U_{p q}\left(b_{l}^{*}\right)\right]=0 \Longrightarrow \sum_{j=1}^{n} \sum_{q=1}^{m} \alpha_{k, l, j, q} a_{j}^{*} \otimes b_{q}^{*}=0
$$

Since $A \otimes B$ is a basis of $V \otimes W$ we get that,

$$
\alpha_{k, l, j, q}=0 \quad \forall j \in\{1,2, \ldots, n\} \forall q \in\{1,2, \ldots, m\}
$$

$\Longrightarrow T^{*} \otimes U^{*}$ is a linearly independent set and forms a basis of $\mathcal{L}(V \otimes W)$

Corollary 2.2.14.

$$
\operatorname{dim}(\mathcal{L}(V \otimes W))=(\operatorname{dim}(V \otimes W))^{2}
$$

$2.3 k$-fold tensor product spaces

2.3.1 Multi-linear Functions

Definition 2.3.1. Let $V_{1}, V_{2}, \ldots, V_{k}$ be vector spaces over field \mathbb{C} with inner products ()$_{1}: V_{1} \times V_{1} \rightarrow \mathbb{C},()_{2}: V_{2} \times V_{2} \rightarrow \mathbb{C}, \ldots,()_{k}: V_{k} \times V_{k} \rightarrow \mathbb{C}$ defined on $V_{1}, V_{2}, \ldots, V_{k}$ respectively. Note that subscripts ()$_{1},()_{2}, \ldots,()_{k}$ will be dropped if the context is clear. A function $u: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}$ is called multi-linear if the following holds,

1. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k$,

$$
u\left(x_{1}, x_{2}, \ldots, x_{i}+\tilde{x}_{i}, \ldots, x_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{k}\right)+u\left(x_{1}, x_{2}, \ldots, \tilde{x}_{i}, \ldots, x_{k}\right)
$$

2. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k \forall \alpha \in \mathbb{C}$,

$$
u\left(x_{1}, x_{2}, \ldots, \alpha x_{i}, \ldots, x_{k}\right)=\alpha u\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

Let set $S=\left\{u: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C} \mid u\right.$ is multi-linear $\}$. Define addition and multiplication on the set S as follows $\forall u, v \in S \forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{k} \in V_{k}$ $\forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[u+v]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{k}\right)+v\left(x_{1}, x_{2}, \ldots, x_{k}\right)} \\
{[\alpha u]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\alpha u\left(x_{1}, x_{2}, \ldots, x_{k}\right)}
\end{gathered}
$$

Lemma 2.3.1. S is closed under addition and scalar multiplication.
Proof. Claim 1: $\forall u, v \in S[u+v] \in S$,

1. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k$,

$$
\begin{aligned}
& {[u+v]\left(x_{1}, . ., x_{i}+\tilde{x}_{i}, . ., x_{k}\right)=u\left(x_{1}, . ., x_{i}+\tilde{x}_{i}, . ., x_{k}\right)+v\left(x_{1}, . ., x_{i}+\tilde{x}_{i}, . ., x_{k}\right)} \\
& =u\left(x_{1}, . ., x_{i}, . ., x_{k}\right)+u\left(x_{1}, . ., \tilde{x}_{i}, . ., x_{k}\right)+v\left(x_{1}, . ., x_{i}, . ., x_{k}\right)+v\left(x_{1}, . ., \tilde{x}_{i}, . ., x_{k}\right) \\
& =[u+v]\left(x_{1}, . ., x_{i}, . ., x_{k}\right)+[u+v]\left(x_{1}, . ., \tilde{x}_{i}, . ., x_{k}\right)
\end{aligned}
$$

2. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
{[u+v]\left(x_{1}, . ., \alpha x_{i}, . ., x_{k}\right) } & =u\left(x_{1}, . ., \alpha x_{i}, . ., x_{k}\right)+v\left(x_{1}, . ., \alpha x_{i}, . ., x_{k}\right) \\
& =\alpha u\left(x_{1}, . ., x_{i}, . ., x_{k}\right)+\alpha v\left(x_{1}, . ., x_{i}, . ., x_{k}\right) \\
& =\alpha[u+v]\left(x_{1}, . ., x_{i}, . ., x_{k}\right) \\
{[u+v] \text { is multi-linear } \Longrightarrow } & {[u+v] \in S \Longrightarrow S \text { is closed under addition } }
\end{aligned}
$$

Claim 2: $\forall u \in S \forall \alpha \in \mathbb{C}[\alpha u] \in S$

1. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k$,

$$
\begin{aligned}
{[\alpha u]\left(x_{1}, . ., x_{i}+\tilde{x}_{i}, . ., x_{k}\right) } & =\alpha u\left(x_{1}, . ., x_{i}+\tilde{x}_{i}, . ., x_{k}\right) \\
& =\alpha u\left(x_{1}, . ., x_{i}, . ., x_{k}\right)+\alpha u\left(x_{1}, . ., \tilde{x}_{i}, . ., x_{k}\right) \\
& =[\alpha u]\left(x_{1}, . ., x_{i}, \ldots, x_{k}\right)+[\alpha u]\left(x_{1}, . ., x_{i}, \ldots, x_{k}\right)
\end{aligned}
$$

2. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k \forall \beta \in \mathbb{C}$,

$$
\begin{aligned}
{[\alpha u]\left(x_{1}, . ., \beta x_{i}, . ., x_{k}\right) } & =\alpha u\left(x_{1}, . ., \beta x_{i}, . ., x_{k}\right)=\alpha \beta u\left(x_{1}, . ., x_{i}, . ., x_{k}\right) \\
& =\beta[\alpha u]\left(x_{1}, . ., x_{i}, . ., x_{k}\right)
\end{aligned}
$$

$[\alpha u]$ is multi-linear $\Longrightarrow[\alpha u] \in S \Longrightarrow S$ is closed under scalar multiplication

A multi-linear function $u \in S$ is called a k-tensor or a multi-linear map on $V_{1} \times V_{2} \times \ldots \times V_{k}$. It is easy to verify that S is a vector space over field \mathbb{C} (We already proved that S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to the reader). The vector space of all k-tensors is defined as the tensor product space of V_{1}, V_{2}, \ldots, V_{k} denoted by $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ or $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

2.3.2 Tensor products on vector spaces $V_{1}, V_{2}, \ldots, V_{k}$

Definition 2.3.2. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{C}\right) \forall u_{2} \in$ $\mathcal{L}\left(V_{2} \rightarrow \mathbb{C}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{C}\right)$ Define the tensor product of $u_{1}, u_{2}, \ldots, u_{k}$ as a function $\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}$ as follows $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2}$ $\ldots \forall x_{k} \in V_{k}$,

$$
\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=u_{1}\left(x_{1}\right) \cdot u_{2}\left(x_{2}\right) \cdot \ldots \cdot u_{k}\left(x_{k}\right)=\prod_{i=1}^{k} u_{i}\left(x_{i}\right)
$$

Lemma 2.3.2. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C}. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{C}\right) \forall u_{2} \in \mathcal{L}\left(V_{2} \rightarrow \mathbb{C}\right) \ldots \quad \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{C}\right)$, $\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]$ is multi-linear.

Proof. 1. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k$,

$$
\begin{aligned}
& {\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{i}+\tilde{x}_{i}, \ldots, x_{k}\right)=u_{1}\left(x_{1}\right) \ldots u_{i}\left(x_{i}+\tilde{x}_{i}\right) \ldots u_{k}\left(x_{k}\right)} \\
& \quad=u_{1}\left(x_{1}\right) \ldots u_{i}\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right)+u_{1}\left(x_{1}\right) \ldots u_{i}\left(\tilde{x}_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
& \quad=\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right)+\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, \tilde{x}_{i}, \ldots, x_{k}\right)
\end{aligned}
$$

2. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
& {\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, \alpha x_{i}, \ldots, x_{k}\right) }=u_{1}\left(x_{1}\right) \ldots u_{i}\left(\alpha_{i} x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
&=\alpha u_{1}\left(x_{1}\right) \ldots u_{i}\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
&=\alpha\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
& \Longrightarrow\left[u_{1} \otimes \ldots \otimes u_{k}\right] \text { is multi-linear }
\end{aligned}
$$

2. Tensor products

Lemma 2.3.3. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C}.

1. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{C}\right) \ldots \forall u_{i}, \tilde{u}_{i} \in \mathcal{L}\left(V_{i} \rightarrow \mathbb{C}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{C}\right)$ where $1 \leq i \leq k$, $\left[u_{1} \otimes \ldots \otimes\left[u_{i}+\tilde{u}_{i}\right] \otimes \ldots \otimes u_{k}\right]=\left[u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}\right]+\left[u_{1} \otimes \ldots \otimes \tilde{u}_{i} \otimes \ldots \otimes u_{k}\right]$
2. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{C}\right) \ldots \forall u_{i} \in \mathcal{L}\left(V_{i} \rightarrow \mathbb{C}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{C}\right)$ where $1 \leq i \leq k \forall \alpha \in \mathbb{C}$,

$$
\left[u_{1} \otimes \ldots \otimes\left[\alpha u_{i}\right] \otimes \ldots \otimes u_{k}\right]=\alpha\left[u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}\right]
$$

Proof. 1. $\forall x_{1} \in V_{1} \ldots \forall x_{k} \in V_{k}$,

$$
\begin{aligned}
{\left[u_{1} \otimes \ldots\right.} & \left.\otimes\left[u_{i}+\tilde{u}_{i}\right] \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right)=u_{1}\left(x_{1}\right) \ldots\left[u_{i}+\tilde{u}_{i}\right]\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
& =u_{1}\left(x_{1}\right) \ldots u_{i}\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right)+u_{1}\left(x_{1}\right) \ldots \tilde{u}_{i}\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
& =\left[u_{1} \otimes \ldots u_{i} \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right)+\left[u_{1} \otimes \ldots \tilde{u}_{i} \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

2. $\forall x_{1} \in V_{1} \ldots \forall x_{k} \in V_{k} \forall \alpha \in \mathbb{C}$,

$$
\begin{aligned}
{\left[u_{1} \otimes \ldots \otimes\left[\alpha u_{i}\right] \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right) } & =u_{1}\left(x_{1}\right) \ldots\left[\alpha u_{i}\right]\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
& =\alpha u_{1}\left(x_{1}\right) \ldots u_{i}\left(x_{i}\right) \ldots u_{k}\left(x_{k}\right) \\
& =\alpha\left[u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

Remark :

1. $u_{1} \otimes \ldots \otimes u_{k}=0 \Longleftrightarrow$ at least one of $u_{i}=0$. It is straight forward to verify and left to reader.
2. Note that the tensor products don't have unique representations for instance $\forall u_{i} \in \mathcal{L}\left(V_{i} \rightarrow \mathbb{C}\right) \forall \alpha \neq 0 \in \mathbb{C} \forall i \in\{1,2, \ldots, k\}$,

$$
u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}=\frac{u_{1}}{\alpha} \otimes \ldots \otimes\left[\alpha u_{i}\right] \otimes \ldots \otimes u_{k}
$$

Illustration :

Consider $V_{i}=\mathbb{C}^{2}$ over $\mathbb{C} \forall i \in\{1,2, \ldots, k\}$ with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Verify that A forms an orthonormal basis of each $V_{i}=\mathbb{C}^{2}$. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$. Recall that A^{*} forms dual basis of V^{*}. Theorem 2.1.6 implies that $\forall u \in V^{*} \forall x \in \mathbb{C}^{2}$,

$$
u(x)=\overline{A^{*}} u \odot{ }^{A} x
$$

Let $u_{i}=\left[\begin{array}{ll}a_{1}^{*} & a_{2}^{*}\end{array}\right]\left[\begin{array}{c}1 \\ 2 i\end{array}\right] \forall i \in\{1,2, \ldots, k\}$
$\forall x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{C}^{2}$,

$$
\left[u_{1} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} u_{i}\left(x_{i}\right)=\prod_{i=1}^{k}\left({ }^{A} u_{i} \odot{ }^{A} x_{i}\right)=\prod_{i=1}^{k}\left[\begin{array}{ll}
1 & -2 i
\end{array}\right]\left[\begin{array}{l}
{ }^{A} x[1] \\
{ }^{A} x[2]
\end{array}\right]
$$

From the linearity of coordinates of vectors $x_{i} \in V_{i}$ it is straight forward to conclude that $\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]$ is multi-linear and all the properties in Lemma 3.3.2 hold. Recall that we had an analytic expression to identify 1 -tensor $\left(\left({ }^{A} u\right)^{T}\right)$ and $2-$ tensor ${ }^{A} u \cdot\left({ }^{B} v\right)^{T}$ once a basis is fixed. It is quite clear that such an expression is impossible to get if $k \geq 3$. However, a k-tensor can be identified as a k-dimensional array computationally $\forall k \in \mathbb{N}$.

2.3.3 Basis of k-fold tensor product spaces

Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be an orthonormal basis of $V_{1}, A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be an orthonormal basis of $V_{2}, \ldots, A_{k}=$ $\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be an orthonormal basis of V_{k}. Define $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}=$ $\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{k} \leq n_{k}\right\}$. Lemma 2.3.2 implies that $\forall i_{1} \in\left\{1,2, \ldots, n_{1}\right\} \forall i_{2} \in\left\{1,2, \ldots, n_{2}\right\} \ldots \forall i_{k} \in\left\{1,2, \ldots, n_{k}\right\}$ $a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}$ is multi-linear.

2. Tensor products

Theorem 2.3.4. $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis for vector space $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$
Proof. Span :
$\forall x_{1} \in V_{1}$ since A_{1} is a basis of V_{1} there exist unique $\alpha_{1 i_{1}} \in \mathbb{C}$ such that,

$$
x_{1}=\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}
$$

$\forall x_{2} \in V_{2}$ since A_{2} is a basis of V_{2} there exist unique $\alpha_{2 i_{2}} \in \mathbb{C}$ such that,

$$
x_{2}=\sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}
$$

$\forall x_{k} \in V_{k}$ since A_{k} is a basis of V_{k} there exist unique $\alpha_{k i_{k}} \in \mathbb{C}$ such that,

$$
x_{k}=\sum_{i_{1}=1}^{n_{k}} \alpha_{k i_{k}} a_{k i_{k}}
$$

$\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ since u is multi-linear we get,

$$
\begin{aligned}
u\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =u\left(\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}, \ldots, \sum_{i_{k}=1}^{n_{3}} \alpha_{k i_{k}} a_{k i_{k}}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{1 i_{1}} \alpha_{2 i_{2}} \ldots \alpha_{k i_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)
\end{aligned}
$$

$\forall i_{1} \in\left\{1, \ldots, n_{1}\right\} i_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots \quad i_{k} \in\left\{1, \ldots, n_{k}\right\}$ since $A_{1}, A_{2}, \ldots, A_{k}$ are orthonormal bases we get,

$$
\begin{aligned}
& {\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(a_{1 i_{1}}, x_{1}\right)\left(a_{2 i_{2}}, x_{2}\right) \ldots\left(a_{k i_{k}}, x_{k}\right)=\prod_{j=1}^{k} \alpha_{j i_{j}}} \\
& \Longrightarrow u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Longrightarrow u
\end{gathered}=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right] .
$$

Linear Independence :

Let $\alpha_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathbb{C} \forall i_{1} \in\left\{1, \ldots, n_{1}\right\} i_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots i_{k} \in\left\{1, \ldots, n_{k}\right\}$. Consider,

$$
\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]=0
$$

$\forall j_{1} \in\left\{1, \ldots, n_{1}\right\} j_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots j_{k} \in\left\{1, \ldots, n_{k}\right\}$,

$$
\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{k j_{k}}\right)=0
$$

Since $A_{1}, A_{2}, \ldots, A_{k}$ are orthonormal bases we get,

$$
\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}\left(a_{1 i_{1}}, a_{1 j_{1}}\right)\left(a_{2 i_{2}}, a_{2 j_{2}}\right) \ldots\left(a_{k i_{k}}, a_{k j_{k}}\right)=\alpha_{j_{1}, j_{2}, \ldots, j_{k}}=0
$$

$\Longrightarrow A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a linearly independent set and a basis of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$

Corollary 2.3.5.

$$
\operatorname{dim}\left(\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)\right)=\operatorname{dim}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)=\prod_{i=1}^{k} \operatorname{dim}\left(V_{i}\right)
$$

2. Tensor products

Illustration :

Consider $V_{i}=\mathbb{C}^{2}$ over $\mathbb{C} \forall i \in\{1,2, \ldots, k\}$ with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Verify that A forms orthonormal basis of each $V_{i}=\mathbb{C}^{2}$. Let $A^{*}=\left\{a_{1}^{*}, a_{2}^{*}\right\}$. Recall that A^{*} is a dual basis of V^{*}.
$\forall i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\} \forall x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{C}^{2}$,

$$
\begin{aligned}
{\left[a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right) } & =a_{i_{1}}^{*}\left(x_{1}\right) \cdot a_{i_{2}}^{*}\left(x_{2}\right) \cdot \ldots \cdot a_{i_{k}}^{*}\left(x_{k}\right) \\
& =\left(\overline{{ }^{A} a_{i_{1}}} \odot{ }^{A} x_{1}\right) \cdot\left(\overline{{ }^{A} a_{i_{2}}} \odot{ }^{A} x_{2}\right) \cdot \ldots \cdot\left(\overline{{ }^{A} a_{i_{k}}} \odot{ }^{A} x_{k}\right) \\
& ={ }^{A} x_{1}\left[i_{1}\right] \cdot{ }^{A} x_{2}\left[i_{2}\right] \cdot \ldots \cdot{ }^{A} x_{k}\left[i_{k}\right]
\end{aligned}
$$

Let $\underbrace{A \otimes A \otimes \ldots \otimes A}_{k \text { times }}=\otimes_{i=1}^{k} A=\left\{a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*} \mid 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq 2\right\}$.
Above Theorem implies that $\otimes_{i=1}^{k} A$ is a basis of $\mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{R}\right)$,
$u\left(\left[\begin{array}{ll}x_{11} & x_{12}\end{array}\right]^{T}, \ldots,\left[\begin{array}{ll}x_{k 1} & x_{k 2}\end{array}\right]^{T}\right)=x_{11} \cdot x_{21} \ldots x_{k 1}=\prod_{i=1}^{k} x_{i 1}$ where $\left[\begin{array}{ll}x_{j 1} & x_{j 2}\end{array}\right]^{T} \in \mathbb{C}^{2} \forall j$
It is straight-forward to verify that u is multi-linear. Since A is a basis of $\mathbb{C}^{2} \forall$ $\left[\begin{array}{ll}x_{11} & x_{12}\end{array}\right]^{T} \in \mathbb{C}^{2}$ there exist unique $\alpha_{11}, \alpha_{12} \in \mathbb{C}$ such that,

$$
\left[\begin{array}{ll}
x_{11} & x_{12}
\end{array}\right]^{T}=\alpha_{11} a_{1}+\alpha_{12} a_{2}
$$

$\forall\left[\begin{array}{ll}x_{21} & x_{22}\end{array}\right]^{T} \in \mathbb{C}^{2}$ there exist unique $\alpha_{21}, \alpha_{22} \in \mathbb{C}$ such that,

$$
\left[\begin{array}{ll}
x_{21} & x_{22}
\end{array}\right]^{T}=\alpha_{21} a_{1}+\alpha_{22} a_{2}
$$

$\forall\left[\begin{array}{ll}x_{k 1} & x_{k 2}\end{array}\right]^{T} \in \mathbb{C}^{2}$ there exist unique $\alpha_{k 1}, \alpha_{k 2} \in \mathbb{C}$ such that,

$$
\left[\begin{array}{ll}
x_{k 1} & x_{k 2}
\end{array}\right]^{T}=\alpha_{k 1} a_{1}+\alpha_{k 2} a_{2}
$$

2. Tensor products

Since u is multi-linear we get that

$$
\begin{aligned}
u\left(\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right],\left[\begin{array}{l}
x_{21} \\
x_{22}
\end{array}\right], \ldots,\left[\begin{array}{l}
x_{k 1} \\
x_{k 2}
\end{array}\right]\right) & =u\left(\sum_{i_{1}=1}^{2} \alpha_{1 i_{1}} a_{i_{1}}, \sum_{i_{2}=1}^{2} \alpha_{2 i_{2}} a_{i_{2}}, \ldots, \sum_{i_{k}=1}^{2} \alpha_{k i_{k}} a_{i_{k}}\right) \\
& =\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2} \ldots \sum_{i_{k}=1}^{2} \alpha_{1 i_{1}} \alpha_{2 i_{2}} \ldots \alpha_{k i_{k}} u\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right)
\end{aligned}
$$

It is quite clear that computing $u\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right)$ is sufficient to determine the action of u on any $\left[\begin{array}{ll}x_{11} & x_{12}\end{array}\right]^{T}, \ldots,\left[\begin{array}{ll}x_{k 1} & x_{k 2}\end{array}\right]^{T} \in \mathbb{C}^{2}$.

$$
\Longrightarrow u\left(\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right], \ldots,\left[\begin{array}{l}
x_{k 1} \\
x_{k 2}
\end{array}\right]\right)=\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2} \ldots \sum_{i_{k}=1}^{2} u\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)\left[a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right], \ldots,\left[\begin{array}{l}
x_{k 1} \\
x_{k 2}
\end{array}\right]\right)
$$

With this illustration, you can observe how $\otimes_{i=1}^{k} A$ works as a basis of $\mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right)$ and also note that the values of $u\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right)$ is sufficient to compute u on any $\left[\begin{array}{ll}x_{11} & x_{12}\end{array}\right]^{T},\left[\begin{array}{ll}x_{21} & x_{22}\end{array}\right]^{T}, \ldots,\left[\begin{array}{ll}x_{k 1} & x_{k 2}\end{array}\right]^{T} \in \mathbb{C}^{2}$.

2.3.4 Basis transformation

Definition 2.3.3. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be an orthonormal basis of $V_{1}, A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be an orthonormal basis of V_{2}, $\ldots, A_{k}=\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be an orthonormal basis of A_{k}. Let $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}=$ $\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{k} \leq n_{k}\right\}$. Theorem 3.3.3 implies that $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ forms a basis of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$. $\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ we have

$$
u=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}} \otimes a_{2 i_{2}} \ldots \otimes a_{k i_{k}}\right]
$$

Define coordinates of the multi-linear function u as follows,
${ }_{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]=u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right) \quad$ where $1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{k} \leq n_{k}$

Note :

1. Note that column vector representation is used for 1 -tensors and matrix representation is used for 2 -tensors. Recall from the illustration 2.3 .2 that for k-tensors such an analytic representation is not possible when $k \geq 3$. But, k-tensors can be represented as k-dimensional array computationally.

Theorem 2.3.6. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, \ldots, a_{1 n_{1}}\right\}$ and $B_{1}=\left\{b_{11}, \ldots, b_{1 n_{1}}\right\}$ be any two orthonormal basis of V_{1}, let $A_{2}=\left\{a_{21}, \ldots, a_{2 n_{2}}\right\}$ and $B_{2}=\left\{b_{21}, \ldots, b_{2 n_{2}}\right\}$ be any two orthonormal basis of V_{2}, \ldots, let $A_{k}=\left\{a_{k 1}, \ldots, a_{k n_{k}}\right\}$ and $B_{k}=\left\{b_{k 1}, \ldots, b_{k n_{k}}\right\}$ be any two orthonormal basis of V_{k}. Let $A_{1} \otimes A_{2} \otimes \ldots \otimes$ $A_{k}=\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{k} \leq n_{k}\right\}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}=\left\{b_{1 j_{1}}^{*} \otimes b_{2 j_{2}}^{*} \otimes \ldots \otimes b_{k j_{k}}^{*} \mid 1 \leq j_{1} \leq n_{1}, 1 \leq j_{2} \leq n_{2}, \ldots, 1 \leq j_{k} \leq n_{k}\right\}$. Theorem 3.3 .3 implies that $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ form bases of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$. Let ${ }^{i} M \in \mathbb{C}^{n_{i} \times n_{i}}$ be the transformation matrix from A_{i} to B_{i} i.e,

$$
\left[\begin{array}{lllll}
a_{i 1} & a_{i 2} & . & . & a_{i n_{i}}
\end{array}\right]=\left[\begin{array}{lllll}
b_{i 1} & b_{i 2} & . & . & b_{i n_{i}}
\end{array}\right]^{i} M
$$

where $1 \leq i \leq k . \forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$,

$$
B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} \bar{M}_{j_{1} i_{1}}{ }^{2} \bar{M}_{j_{2} i_{2} \ldots}{ }^{k} \bar{M}_{j_{k} i_{k}} A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]
$$

where $1 \leq j_{1} \leq n_{1} 1 \leq j_{2} \leq n_{2} \ldots 1 \leq j_{k} \leq n_{k}$.
Proof. $\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ form bases of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$,

$$
\begin{aligned}
u & =\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}} \otimes a_{2 i_{2}} \ldots \otimes a_{k i_{k}}\right] \\
& =\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \ldots \sum_{j_{k}=1}^{n_{k}} u\left(b_{1 j_{1}}, b_{2 j_{2}}, \ldots, b_{k j_{k}}\right)\left[b_{1 j_{1}} \otimes b_{2 j_{2}} \ldots \otimes b_{k j_{k}}\right]
\end{aligned}
$$

Since ${ }^{1} M$ is the transformation matrix from basis A_{1} to B_{1} we get that ${ }^{1} M^{*}$ is the transformation from B_{1} to A_{1} i.e,

$$
\left[\begin{array}{lllll}
b_{11} & b_{12} & . & . & b_{1 n_{1}}
\end{array}\right]=\left[\begin{array}{lllll}
a_{11} & a_{12} & . & . & a_{1 n_{1}}
\end{array}\right]^{1} M^{*}
$$

$\forall j_{1} \in\left\{1,2, \ldots, n_{1}\right\}$,

$$
b_{1 j_{1}}=\sum_{i_{1}=1}^{n_{1}}{ }^{1} M_{i_{1} j_{1}}^{*} a_{1 i_{1}}=\sum_{i_{1}=1}^{n_{1}}{ }^{1} \bar{M}_{j_{1} i_{1}} a_{1 i_{1}}
$$

Since ${ }^{2} M$ is the transformation matrix from basis A_{2} to B_{2} we get that ${ }^{2} M^{*}$ is the transformation from B_{2} to A_{2} i.e,

$$
\left[\begin{array}{lllll}
b_{21} & b_{22} & . & . & b_{2 n_{2}}
\end{array}\right]=\left[\begin{array}{lllll}
a_{21} & a_{22} & . & . & a_{2 n_{2}}
\end{array}\right]^{2} M^{*}
$$

$\forall j_{2} \in\left\{1,2, \ldots, n_{2}\right\}$,

$$
b_{2 j_{2}}=\sum_{i_{2}=1}^{n_{2}}{ }^{2} M_{i_{2} j_{2}}^{*} a_{2 i_{2}}=\sum_{i_{2}=1}^{n_{2}}{ }^{2} \bar{M}_{j_{2} i_{2}} a_{2 i_{2}}
$$

Since ${ }^{k} M$ is the transformation matrix from basis A_{k} to B_{k}, we get that ${ }^{k} M^{*}$ is the transformation from B_{k} to A_{k} i.e,

$$
\left[\begin{array}{lllll}
b_{k 1} & b_{k 2} & . & . & b_{k n_{k}}
\end{array}\right]=\left[\begin{array}{lllll}
a_{k 1} & a_{k 2} & . & . & a_{k n_{k}}
\end{array}\right]^{k} M^{*}
$$

$\forall j_{k} \in\left\{1,2, \ldots, n_{k}\right\}$,

$$
b_{k j_{k}}=\sum_{i_{k}=1}^{n_{k}}{ }^{k} M_{i_{k} j_{k}}^{*} a_{k i_{k}}=\sum_{i_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{j_{k} i_{k}} a_{k i_{k}}
$$

Since u is multi-linear we get,

$$
u\left(b_{1 j_{1}}, b_{2 j_{2}}, \ldots, b_{k j_{k}}\right)=u\left(\sum_{i_{1}=1}^{n_{1}}{ }^{1} \bar{M}_{j_{1} i_{1}} a_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}}{ }^{2} \bar{M}_{j_{2} i_{2}} a_{2 i_{2}}, \ldots, \sum_{i_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{j_{k} i_{k}} a_{k i_{k}}\right)
$$

$$
\begin{gathered}
=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \bar{M}_{j_{1} i_{1}}{ }^{2} \bar{M}_{j_{2} i_{2} \ldots} \ldots \bar{M}_{j_{k} i_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right) \\
\Longrightarrow{ }^{B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} \bar{M}_{j_{1} i_{1}}{ }^{2} \bar{M}_{j_{2} i_{2} \ldots}{ }^{k} \bar{M}_{j_{k} i_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]
\end{gathered}
$$

Illustration :

Consider $V_{i}=\mathbb{C}^{2}$ over $\mathbb{C} \forall i \in\{1,2, \ldots, k\}$ with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Verify that A forms orthonormal basis of each $V_{i}=\mathbb{C}^{2}$. Let $B=\left\{b_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$. Notice that B is the standard orthonormal bases of \mathbb{C}^{2}.
$\forall i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\} \forall x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{C}^{2}$,

$$
\begin{aligned}
{\left[a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right) } & =a_{i_{1}}^{*}\left(x_{1}\right) \cdot a_{i_{2}}^{*}\left(x_{2}\right) \cdot \ldots \cdot a_{i_{k}}^{*}\left(x_{k}\right) \\
& =\left(\overline{{ }^{A} a_{i_{1}}} \odot{ }^{A} x_{1}\right) \cdot\left(\overline{{ }^{A} a_{i_{2}}} \odot{ }^{A} x_{2}\right) \cdot \ldots \cdot\left(\overline{{ }^{A} a_{i_{k}}} \odot{ }^{A} x_{k}\right) \\
& ={ }^{A} x_{1}\left[i_{1}\right] \cdot{ }^{A} x_{2}\left[i_{2}\right] \cdot \ldots \cdot{ }^{A} x_{k}\left[i_{k}\right]
\end{aligned}
$$

Let $\underbrace{A \otimes A \otimes \ldots \otimes A}_{k \text { times }}=\otimes_{i=1}^{k} A=\left\{a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*} \mid 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq 2\right\}$.
Similarly $\forall j_{1}, j_{2}, \ldots, j_{k} \in\{1,2\}$ we have

$$
\left[b_{j_{1}}^{*} \otimes b_{j_{2}}^{*} \ldots \otimes b_{j_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)={ }^{B} x_{1}\left[j_{1}\right] \cdot{ }^{B} x_{2}\left[j_{2}\right] \cdot \ldots \cdot{ }^{B} x_{k}\left[j_{k}\right]
$$

Let $\underbrace{B \otimes B \otimes \ldots \otimes B}_{k \text { times }}=\otimes_{i=1}^{k} B=\left\{b_{j_{1}}^{*} \otimes b_{j_{2}}^{*} \ldots \otimes b_{j_{k}}^{*} \mid 1 \leq j_{1}, j_{2}, \ldots, j_{k} \leq 2\right\}$. Theorem
3.3.3 implies that $\otimes_{i=1}^{k} A$ and $\otimes_{j=1}^{k} B$ form bases of $\mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right)$.

Computing the basis transformation matrix from basis A to B

$$
\begin{gathered}
a_{1}=\frac{1}{\sqrt{2}} b_{1}+\frac{i}{\sqrt{2}} b_{2} \quad a_{2}=\frac{1}{\sqrt{2}} b_{1}-\frac{i}{\sqrt{2}} b_{2} \\
{\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right] \Longrightarrow M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]}
\end{gathered}
$$

2. Tensor products

We get that M is the transformation matrix from basis A to B of \mathbb{C}^{2} which implies that M^{*} is the transformation matrix from basis B to A i.e,

$$
\begin{array}{ccc}
{\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]} \\
\Longrightarrow b_{1}=\frac{1}{\sqrt{2}} a_{1}+\frac{1}{\sqrt{2}} a_{2} & b_{2}=-\frac{i}{\sqrt{2}} a_{1}+\frac{i}{\sqrt{2}} a_{2}
\end{array}
$$

Notice that each ${ }^{i} M=M$ since each $V_{i}=\mathbb{C}^{2}$.
$\forall u \in \mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right) \forall j_{1}, j_{2}, \ldots, j_{k} \in\{1,2\}$ we get

$$
\begin{aligned}
& u\left(b_{1 j_{1}}, b_{2 j_{2}}, \ldots, b_{k j_{k}}\right)=u\left(\sum_{i=1}^{2} M_{i_{1} j_{1}}^{*} a_{i_{1}}, \sum_{i_{2}=1}^{2} M_{i_{2} j_{2}}^{*} a_{i_{2}}, \ldots, \sum_{i_{k}=1}^{2} M_{i_{k} j_{k}}^{*} a_{i_{k}}\right) \\
&=\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2} \ldots \sum_{i_{k}=1}^{2} \bar{M}_{j_{1} i_{1}} \bar{M}_{j_{2} i_{2}} \ldots \bar{M}_{j_{k} i_{k}} u\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right) \\
& \Longrightarrow{ }^{B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2} \ldots \sum_{i_{k}=1}^{2} \bar{M}_{j_{1} i_{1}} \bar{M}_{j_{2} i_{2}} \ldots \bar{M}_{j_{k} i_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]
\end{aligned}
$$

2.3.5 Invariance of computation of k-tensors under any orthonormal basis transformations

Theorem 2.3.7. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, \ldots, a_{1 n_{1}}\right\}$ be any orthonormal basis of V_{1}, let $A_{2}=\left\{a_{21}, \ldots, a_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2}, \ldots, let $A_{k}=\left\{a_{k 1}, \ldots, a_{k n_{k}}\right\}$ be any orthonormal basis of V_{k}. Let $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}=$ $\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{k} \leq n_{k}\right\}$. Theorem 3.3.3 implies that $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ form basis of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right) \forall x_{1} \in V_{1}$ $\forall x_{2} \in V_{2} \ldots \forall x_{k} \in V_{k}$,
$u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]^{A_{1}} x_{1}\left[i_{1}\right]^{A_{2}} x_{2}\left[i_{2}\right] \ldots{ }^{A_{k}} x_{k}\left[i_{k}\right]$

Proof. $\forall x_{1} \in V_{1}$ since A_{1} is a basis of V_{1} there exist unique $\alpha_{1 i_{1}} \in \mathbb{C}$ such that,

$$
x_{1}=\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}
$$

$\forall x_{2} \in V_{2}$ since A_{2} is a basis of V_{2} there exist unique $\alpha_{2 i_{2}} \in \mathbb{C}$ such that,

$$
x_{2}=\sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}
$$

$\forall x_{k} \in V_{k}$ since A_{k} is a basis of V_{k} there exist unique $\alpha_{k i_{k}} \in \mathbb{C}$ such that,

$$
x_{k}=\sum_{i_{k}=1}^{n_{k}} \alpha_{k i_{k}} a_{k i_{k}}
$$

$\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ we have,

$$
\begin{aligned}
u\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =u\left(\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}, \ldots, \sum_{i_{k}=1}^{n_{k}} \alpha_{k i_{k}} a_{k i_{k}}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{1 i_{1}} \alpha_{2 i_{2}} \ldots \alpha_{k i_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)
\end{aligned}
$$

Since $A_{1}, A_{2}, \ldots, A_{k}$ are bases of $V_{1}, V_{2}, \ldots, V_{k}$ respectively we get that,

$$
\alpha_{1 i_{1}}={ }^{A_{1}} x_{1}\left[i_{1}\right] \quad \alpha_{2 i_{2}}={ }^{A_{2}} x_{2}\left[i_{2}\right] \quad \ldots \quad \alpha_{k i_{k}}={ }^{A_{k}} x_{k}\left[i_{k}\right]
$$

Since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ forms basis of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$, we get

$$
\begin{gathered}
u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)={ }^{A_{1} \otimes A_{2} \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right] \\
\Longrightarrow u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{A_{1} \otimes A_{2} \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]^{A_{1}} x_{1}\left[i_{1}\right]^{A_{2}} x_{2}\left[i_{2}\right] \ldots{ }^{A_{k}} x_{k}\left[i_{k}\right]
\end{gathered}
$$

Remark :

1. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, \ldots, a_{1 n_{1}}\right\}$ and $B_{1}=$ $\left\{b_{11}, \ldots, b_{1 n_{1}}\right\}$ be any two orthonormal basis of V_{1}, let $A_{2}=\left\{a_{21}, \ldots, a_{2 n_{2}}\right\}$ and $B_{2}=\left\{b_{21}, \ldots, b_{2 n_{2}}\right\}$ be any two orthonormal basis of V_{2}, \ldots, let $A_{k}=$ $\left\{a_{k 1}, \ldots, a_{k n_{k}}\right\}$ and $B_{k}=\left\{b_{k 1}, \ldots, b_{k n_{k}}\right\}$ be any two orthonormal basis of V_{k}. Let $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}=\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq\right.$ $\left.i_{k} \leq n_{k}\right\}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}=\left\{b_{1 j_{1}}^{*} \otimes b_{2 j_{2}}^{*} \otimes \ldots \otimes b_{k j_{k}}^{*} \mid 1 \leq j_{1} \leq n_{1}, 1 \leq\right.$ $\left.j_{2} \leq n_{2}, \ldots, 1 \leq j_{k} \leq n_{k}\right\}$. Theorem 3.3.3 implies that $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ form bases of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right) . \forall x_{1} \in V_{1}$ $\forall x_{2} \in V_{2} \ldots \forall x_{k} \in V_{k}$ we get,

$$
\begin{aligned}
u\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]^{A_{1}} x_{1}\left[i_{1}\right]^{A_{2}} x_{2}\left[i_{2}\right] \ldots{ }^{A_{k}} x_{k}\left[i_{k}\right] \\
& =\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \ldots \sum_{j_{k}=1}^{n_{k}}{ }^{B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]^{B_{1}} x_{1}\left[j_{1}\right]^{B_{2}} x_{2}\left[j_{2}\right] \ldots{ }^{B_{k}} x_{k}\left[j_{k}\right]
\end{aligned}
$$

2. It is easy to observe that $\forall\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in V_{1} \times V_{2} \times \ldots \times V_{k} u\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ can be completely determined by the coordinates of u i.e, ${ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]$. Hence if we fix computations with respect to orthonormal bases A_{1}, A_{2}, \ldots, A_{k} of $V_{1}, V_{2}, \ldots, V_{k}$ respectively we can identify u with its coordinates ${ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]$.
3. Let $\operatorname{dim}\left(V_{i}\right)=n_{i}$ then $\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{R}\right)$,

$$
{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]=u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)
$$

Hence k-fold tensor product space $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)$ is isomorphic to $\mathbb{C}^{n_{1} \times n_{2} \times \ldots \times n_{k}}$. (It is straight-forward to verify and is left to the reader. For the proof technique you may refer Lemma 1.1.9)

Illustration :

Consider $V_{i}=\mathbb{C}^{2}$ over $\mathbb{C} \forall i \in\{1,2, \ldots, k\}$ with standard dot product as inner product. Let $A=\left\{a_{1}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\end{array}\right]^{T}, a_{2}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right]^{T}\right\}$. Verify that A forms orthonormal basis of each $V_{i}=\mathbb{C}^{2}$. Let $B=\left\{b_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, b_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$. Notice that B is the standard orthonormal bases of \mathbb{C}^{2}.
$\forall i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\} \forall x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{C}^{2}$,

$$
\begin{aligned}
{\left[a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right) } & =a_{i_{1}}^{*}\left(x_{1}\right) \cdot a_{i_{2}}^{*}\left(x_{2}\right) \cdot \ldots \cdot a_{i_{k}}^{*}\left(x_{k}\right) \\
& =\left(\overline{{ }^{A} a_{i_{1}}} \odot{ }^{A} x_{1}\right) \cdot\left(\overline{{ }^{A} a_{i_{2}}} \odot{ }^{A} x_{2}\right) \cdot \ldots \cdot\left(\overline{{ }^{A} a_{i_{k}}} \odot{ }^{A} x_{k}\right) \\
& ={ }^{A} x_{1}\left[i_{1}\right] \cdot{ }^{A} x_{2}\left[i_{2}\right] \cdot \ldots \cdot{ }^{A} x_{k}\left[i_{k}\right]
\end{aligned}
$$

Let $\underbrace{A \otimes A \otimes \ldots \otimes A}_{k \text { times }}=\otimes_{i=1}^{k} A=\left\{a_{i_{1}}^{*} \otimes a_{i_{2}}^{*} \otimes \ldots \otimes a_{i_{k}}^{*} \mid 1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq 2\right\}$. Similarly $\forall j_{1}, j_{2}, \ldots, j_{k} \in\{1,2\}$ we have

$$
\left[b_{j_{1}}^{*} \otimes b_{j_{2}}^{*} \ldots \otimes b_{j_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)={ }^{B} x_{1}\left[j_{1}\right] \cdot{ }^{B} x_{2}\left[j_{2}\right] \cdot \ldots \cdot{ }^{B} x_{k}\left[j_{k}\right]
$$

Let $\underbrace{B \otimes B \otimes \ldots \otimes B}_{k \text { times }}=\otimes_{i=1}^{k} B=\left\{b_{j_{1}}^{*} \otimes b_{j_{2}}^{*} \ldots \otimes b_{j_{k}}^{*} \mid 1 \leq j_{1}, j_{2}, \ldots, j_{k} \leq 2\right\}$. Theorem 3.3.3 implies that $\otimes_{i=1}^{k} A$ and $\otimes_{j=1}^{k} B$ form bases of $\mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right)$. In the previous illustration, we have already shown that the basis transformation matrix M from A to B is

$$
M=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]
$$

$\forall x \in \mathbb{C}^{2}$,

$$
{ }^{B} x=M \cdot{ }^{A} x
$$

In this illustration we show that $\forall u_{1}, u_{2}, \ldots, u_{k} \in \mathbb{C}^{2},\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]$ has the same value irrespective of the choice of orthonormal basis and this is sufficient to claim that any $v \in \mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right)$ has the same value irrespective of the choice of orthonormal basis since any $v \in \mathcal{L}\left(\left(\mathbb{C}^{2}\right)^{k} \rightarrow \mathbb{C}\right)$ can be written as a linear
combination of tensor products in $\otimes_{i=1}^{k} A$.

$$
\left.\begin{array}{rl}
{\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)} & =u_{1}\left(x_{1}\right) \cdot u_{2}\left(x_{2}\right) \cdot \ldots \cdot u_{k}\left(x_{k}\right) \\
& =\left(\overline{{ }^{B}} u_{1} \odot{ }^{B} x_{1}\right) \cdot\left({ }^{\bar{B}} u_{2} \odot{ }^{B} x_{2}\right) \cdot \ldots \cdot\left(\overline{{ }^{B} u_{k}} \odot{ }^{B} x_{k}\right) \\
& =\prod_{i=1}^{k}\left(\overline{{ }^{B}} u_{i} \odot{ }^{B} x_{i}\right)=\prod_{i=1}^{k}\left(\overline{\bar{M}} \cdot{ }^{A} u_{i}\right) \odot\left(M \cdot{ }^{A} x_{i}\right) \\
& =\prod_{i=1}^{k}\left(\left({ }^{A} u_{i}\right)^{T} \cdot{ }^{A} x_{i}\right)=\prod_{i=1}^{k}\left(\overline{{ }^{A}} u_{i}\right.
\end{array}{ }^{A} x_{i}\right), ~ l
$$

2.3.6 Inner products on k-fold tensor product spaces

In this section we define a function ()$:\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right) \times\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right) \rightarrow$ \mathbb{C} in terms of inner products defined on $V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}$ and prove that this function is an inner product.

Definition 2.3.4. Let $V_{1}, V_{2}, \ldots, V_{k}$ be any finite dimensional inner product space where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\} . \forall u_{11}, \ldots, u_{1 r}, v_{11}, \ldots, v_{1 s} \in V_{1}^{*} \forall$ $u_{21}, \ldots, u_{2 r}, v_{21}, \ldots, v_{2 s} \in V_{2}^{*} \ldots \forall u_{k 1}, \ldots, u_{k r}, v_{k 1}, \ldots, v_{k s} \in V_{k}^{*} \forall \alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s} \in$ \mathbb{C} Define the following function ()$:\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right) \times\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right) \rightarrow \mathbb{C}$,

$$
\begin{equation*}
\left(\sum_{i=1}^{r} \alpha_{i}\left[u_{1 i} \otimes \ldots \otimes u_{k i}\right], \sum_{j=1}^{s} \beta_{j}\left[v_{1 i} \otimes \ldots \otimes v_{k i}\right]\right)=\sum_{i=1}^{r} \sum_{j=1}^{s} \bar{\alpha}_{i} \beta_{j} \prod_{l=1}^{k}\left(u_{l i}, v_{l j}\right)_{l} \tag{2.5}
\end{equation*}
$$

Note that for any $l \in\{1,2, \ldots, k\}()_{l}$ is an inner product on V_{l}^{*}. In the subsequent analysis we drop the subscripts since we believe that the context of usage shall be clear.

In this lemma it is shown that how above definition can be used to compute $(u, v) \forall u, v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

Lemma 2.3.8. Let $V_{1}, V_{2}, \ldots, V_{k}$ be any finite dimensional inner product spaces where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{11}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be any orthonormal basis of $V_{1}, A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2}, $\ldots, A_{k}=\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be any orthonormal basis of $V_{k} . \forall u, v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$
since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ there exist $\alpha_{i_{1}, i_{2}, \ldots, i_{k}}, \beta_{j_{1}, j_{2}, \ldots, j_{k}} \in$ \mathbb{C} such that,

$$
\begin{gather*}
u=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right] \quad v=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1}, \ldots, j_{k}}\left[a_{1 j_{1}}^{*} \otimes \ldots \otimes a_{k j_{k}}^{*}\right] \\
(u, v)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \tag{2.6}
\end{gather*}
$$

Proof. Proof is straight forward and left to reader (use equation 2.5).

Remark :

1. The existence of inner products on dual space i.e, ()$_{1},()_{2}, \ldots,()_{k}$ is already shown in section 2.1.6. Also It is already shown that with respect to the inner product defined in section 2.1.6 $A_{1}^{*}, A_{2}^{*}, \ldots, A_{k}^{*}$ are orthonormal bases which implies that,

$$
\begin{equation*}
(u, v)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{i_{1}, \ldots, i_{k}} \tag{2.7}
\end{equation*}
$$

2. Note that in the subsequent analysis we consider arbitrary inner products on $V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}$ in order to make the theory more general. Hence equation 2.6 is used instead of equation 2.7.

Lemma 2.3.9. $\forall u, v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$,
$(u, v)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \quad$ is well-defined
Proof. Let $B_{11}=\left\{b_{11}, b_{12}, \ldots, b_{1 n_{1}}\right\}$ be any another orthonormal basis of $V_{1}, B_{2}=$ $\left\{b_{21}, b_{22}, \ldots, b_{2 n_{2}}\right\}$ be any another orthonormal basis of $V_{2}, \ldots, B_{k}=\left\{b_{k 1}, b_{k 2}, \ldots, b_{k n_{k}}\right\}$ be any another orthonormal basis of V_{k}. Since $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes B_{k}$ there exist $\gamma_{p_{1}, p_{2}, \ldots, p_{k}}, \delta_{q_{1}, q_{2}, \ldots, q_{k}} \in \mathbb{C}$ such that,
$u=\sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \gamma_{p_{1}, \ldots, p_{k}}\left[b_{1 p_{1}}^{*} \otimes \ldots \otimes b_{k p_{k}}^{*}\right] \quad v=\sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}} \delta_{q_{1}, \ldots, q_{k}}\left[b_{1 q_{1}}^{*} \otimes \ldots \otimes b_{k q_{k}}^{*}\right]$

Inner product of u and v using basis $B_{1}^{*}, B_{2}^{*}, \ldots, B_{k}^{*}$ is

$$
(u, v)=\sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}} \bar{\gamma}_{p_{1}, \ldots, p_{k}} \delta_{q_{1} \ldots, q_{k}}\left(b_{1 p_{1}}^{*}, b_{1 q_{1}}^{*}\right) \ldots\left(b_{k p_{k}}^{*}, b_{k q_{k}}^{*}\right)
$$

To claim (u, v) is well-defined it is enough to show that

$$
\begin{aligned}
& \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \\
& =\sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}} \bar{\gamma}_{p_{1}, \ldots, p_{k}} \delta_{q_{1} \ldots, q_{k}}\left(b_{1 p_{1}}^{*}, b_{1 q_{1}}^{*}\right) \ldots\left(b_{k p_{k}}^{*}, b_{k q_{k}}^{*}\right)
\end{aligned}
$$

Let ${ }^{1} M \in \mathbb{C}^{n_{1} \times n_{1}}$ be the transformation matrix from basis A_{1} to B_{1}. Theorem 2.1.5 implies that,

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llll}
a_{11}^{*} & a_{12}^{*} & \cdot & \cdot
\end{array} a_{1 n_{1}}^{*}\right.}
\end{array}\right]=\left[\begin{array}{llll}
b_{11}^{*} & b_{12}^{*} & \cdot & \cdot
\end{array} b_{1 n_{1}}^{*}\right]^{1} \bar{M} .
$$

Let ${ }^{k} M \in \mathbb{C}^{n_{k} \times n_{k}}$ be the transformation matrix from basis A_{k} to B_{k}. Theorem 2.1.5 implies that,

$$
\left.\begin{array}{c}
{\left[\begin{array}{llll}
a_{k 1}^{*} & a_{k 2}^{*} & \cdot & a_{k n_{k}}^{*}
\end{array}\right]=\left[\begin{array}{llll}
b_{k 1}^{*} & b_{k 2}^{*} & \cdot & \cdot
\end{array} b_{k n_{k}}^{*}\right.}
\end{array}\right]^{k} \bar{M} \overline{{ }_{M}}\left[a_{k i_{k}}^{*}=\sum_{p_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{p_{k} i_{k}} b_{k p_{k}}^{*} \text { and } a_{k j_{k}}^{*}=\sum_{q_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{q_{k} j_{k}} b_{k q_{k}}^{*} .\right.
$$

Above two equations imply that,

$$
\begin{aligned}
& \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}{ }^{1} M_{p_{1} i_{1}} \ldots{ }^{k} M_{p_{k} i_{k}} \\
& { }^{1} \bar{M}_{q_{1} j_{1}} \ldots \bar{M}_{q_{k} j_{k}}\left(b_{1 p_{1}}^{*}, b_{1 q_{1}}^{*}\right) \ldots\left(b_{k p_{k}}^{*}, b_{k q_{k}}^{*}\right) \\
& =\sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}}\left(\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}{ }^{1} \bar{M}_{p_{1} i_{1} \ldots}{ }^{k} \bar{M}_{p_{k} i_{k}}\right)
\end{aligned}\left(\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1} \ldots, j_{k}}{ }^{1} \bar{M}_{q_{1} j_{1} \ldots}{ }^{k} \bar{M}_{q_{k} j_{k}}\right)\left(b_{1 p_{1},}^{*}, b_{1 q_{1}}^{*}\right) \ldots\left(b_{k p_{k}}^{*}, b_{k q_{k}}^{*}\right) .
$$

Note that

$$
\begin{array}{cc}
A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k} & u\left[i_{1}, i_{2}, \ldots, i_{k}\right]=\alpha_{i_{1}, i_{2}, \ldots, i_{k}}
\end{array} \quad B_{1 \otimes B_{2} \otimes \ldots \otimes B_{k}} u\left[p_{1}, p_{2}, \ldots, p_{k}\right]=\gamma_{p_{1}, \ldots, p_{k}}
$$

From theorem 2.3.6 we get,

$$
\begin{gathered}
B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k} u\left[p_{1}, p_{2}, \ldots, p_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} \bar{M}_{p_{1} i_{1} \ldots}{ }^{k} \bar{M}_{p_{k} i_{k}} A_{1} \otimes \ldots \otimes A_{k} u\left[i_{1}, \ldots, i_{k}\right] \\
B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k} v\left[q_{1}, q_{2}, \ldots, q_{k}\right]=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}}{ }^{1} \bar{M}_{q_{1} j_{1} \ldots}{ }^{k} \bar{M}_{q_{k} j_{k}} A_{1} \otimes \ldots \otimes A_{k} v\left[j_{1}, \ldots, j_{k}\right] \\
\Longrightarrow \quad \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \\
=\sum_{p_{1}=1}^{n_{1}} \ldots \sum_{p_{k}=1}^{n_{k}} \sum_{q_{1}=1}^{n_{1}} \ldots \sum_{q_{k}=1}^{n_{k}} \bar{\gamma}_{p_{1}, \ldots, p_{k}} \delta_{q_{1} \ldots, q_{k}}\left(b_{1 p_{1}}^{*}, b_{1 q_{1}}^{*}\right) \ldots\left(b_{k p_{k}}^{*}, b_{k q_{k}}^{*}\right)
\end{gathered}
$$

2. Tensor products

Lemma 2.3.10. $\forall u, v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$,
$(u, v)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \beta_{j_{1} \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right)$ is an inner product
Proof. Linearity : $\forall u, v, w \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k} \forall \delta \in \mathbb{C}$,

$$
\begin{aligned}
(u, v+w) & =\left(\sum_{i_{1}=1}^{n_{1}} . . \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, ., i_{k}} a_{1 i_{1}}^{*} \otimes . . \otimes a_{k i_{k}}^{*}, \sum_{j_{1}=1}^{n_{1}} . . \sum_{j_{k}=1}^{n_{k}}\left(\beta_{j_{1}, ., j_{k}}+\gamma_{j_{1} ., j_{k}}\right) a_{1 j_{1}}^{*} \otimes . . \otimes a_{k j_{k}}^{*}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}}\left(\beta_{j_{1}, \ldots, j_{k}}+\gamma_{j_{1}, \ldots, j_{k}}\right)\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \\
& =(u, v)+(u, w) \\
(u, \delta v) & =\left(\sum_{i_{1}=1}^{n_{1}} . . \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, . ., i_{k}} a_{1 i_{1}}^{*} \otimes . . \otimes a_{k i_{k}}^{*}, \sum_{j_{1}=1}^{n_{1}} . . \sum_{j_{k}=1}^{n_{k}}\left(\delta \beta_{j_{1}, . ., j_{k}}\right) a_{1 j_{1}}^{*} \otimes . . \otimes a_{k j_{k}}^{*}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \delta \beta_{j_{1}, \ldots, j_{k}}\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k_{k}}^{*}\right) \\
& =\delta(u, v)
\end{aligned}
$$

Conjugate Symmetry : $\forall u, v \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$,

$$
\begin{aligned}
(u, v) & =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}}\left(\beta_{j_{1}, \ldots, j_{k}}+\gamma_{j_{1}, \ldots, j_{k}}\right)\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) \ldots\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}} \bar{\beta}_{j_{1}, \ldots, j_{k}}\left(a_{1 j_{1}}^{*}, a_{1 i_{1}}^{*}\right) \ldots\left(a_{k j_{k}}^{*}, a_{k i_{k}}^{*}\right) \\
& =\overline{(v, u)}
\end{aligned}
$$

Positive Definiteness : Since each V_{i}^{*} over \mathbb{C} is an inner product space using Gram Schmidt process there exist an orthonormal basis for V_{i}^{*}. Without loss of generality assume $A_{1}^{*}, A_{2}^{*}, \ldots, A_{k}^{*}$ form orthonormal bases of $V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}$ respectively.
$(u, u)=0 \Longleftrightarrow\left(\sum_{i_{1}=1}^{n_{1}} . . \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, ., i_{k}}\left[a_{1 i_{1}}^{*} \otimes . . \otimes a_{k i_{k}}^{*}\right], \sum_{j_{1}=1}^{n_{1}} . . \sum_{j_{k}=1}^{n_{k}} \alpha_{j_{1}, ., j_{k}}\left[a_{1 j_{1}}^{*} \otimes . . \otimes a_{k j_{k}}^{*}\right]\right)=0$

$$
\begin{aligned}
& \Longleftrightarrow \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \bar{\alpha}_{i_{1}, \ldots, i_{k}} \alpha_{i_{1}, \ldots, i_{k}}=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}}\left|\alpha_{i_{1}, \ldots, i_{k}}\right|^{2}=0 \\
& \Longleftrightarrow u=0
\end{aligned}
$$

We end this section showing how inner products can be used in giving an alternate proof for the linear independence of the set $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$. Consider the inner product on dual space defined as in section 2.1.6. $\forall i_{1}, j_{1} \in\left\{1,2, \ldots, n_{1}\right\} \ldots \forall$ $i_{k}, j_{k} \in\left\{1,2, \ldots, n_{k}\right\}$,

$$
\begin{aligned}
\left(a_{1 i_{1}}^{*} \otimes . . \otimes a_{k i_{k}}^{*}, a_{1 j_{1}}^{*} \otimes . . \otimes a_{k j_{k}}^{*}\right)=\left(a_{1 i_{1}}^{*}, a_{1 j_{1}}^{*}\right) . .\left(a_{k i_{k}}^{*}, a_{k j_{k}}^{*}\right) & =1 \text { if }\left(i_{1}, . ., i_{k}\right)=\left(j_{1}, . ., j_{k}\right) \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

From lemma 1.1.7 it is straight forward to verify linear independence of the set $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$.

2.3.7 Linear operators on k-fold tensor product spaces

Definition 2.3.5. Let $\mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right)$ denote the set of all linear operators over the tensor product space of $V_{1}, V_{2}, \ldots, V_{k} \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{C}\right)=V_{1} \otimes V_{2} \otimes$ $\ldots \otimes V_{k}$. Define addition and scalar multiplication on the set $\mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right)$ as follows $\forall T, W \in \mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right) \forall u \in V_{1} \otimes \ldots \otimes V_{k} \forall \alpha \in \mathbb{C}$,

$$
\begin{gathered}
{[T+W] u=T(u)+W(u)} \\
{[\alpha T] u=\alpha \cdot T(u)}
\end{gathered}
$$

Remark :

1. It is straight forward to verify that $\mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right)$ is a vector space over \mathbb{C} and is left to reader (refer lemma 2.3.1).
2. Note that $\mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)$ is also called tensor product space of operators on the dual space $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

Next we define tensor product of k operators and show that any operator on $V_{1} \otimes \ldots \otimes V_{k}$ can be expressed in terms of tensor products.

2. Tensor products

Definition 2.3.6. Let $V_{1}, V_{2}, \ldots, V_{k}$ be any finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let T_{1} be an operator on V_{1}^{*}, \ldots, T_{k} be an operator on V_{k}^{*}. Define the tensor product of T_{1}, \ldots, T_{k} on $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ i.e, $T_{1} \otimes \ldots \otimes T_{k}:\left(V_{1} \otimes \ldots \otimes V_{k}\right) \rightarrow\left(V_{1} \otimes \ldots \otimes V_{k}\right) \forall x_{11}, \ldots, x_{1 l} \in V_{1}^{*}$ $\ldots \forall x_{k 1}, \ldots, x_{k l} \in V_{k}^{*} \forall \alpha_{1}, \alpha_{2}, \ldots, \alpha_{l} \in \mathbb{C}$,

$$
\begin{equation*}
\left[T_{1} \otimes \ldots \otimes T_{k}\right]\left(\sum_{i=1}^{l} \alpha_{i} x_{1 i} \otimes x_{2 i} \otimes \ldots \otimes x_{k i}\right)=\sum_{i=1}^{l} \alpha_{i}\left[T_{1}\left(x_{1 i}\right)\right] \otimes\left[T_{2}\left(x_{2 i}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(x_{k i}\right)\right] \tag{2.8}
\end{equation*}
$$

In this lemma it is shown that how above definition can be used to compute $\left[T_{1} \otimes \ldots \otimes T_{k}\right](x) \forall x \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

Lemma 2.3.11. Let $A_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be any orthonormal basis of V_{1} and $A_{1}^{*}=\left\{a_{11}^{*}, a_{12}^{*}, \ldots, a_{1 n_{1}}^{*}\right\}$ be the corresponding dual basis, $A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2} and $A_{2}^{*}=\left\{a_{21}^{*}, a_{22}^{*}, \ldots, a_{2 n_{2}}^{*}\right\}$ be the corresponding dual basis, $\ldots, A_{k}=\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be any orthonormal basis of V_{k} and $A_{k}^{*}=$ $\left\{a_{k 1}^{*}, a_{k 2}^{*}, \ldots, a_{k n_{k}}^{*}\right\}$ be the corresponding dual basis. $\forall x \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ there exist unique $\alpha_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathbb{C}$ such that,

$$
x=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}} a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}
$$

$\forall T_{1} \in \mathcal{L}\left(V_{1}^{*}\right) \forall T_{2} \in \mathcal{L}\left(V_{2}^{*}\right) \ldots \forall T_{k} \in \mathcal{L}\left(V_{k}^{*}\right)$,

$$
\left[T_{1} \otimes \ldots \otimes T_{k}\right](x)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[T\left(a_{1 i_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T\left(a_{k i_{k}}^{*}\right)\right]
$$

Proof. Proof is straight forward and left to reader (use equation 2.8).

Remark :

1. $\forall T_{1} \in \mathcal{L}\left(V_{1}^{*}\right) \forall T_{2} \in \mathcal{L}\left(V_{2}^{*}\right) \ldots \forall T_{k} \in \mathcal{L}\left(V_{k}^{*}\right)\left[T_{1} \otimes T_{2} \otimes \ldots \otimes T_{k}\right]$ is multilinear. $\forall x, y \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ there exist unique $\alpha_{i_{1}, i_{2}, \ldots, i_{k}}, \beta_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathbb{C}$ such that,

$$
x=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}} a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \quad y=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \beta_{i_{1}, \ldots, i_{k}} a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}
$$

$\forall \gamma \in \mathbb{C}$,

$$
\begin{aligned}
{\left[T_{1} \otimes \ldots \otimes T_{k}\right](x+\gamma y) } & =\left[T_{1} \otimes \ldots \otimes T_{k}\right]\left(\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}}\left(\alpha_{i_{1}, \ldots, i_{k}}+\gamma \beta_{j_{1}, \ldots, j_{k}}\right) a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}}\left(\alpha_{i_{1}, \ldots, i_{k}}+\gamma \beta_{i_{1}, \ldots, i_{k}}\right)\left[T_{1}\left(a_{1 i_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T\left(a_{k i_{k}}^{*}\right)\right] \\
& =\left[T_{1} \otimes \ldots \otimes T_{k}\right](x)+\gamma\left[T_{1} \otimes \ldots \otimes T_{k}\right](y)
\end{aligned}
$$

2. $\forall T_{1} \in \mathcal{L}\left(V_{1}^{*}\right) \ldots \forall T_{i}, \tilde{T}_{i} \in \mathcal{L}\left(V_{i}^{*}\right) \ldots \forall T_{k} \in \mathcal{L}\left(V_{k}^{*}\right) \forall \alpha \in \mathbb{C}$,

$$
T_{1} \otimes \ldots \otimes\left[T_{i}+\alpha \tilde{T}_{i}\right] \otimes \ldots \otimes T_{k}=\left[T_{1} \otimes \ldots \otimes T_{i} \otimes \ldots \otimes T_{k}\right]+\alpha\left[T_{1} \otimes \ldots \otimes \tilde{T}_{i} \otimes \ldots \otimes T_{k}\right]
$$

This property is straight forward to verify left to reader.
Lemma 2.3.12. $\forall T_{1} \in \mathcal{L}\left(V_{1}^{*}\right) \forall T_{2} \in \mathcal{L}\left(V_{2}^{*}\right) \ldots \forall T_{k} \in \mathcal{L}\left(V_{k}^{*}\right),\left[T_{1} \otimes \ldots \otimes T_{k}\right]$ is well-defined

Proof. Let $B_{1}=\left\{b_{11}, b_{12}, \ldots, b_{1 n_{1}}\right\}$ be any orthonormal basis of V_{1} and $B_{1}^{*}=$ $\left\{b_{11}^{*}, b_{12}^{*}, \ldots, b_{1 n_{1}}^{*}\right\}$ be the corresponding dual basis, $B_{2}=\left\{b_{21}, b_{22}, \ldots, b_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2} and $B_{2}^{*}=\left\{b_{21}^{*}, b_{22}^{*}, \ldots, b_{2 n_{2}}^{*}\right\}$ be the corresponding dual basis, $\ldots, B_{k}=\left\{b_{k 1}, b_{k 2}, \ldots, b_{k n_{k}}\right\}$ be any orthonormal basis of V_{k} and $B_{k}^{*}=$ $\left\{b_{k 1}^{*}, b_{k 2}^{*}, \ldots, b_{k n_{k}}^{*}\right\}$ be the corresponding dual basis. Since $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ there exist unique $\beta_{j_{1}, j_{2}, \ldots, j_{k}} \in \mathbb{C}$ such that,

$$
x=\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1}, j_{2}, \ldots, j_{k}} b_{1 j_{1}}^{*} \otimes b_{2 j_{2}}^{*} \otimes \ldots \otimes b_{k j_{k}}^{*}
$$

2. Tensor products

Applying $x \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ expressed in terms of basis $B_{1}, B_{2}, \ldots, B_{k}$ to the operator $\left[T \otimes T_{2} \otimes \ldots \otimes T_{k}\right]$ we get that,

$$
\left[T_{1} \otimes \ldots \otimes T_{k}\right](x)=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1}, \ldots, j_{k}}\left[T_{1}\left(b_{1 j_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(b_{k j_{k}}^{*}\right)\right]
$$

To claim $(T \otimes U)$ is well-defined it is enough to show that
$\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1}, \ldots, j_{k}}\left[T_{1}\left(b_{1 j_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(b_{k j_{k}}^{*}\right)\right]=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[T_{1}\left(a_{1 i_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(a_{k i_{k}}^{*}\right)\right]$
Let ${ }^{1} M \in \mathbb{C}^{n_{1} \times n_{1}}$ be the transformation matrix from basis A_{1} to B_{1}. Theorem 2.1.5 implies that,

$$
\left.\begin{array}{c}
{\left[\begin{array}{lllll}
a_{11}^{*} & a_{12}^{*} & \cdot & \cdot & a_{1 n_{1}}^{*}
\end{array}\right]=\left[\begin{array}{llll}
b_{11}^{*} & b_{12}^{*} & \cdot & \cdot
\end{array} b_{1 n_{1}}^{*}\right.}
\end{array}\right]^{1} \bar{M} .
$$

Let ${ }^{k} M \in \mathbb{C}^{n_{k} \times n_{k}}$ be the transformation matrix from basis A_{k} to B_{k}. Theorem 2.1.5 implies that,

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{lllll}
a_{k 1}^{*} & a_{k 2}^{*} & \cdot & \cdot & a_{k n_{k}}^{*}
\end{array}\right]=\left[\begin{array}{llll}
b_{k 1}^{*} & b_{k 2}^{*} & \cdot & \cdot
\end{array} b_{k n_{k}}^{*}\right.}
\end{array}\right]^{k} \bar{M}\right]\left(a_{k i_{k}}^{*}=\sum_{j_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{j_{k} i_{k}} b_{k j_{k}}^{*} \Longrightarrow T\left(a_{k i_{k}}^{*}\right)=\sum_{j_{k}=1}^{n_{k}}{ }^{k} \bar{M}_{j_{k} i_{k}} T\left(b_{1 j_{1}}^{*}\right)\right.
$$

Above equations imply that,

$$
\begin{aligned}
& \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[T_{1}\left(a_{1 i_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(a_{k i_{k}}^{*}\right)\right] \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}}{ }^{1} \bar{M}_{j_{1} i_{1} \ldots} \ldots{ }^{k} \bar{M}_{j_{k} i_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[T_{1}\left(b_{1 j_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(b_{k j_{k}}^{*}\right)\right]
\end{aligned}
$$

2. Tensor products

$$
=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}}\left(\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}{ }^{1} \bar{M}_{j_{1} i_{1} \ldots}{ }^{k} \bar{M}_{j_{k} i_{k}}\right)\left[T_{1}\left(b_{1 j_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(b_{k j_{k}}^{*}\right)\right]
$$

Note that

$$
{ }^{B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}} x\left[j_{1}, \ldots, j_{k}\right]=\beta_{j_{1}, \ldots, j_{k}} \quad A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k} x\left[i_{1}, \ldots, i_{k}\right]=\alpha_{i_{1}, \ldots, i_{k}}
$$

From theorem 2.3.6 we get,

$$
\begin{aligned}
& { }_{1} \otimes B_{2} \otimes \ldots \otimes B_{k} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \bar{M}_{j_{1} i_{1}} \bar{M}_{j_{2} i_{2} \ldots}{ }^{k} \bar{M}_{j_{k} i_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right] \\
& \Longrightarrow \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{j_{1}, \ldots, j_{k}}\left[T_{1}\left(b_{1 j_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(b_{k j_{k}}^{*}\right)\right]=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[T_{1}\left(a_{1 i_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[T_{k}\left(a_{k i_{k}}^{*}\right)\right]
\end{aligned}
$$

we shall find a basis of $\mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)$. Note that $\mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)$ is also called tensor product space of operators on $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

Definition 2.3.7. Let $V_{1}, V_{2}, \ldots, V_{k}$ be any finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. Let $A_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be any orthonormal basis of V_{1} and $A_{1}^{*}=\left\{a_{11}^{*}, a_{12}^{*}, \ldots, a_{1 n_{1}}^{*}\right\}$ be the corresponding dual basis, $A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2} and $A_{2}^{*}=$ $\left\{a_{21}^{*}, a_{22}^{*}, \ldots, a_{2 n_{2}}^{*}\right\}$ be the corresponding dual basis, ..., $A_{k}=\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be any orthonormal basis of V_{k} and $A_{k}^{*}=\left\{a_{k 1}^{*}, a_{k 2}^{*}, \ldots, a_{k n_{k}}^{*}\right\}$ be the corresponding dual basis. Let $B_{1}=\left\{b_{11}, b_{12}, \ldots, b_{1 n_{1}}\right\}$ be any orthonormal basis of V_{1} and $B_{1}^{*}=\left\{b_{11}^{*}, b_{12}^{*}, \ldots, b_{1 n_{1}}^{*}\right\}$ be the corresponding dual basis, $B_{2}=\left\{b_{21}, b_{22}, \ldots, b_{2 n_{2}}\right\}$ be any orthonormal basis of V_{2} and $B_{2}^{*}=\left\{b_{21}^{*}, b_{22}^{*}, \ldots, b_{2 n_{2}}^{*}\right\}$ be the corresponding dual basis, ..., $B_{k}=\left\{b_{k 1}, b_{k 2}, \ldots, b_{k n_{k}}\right\}$ be any orthonormal basis of V_{k} and $B_{k}^{*}=\left\{b_{k 1}^{*}, b_{k 2}^{*}, \ldots, b_{k n_{k}}^{*}\right\}$ be the corresponding dual basis. Let $T_{1}^{*}=\left\{{ }^{1} T_{i_{1} j_{1}} \mid 1 \leq\right.$ $\left.i_{1}, j_{1} \leq n_{1}\right\}$ where $\forall i_{1}, j_{1}, l_{1} \in\left\{1,2, \ldots, n_{1}\right\}{ }^{1} T_{i_{1} j_{1}} \in \mathcal{L}\left(V_{1}^{*}\right)$ is defined as follows,

$$
\begin{aligned}
{ }^{1} T_{i_{1} j_{1}}\left(a_{1 l_{1}}^{*}\right) & =a_{1 j_{1}}^{*} \quad \text { if } l_{1}=i_{1} \\
& =0 \quad \text { if } l_{1} \neq i_{1}
\end{aligned}
$$

Let $T_{k}^{*}=\left\{{ }^{k} T_{i_{k} j_{k}} \mid 1 \leq i_{k}, j_{k} \leq n_{k}\right\}$ where $\forall i_{k}, j_{k}, l_{k} \in\left\{1,2, \ldots, n_{k}\right\}{ }^{k} T_{i_{k} j_{k}} \in \mathcal{L}\left(V_{k}^{*}\right)$ is defined as follows,

$$
\begin{aligned}
{ }^{k} T_{i_{k} j_{k}}\left(a_{k l_{k}}^{*}\right) & =a_{k j_{k}}^{*} \quad \text { if } l_{k}=i_{k} \\
& =0 \quad \text { if } l_{k} \neq i_{k}
\end{aligned}
$$

Define $T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{k}^{*}=\left\{{ }^{1} T_{i_{1} j_{1}}^{*} \otimes^{2} T_{i_{2} j_{2}}^{*} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}^{*} \mid 1 \leq i_{1}, j_{1} \leq n_{1}, 1 \leq i_{2}, j_{2} \leq\right.$ $\left.n_{2}, \ldots, 1 \leq i_{k}, j_{k} \leq n_{k}\right\}$. Note that each ${ }^{1} T_{i_{1} j_{1}} \otimes^{2} T_{i_{2} j_{2}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}} \in T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{k}^{*}$ is well-defined and a linear operator on $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

Theorem 2.3.13. $T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{k}^{*}$ forms a basis of $\mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)$.

Proof. Span :

$\forall x \in V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ there exist unique $\alpha_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathbb{C}$ such that,

$$
x=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]
$$

$\forall W \in \mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)$ since W is a linear operator we get,

$$
W(x)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, \ldots, i_{k}} W\left(a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right)
$$

Since W is an operator $\forall i_{1} \in\left\{1,2, \ldots, n_{1}\right\} i_{2} \in\left\{1,2, \ldots, n_{2}\right\} \ldots i_{k} \in\left\{1,2, \ldots, n_{k}\right\}$ there exist $\beta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}} \in \mathbb{C}$ such that,

$$
\begin{gathered}
W\left(a_{1 i_{1}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right)=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}} a_{1 j_{1}}^{*} \otimes \ldots \otimes a_{k j_{k}}^{*} \\
\Longrightarrow \\
\Longrightarrow W(x)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}} \alpha_{i_{1}, \ldots, i_{k}} a_{1 j_{1}}^{*} \otimes \ldots \otimes a_{k j_{k}}^{*}
\end{gathered}
$$

Note that $\forall i_{1}, j_{1} \in\left\{1,2, \ldots, n_{1}\right\} \forall i_{2}, j_{2} \in\left\{1,2, \ldots, n_{2}\right\} \ldots \forall i_{k}, j_{k} \in\left\{1,2, \ldots, n_{k}\right\}$
since ${ }^{1} T_{i_{1} j_{1}} \otimes{ }^{2} T_{i_{2} j_{2}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}$ is multi-linear,

$$
\begin{aligned}
& {\left[{ }^{1} T_{i_{1} j_{1}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}\right](x)=\left[{ }^{1} T_{i_{1} j_{1}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}\right]\left(\sum_{l_{1}=1}^{n_{1}} \ldots \sum_{l_{k}=1}^{n_{k}} \alpha_{l_{1}, \ldots l_{k}} a_{1 l_{1}}^{*} \otimes \ldots \otimes a_{k l_{k}}^{*}\right)} \\
& =\sum_{l_{1}=1}^{n_{1}} \ldots \sum_{l_{k}=1}^{n_{k}} \alpha_{l_{1}, \ldots l_{k}}\left[{ }^{1} T_{i_{1} j_{1}}\left(a_{1 l_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[{ }^{k} T_{i_{k} j_{k}}\left(a_{k l_{k}}^{*}\right)\right] \\
& =\alpha_{i_{1}, \ldots, i_{k}} a_{1 j_{1}}^{*} \otimes \ldots a_{k j_{k}}^{*} \\
& \Longrightarrow W(x)=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}}\left[{ }^{1} T_{i_{1} j_{1}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}\right](x) \\
& \Longrightarrow W=\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \beta_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}}\left[{ }^{1} T_{i_{1} j_{1}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}\right] \\
& \Longrightarrow T_{1}^{*} \otimes T_{2}^{*} \otimes \ldots \otimes T_{k}^{*} \text { spans } \mathcal{L}\left(V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}\right)
\end{aligned}
$$

Linear Independence :

$\forall i_{1}, j_{1} \in\left\{1,2, \ldots, n_{1}\right\} \forall i_{2}, j_{2} \in\left\{1,2, \ldots, n_{2}\right\} \ldots \forall i_{k}, j_{k} \in\left\{1,2, \ldots, n_{k}\right\}$. Consider,

$$
\sum_{i_{1}=1}^{n_{1}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{k}=1}^{n_{k}} \alpha_{i_{1}, j_{1}, \ldots, i_{k}, j_{k}}{ }^{1} T_{i_{1} j_{1}} \otimes \ldots \otimes{ }^{k} T_{i_{k} j_{k}}=0
$$

$\forall l_{1} \in\left\{1,2, \ldots, n_{1}\right\} \forall l_{2} \in\left\{1,2, \ldots, n_{2}\right\} \ldots \forall l_{k} \in\left\{1,2, \ldots, n_{k}\right\}$

Applying $a_{1 l_{1}}^{*} \otimes a_{2 l_{2}}^{*} \otimes \ldots \otimes a_{k l_{k}}^{*}$ we get,

$$
\begin{gathered}
\sum_{i_{1}=1}^{n_{1}} \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} \sum_{j_{k}=1}^{n_{k}} \alpha_{i_{1}, j_{1}, \ldots, i_{k}, j_{k}}\left[{ }^{1} T_{i_{1} j_{1}}\left(a_{1 l_{1}}^{*}\right)\right] \otimes \ldots \otimes\left[{ }^{k} T_{i_{k} j_{k}}\left(a_{k l_{k}}^{*}\right)\right]=0 \\
\Longrightarrow \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \alpha_{l_{1}, j_{1}, \ldots, l_{k}, j_{k}}\left[a_{1 j_{1}}^{*} \otimes \ldots \otimes a_{k j_{k}}^{*}\right]=0
\end{gathered}
$$

Since $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis of $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$ we get that,

$$
\alpha_{l_{1}, j_{1}, \ldots, l_{k}, j_{k}}=0 \quad \forall j_{1} \in\left\{1,2, \ldots, n_{1}\right\} \ldots \forall j_{k} \in\left\{1,2, \ldots, n_{k}\right\}
$$

$\Longrightarrow T_{1}^{*} \otimes \ldots \otimes T_{k}^{*}$ is a linearly independent set and forms a basis of $\mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right)$

Corollary 2.3.14.

$$
\operatorname{dim}\left(\mathcal{L}\left(V_{1} \otimes \ldots \otimes V_{k}\right)\right)=\left(\operatorname{dim}\left(V_{1} \otimes \ldots \otimes V_{k}\right)\right)^{2}
$$

Chapter 3

Appendix

This chapter aims at generalizing the theory of tensor product spaces to arbitrary bases and fields over finite dimensional vector spaces. Observe that the only constraint placed is that the vector spaces under consideration are finite dimensional. In this chapter proofs are not very detailed which we believe the reader can fill up with the intuition acquainted in the previous chapter.

3.1 1-fold tensor product spaces - dual spaces

3.1.1 Linear Functions

Definition 3.1.1. Let V be a vector space over field \mathbb{F}. A function $u: V \rightarrow \mathbb{F}$ is called linear if $\forall x, y \in V \forall \alpha \in \mathbb{F}$,

$$
\begin{gathered}
u(x+y)=u(x)+u(y) \\
u(\alpha \cdot x)=\alpha \cdot u(x)
\end{gathered}
$$

Let set $S=\{u: V \rightarrow \mathbb{F} \mid u$ is linear $\}$. Define addition and scalar multiplication on the set S as follows, $\forall u, v \in S \forall x \in V \forall \alpha \in \mathbb{F}$,

$$
\begin{gathered}
{[u+v](x)=u(x)+v(x)} \\
{[\alpha \cdot u](x)=\alpha \cdot u(x)}
\end{gathered}
$$

A linear function $u \in S$ is called a 1-tensor or a linear map on V. It is easy to verify that S is a vector space over field \mathbb{F} (Using lemma 2.1.1 we get S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to reader). The vectorspace of all 1-tensors is defined to be the 1 -fold tensor product space of V denoted by $\mathcal{L}(V \rightarrow \mathbb{F})$ or V^{*}. In addition, 1 -fold tensor product space is also called dual space of V.

3.1.2 Existence of 1-tensors

Definition 3.1.2. Let V be a finite dimensional inner product space over field \mathbb{F} with $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a basis of V. Define $A^{*}=$ $\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\} \forall i, j \in\{1,2, \ldots, n\} a_{i}^{*} \in \mathcal{L}(V \rightarrow \mathbb{F})$ is defined as follows $\forall x \in V$,

$$
\begin{aligned}
a_{i}^{*}\left(a_{j}\right) & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

Lemma 3.1.1. Let V be a finite dimensional inner product space over field \mathbb{F} with $\operatorname{dim}(V)=n$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a basis of V. There exist $A^{*}=$ $\left\{a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right\}$ such that $\forall i, j \in\{1,2, \ldots, n\} a_{i}^{*} \in \mathcal{L}(V \rightarrow \mathbb{F})$ and $\forall x \in V$,

$$
\begin{aligned}
a_{i}^{*}\left(a_{j}\right) & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

Proof. $\forall i \in\{1,2, \ldots, n\}$ let a_{i}^{*} be a row vector in \mathbb{F}^{n}. That is there exist $\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i n} \in \mathbb{F}$ such that,

$$
a_{i}^{*}=\left[\begin{array}{llll}
\alpha_{i 1} & \alpha_{i 2} & . & \alpha_{i n}
\end{array}\right]
$$

Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any another basis of $V . \forall x \in V$ since B is a basis of V there exist unique $\beta_{j} \in \mathbb{F}$ such that,

$$
x=\sum_{j=1}^{n} \beta_{j} b_{j} \Longrightarrow{ }^{B} x=\left[\begin{array}{llll}
\beta_{1} & \beta_{2} & . & .
\end{array} \beta_{n}\right]^{T}
$$

Action of a_{i}^{*} on x is defined as

$$
a_{i}^{*}(x)=\sum_{j=1}^{n} \alpha_{i j} \beta_{j}=\left[\begin{array}{lll}
\alpha_{i 1} & \cdot & \alpha_{i n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\cdot \\
\cdot \\
\beta_{n}
\end{array}\right]=\left[\begin{array}{lll}
\alpha_{i 1} & \cdot & \alpha_{i n}
\end{array}\right] \cdot{ }^{B} x
$$

Next we need to find $\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i n} \in \mathbb{F}$ such that,

$$
\begin{aligned}
a_{i}^{*}\left(a_{j}\right) & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

$\forall i, j \in\{1,2, \ldots, n\}$. Fix i.

$$
\begin{aligned}
{\left[\begin{array}{lll}
\alpha_{i 1} & \cdot & \alpha_{i n}
\end{array}\right] \cdot{ }^{B} a_{j} } & =1 \text { if } i=j \\
& =0 \text { if } i \neq j
\end{aligned}
$$

Since B is a basis of V there exist unique $\beta_{i j} \in \mathbb{F}$ such that,
$a_{j}=\sum_{i=1}^{n} \beta_{i j} b_{i} \Longrightarrow{ }^{B} a_{j}=\left[\begin{array}{llll}\beta_{1 j} & . & \cdot & \beta_{n j}\end{array}\right]^{T} \Longrightarrow\left[\begin{array}{llll}\alpha_{i 1} & . & . & \alpha_{i n}\end{array}\right]\left[\begin{array}{ccccc}\beta_{11} & \beta_{12} & . & . & \beta_{1 n} \\ \beta_{21} & \beta_{22} & . & . & \beta_{2 n} \\ . & . & . & . & \cdot \\ \beta_{n 1} & \beta_{n 2} & . & . & \beta_{n n}\end{array}\right]=e_{i}$
Let $M=\left[\begin{array}{ccccc}\beta_{11} & \beta_{12} & \cdot & . & \beta_{1 n} \\ \beta_{21} & \beta_{22} & \cdot & . & \beta_{2 n} \\ \cdot & \cdot & . & . & \cdot \\ \beta_{n 1} & \beta_{n 2} & \cdot & . & \beta_{n n}\end{array}\right]$. Recall from linear algebra that Since A is a basis
of V we get that M is non-singular.

$$
\Longrightarrow\left[\begin{array}{lll}
\alpha_{i 1} & . & .
\end{array} \alpha_{i n}\right]=e_{i} \cdot M^{-1}
$$

This concludes the existence of a_{i}^{*}. Linearity of each a_{i}^{*} directly follows from the linearity of coordinates of input arguments. Note that each a_{i}^{*} is well-defined since we used arbitrary basis B to obtain a_{i}^{*}.

Remark :

1. Observe that M^{-1} is the transformation matrix from basis A to B for the linear function a_{i}^{*}.
2. If A is an orthonormal basis and $\mathbb{F}=\mathbb{C}$ then

$$
a_{i}^{*}(x)=\overline{{ }^{B} a_{i}} \odot{ }^{B} x
$$

This general theory when constrained to orthonormal basis is same as the theory developed as in section 2.1.2

3.1.3 Basis of 1-fold tensor product spaces

Lemma 3.1.2. $\forall x \in V$,

$$
x=\sum_{i=1}^{n} a_{i}^{*}(x) a_{i}
$$

Proof. $\forall x \in V$ there exist unique $\alpha_{i} \in \mathbb{C}$ such that,

$$
x=\sum_{i=1}^{n} \alpha_{i} a_{i}
$$

$\forall j \in\{1,2, \ldots, n\}$,

$$
a_{j}^{*}(x)=\sum_{i=1}^{n} \alpha_{i} a_{j}^{*}\left(a_{i}\right)=\alpha_{j}
$$

Theorem 3.1.3. A^{*} forms a basis of $\mathcal{L}(V \rightarrow \mathbb{F})$
Proof. Span : $\forall x \in V$.

$$
x=\sum_{i=1}^{n} a_{i}^{*}(x) a_{i}
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{F})$,

$$
u(x)=\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}(x) \Longrightarrow u=\sum_{i=1}^{n} u\left(a_{i}\right) a_{i}^{*}
$$

Linear Independence : Consider,

$$
\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}=0
$$

$\forall j \in\{1,2, \ldots, n\}$,

$$
\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}\left(a_{i}\right)=\alpha_{j}=0
$$

3.1.4 Basis transformation

Theorem 3.1.4. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any another basis of V and $B^{*}=$ $\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$ be the corresponding dual basis. Let $M \in \mathbb{F}^{n \times n}$ be the transformation matrix from basis A to B i.e,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{n}
\end{array}\right] M
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{F})$,

$$
{ }^{B^{*}} u=\left(M^{-1}\right)^{T} \cdot{ }^{A^{*}} u
$$

Proof. Since M is the transformation from basis A to B we get that M^{-1} is the transformation matrix from basis B to A i.e,

$$
\left[\begin{array}{lllll}
b_{1} & b_{2} & \cdot & . & b_{n}
\end{array}\right]=\left[\begin{array}{lllll}
a_{1} & a_{2} & . & . & a_{n}
\end{array}\right] M^{-1} \Longrightarrow b_{i}=\sum_{j=1}^{n} M_{j i}^{-1} a_{j}
$$

$\forall u \in \mathcal{L}(V \rightarrow \mathbb{F})$,

$$
\begin{aligned}
u\left(b_{i}\right)=\sum_{j=1}^{n} M_{j i}^{-1} a_{j} \Longrightarrow & {\left[\begin{array}{c}
u\left(b_{1}\right) \\
u\left(b_{2}\right) \\
\cdot \\
\cdot \\
u\left(b_{n}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
M_{11}^{-1} & M_{21}^{-1} & . & \cdot & M_{n 1}^{-1} \\
M_{12}^{-1} & M_{22}^{-1} & \cdot & \cdot & M_{n 2}^{-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
M_{1 n}^{-1} & M_{2 n}^{-1} & \cdot & \cdot & M_{n n}^{-1}
\end{array}\right]\left[\begin{array}{c}
u\left(a_{1}\right) \\
u\left(a_{2}\right) \\
\cdot \\
\cdot \\
u\left(a_{n}\right)
\end{array}\right] } \\
& \Longrightarrow{ }^{B^{*}} u=\left(M^{-1}\right)^{T} \cdot A^{A^{*}} u
\end{aligned}
$$

3.1.5 Invariance of computation of 1 -tensors under basis transformations

Theorem 3.1.5. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall x \in V$,

$$
u(x)=\sum_{r=1}^{n}{ }^{A^{*}} u[r] \cdot{ }^{A} x[r]=\left({ }^{A^{*}} u\right)^{T} \cdot\left({ }^{A} x\right)
$$

Proof. Proof is same as in theorem 2.1.6. Here we provide an alternate proof. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be any another basis of V and $B^{*}=\left\{b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right\}$ be the corresponding dual basis. It is enough to show that

$$
\left({ }^{A^{*}} u\right)^{T} \cdot\left({ }^{A} x\right)=\left({ }^{B^{*}} u\right)^{T} \cdot\left({ }^{B} x\right)
$$

Let $M \in \mathbb{F}^{n \times n}$ be the transformation matrix from basis A to B. Then,

$$
\begin{gathered}
{ }^{B} x=M \cdot{ }^{A} x \quad{ }^{B^{*}} u=\left(M^{-1}\right)^{T} \cdot{ }^{A^{*}} u \\
\left({ }^{B^{*}} u\right)^{T} \cdot\left({ }^{B} x\right)=\left(\left(M^{-1}\right)^{T} \cdot{ }^{A^{*}} u\right)^{T} \cdot\left(M \cdot{ }^{A} x\right)=\left({ }^{A^{*}} u\right)^{T} \cdot{ }^{A} x
\end{gathered}
$$

3.2 2-fold tensor product spaces

Definition 3.2.1. Let V, W be vector spaces over field \mathbb{F}. A function $u: V \times W \rightarrow$ \mathbb{F} is called bi-linear if the following holds,

1. $\forall x, y \in V \forall z \in W$,

$$
u(x+y, z)=u(x, z)+u(y, z)
$$

2. $\forall x \in V \forall y, z \in W$,

$$
u(x, y+z)=u(x, y)+u(x, z)
$$

3. $\forall x \in V \forall y \in W \forall \alpha \in \mathbb{F}$,

$$
u(\alpha x, y)=\alpha u(x, y)=u(x, \alpha y)
$$

Let set $S=\{u: V \times W \rightarrow \mathbb{F} \mid u$ is bi-linear $\}$. Define addition and multiplication on the set S as follows, $\forall u, v \in S \forall x \in V \forall y \in W \forall \alpha \in \mathbb{F}$,

$$
\begin{gathered}
{[u+v](x, y)=u(x, y)+v(x, y)} \\
{[\alpha u](x, y)=\alpha u(x, y)}
\end{gathered}
$$

A bi-linear function $u \in S$ is called a 2-tensor or a bi-linear map on $V \times W$. It is easy to verify that S is a vector space over field \mathbb{F} (Using lemma 2.2.1 we get S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to the reader). The vector space of all 2-tensors is defined to be the 2-fold tensor product space of V and W denoted by $\mathcal{L}(V \times W \rightarrow \mathbb{F})$ or $V \otimes W$.

3.2.1 Tensor products on vector spaces V and W

Definition 3.2.2. Let V, W be any two finite dimensional vector spaces over field \mathbb{F} where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m . \forall u \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall v \in \mathcal{L}(W \rightarrow \mathbb{F})$ Define the tensor product of u and v as a function $[u \otimes v]: V \times W \rightarrow \mathbb{F}$ as follows $\forall x \in V \forall y \in W$,

$$
[u \otimes v](x, y)=u(x) \cdot v(y)
$$

Remark :

1. $\forall u, v \in \mathcal{L}(V \rightarrow \mathbb{F})$ notice that $u \otimes v \neq v \otimes u$ in general.

Lemma 3.2.1. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall v \in \mathcal{L}(W \rightarrow \mathbb{F}),[u \otimes v]$ is bi-linear.
Proof. Proof is same as in lemma 2.2 .2
Lemma 3.2.2. $1 . \forall u, v \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall w \in \mathcal{L}(W \rightarrow \mathbb{F})$,

$$
[u+v] \otimes w=u \otimes w+v \otimes w
$$

2. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall v, w \in \mathcal{L}(W \rightarrow \mathbb{F})$,

$$
u \otimes[v+w]=u \otimes v+u \otimes w
$$

3. $\forall u \in \mathcal{L}(V \rightarrow \mathbb{F}) \forall v \in \mathcal{L}(W \rightarrow \mathbb{F}) \forall \alpha \in \mathbb{F}$,

$$
[\alpha u] \otimes v=u \otimes[\alpha v]=\alpha[u \otimes v]
$$

Proof. Proof is same as lemma 2.2.3

Remark :

1. $u \otimes v=0 \Longleftrightarrow u=0$ or $v=0$. It is straight forward to verify and left to reader.

3.2.2 Basis of 2-fold tensor product spaces

Definition 3.2.3. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a basis of V and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be a basis of W. Define $A \otimes B=\left\{a_{i}^{*} \otimes b_{j}^{*} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ where a_{i}^{*} and b_{j}^{*} are defined as in section 3.1.2.

Theorem 3.2.3. $A \otimes B$ is a basis for vector space $\mathcal{L}(V \times W \rightarrow \mathbb{F})$
Proof. Span : $\forall x \in V$ there exist unique $\alpha_{i} \in \mathbb{F}$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} a_{i}
$$

$\forall y \in W$ there exist unique $\beta_{j} \in \mathbb{F}$ such that

$$
y=\sum_{j=1}^{m} \beta_{j} b_{j}
$$

$\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{C})$,

$$
u(x, y)=u\left(\sum_{i=1}^{n} \alpha_{i} a_{i}, \sum_{j=1}^{m} \beta_{j} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} u\left(a_{i}, b_{j}\right)
$$

$\forall i \in\{1,2, \ldots, n\} \forall j \in\{1,2, \ldots, m\}$,

$$
\begin{gathered}
{\left[a_{i}^{*} \otimes b_{j}^{*}\right](x, y)=a_{i}^{*}(x) \cdot b_{j}^{*}(y)=\alpha_{i} \beta_{j}} \\
\Longrightarrow u=\sum_{i=1}^{n} \sum_{j=1}^{m} u\left(a_{i}, b_{j}\right)\left[a_{i}^{*} \otimes b_{j}^{*}\right] \\
\Longrightarrow A \otimes B \operatorname{spans} \mathcal{L}(V \times W \rightarrow \mathbb{F})
\end{gathered}
$$

Linear Independence : Consider,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[a_{i}^{*} \otimes b_{j}^{*}\right]=0
$$

$\forall p \in\{1,2, \ldots, n\} \forall q \in\{1,2, \ldots, m\}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j}\left[a_{i}^{*} \otimes b_{j}^{*}\right]\left(a_{p}, b_{q}\right)=0 \Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} a_{i}^{*}\left(a_{p}\right) b_{j}^{*}\left(b_{q}\right)=\alpha_{p q}=0
$$

$\Longrightarrow A \otimes B$ is a linearly independent set and a basis of $\mathcal{L}(V \times W \rightarrow \mathbb{F})$

3.2.3 Basis transformation

Theorem 3.2.4. Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be any another basis of V. Let $D=$ $\left\{d_{1}, \ldots, d_{m}\right\}$ be any another basis of W. Let $C \otimes D=\left\{c_{i}^{*} \otimes d_{j}^{*} \mid 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$. Theorem 3.2.3 implies that both $A \otimes B$ and $C \otimes D$ form bases of $\mathcal{L}(V \times W \rightarrow \mathbb{F})$. Let $M \in \mathbb{F}^{n \times n}$ be the transformation matrix from basis A to C i.e,

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdot & . & a_{n}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1} & c_{2} & . & . & c_{n}
\end{array}\right] M
$$

Let $N \in \mathbb{F}^{m \times m}$ be the transformation matrix from basis B to D i.e,

$$
\left[\begin{array}{llllll}
b_{1} & b_{2} & . & . & . & b_{m}
\end{array}\right]=\left[\begin{array}{lllll}
d_{1} & d_{2} & . & . & d_{m}
\end{array}\right] N
$$

$\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{F})$,

$$
{ }^{C \otimes D} u=\left(M^{-1}\right)^{T} \cdot{ }^{A \otimes B} u \cdot N^{-1}
$$

Proof. Since M is the transformation matrix from basis A to C we get that M^{-1} is the transformation matrix from basis C to A i.e,

$$
\left[\begin{array}{llllll}
c_{1} & c_{2} & . & . & . & c_{n}
\end{array}\right]=\left[\begin{array}{llllll}
a_{1} & a_{2} & . & . & . & a_{n}
\end{array}\right] M^{-1} \Longrightarrow c_{p}=\sum_{i=1}^{n} M_{i p}^{-1} a_{i}
$$

Since N is the transformation matrix from basis B to D we get that N^{-1} is the transformation matrix from basis D to B i.e,

$$
\left[\begin{array}{llllll}
d_{1} & d_{2} & . & . & d_{m}
\end{array}\right]=\left[\begin{array}{lllll}
b_{1} & b_{2} & . & . & b_{m}
\end{array}\right] N^{-1} \Longrightarrow d_{q}=\sum_{j=1}^{m} N_{j q}^{-1} b_{j}
$$

$\forall u \in \mathcal{L}(V \times w \rightarrow \mathbb{F})$,

$$
\begin{aligned}
& u\left(c_{p}, d_{q}\right)=u\left(\sum_{i=1}^{n} M_{i p}^{-1} a_{i}, \sum_{j=1}^{m} N_{j q}^{-1} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} M_{i p}^{-1} N_{j q}^{-1} u\left(a_{i}, b_{j}\right) \\
& \Longrightarrow u\left(c_{p}, d_{q}\right)=\left[\begin{array}{llll}
M_{1 p}^{-1} & \cdot & M_{n p}^{-1}
\end{array}\right]\left[\begin{array}{cccc}
u\left(a_{1}, b_{1}\right) & . & . & u\left(a_{1}, b_{m}\right) \\
\cdot & \cdot & \cdot & \cdot \\
u\left(a_{n}, b_{1}\right) & . & . & u\left(a_{n}, b_{m}\right)
\end{array}\right]\left[\begin{array}{c}
N_{1 q}^{-1} \\
\cdot \\
\cdot \\
N_{m q}^{-1}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
u\left(c_{1}, d_{1}\right) & . . & u\left(c_{1}, d_{m}\right) \\
. & . . & \cdot \\
u\left(c_{n}, d_{1}\right) & . . & u\left(c_{n}, d_{m}\right)
\end{array}\right]=\left[\begin{array}{ccc}
M_{11}^{-1} & . . & M_{n 1}^{-1} \\
. & . . & . \\
M_{1 n}^{-1} & . . & M_{n n}^{-1}
\end{array}\right]\left[\begin{array}{ccc}
u\left(a_{1}, b_{1}\right) & . . & u\left(a_{1}, b_{m}\right) \\
. & . . & . \\
u\left(a_{n}, b_{1}\right) & . . & u\left(a_{n}, b_{m}\right)
\end{array}\right]\left[\begin{array}{ccc}
N_{11}^{-1} & . . & N_{1 m}^{-1} \\
. & . . & . \\
N_{m 1}^{-1} & . . & N_{m m}^{-1}
\end{array}\right]} \\
& \Longrightarrow{ }^{C \otimes D} u=\left(M^{-1}\right)^{T} \cdot{ }^{A \otimes B} u \cdot N^{-1}
\end{aligned}
$$

3.2.4 Invariance of computation of 2 -tensor under basis transformations

Theorem 3.2.5. $\forall u \in \mathcal{L}(V \times W \rightarrow \mathbb{F}) \forall x \in V \forall y \in W$,

$$
u(x, y)=\sum_{r=1}^{n} \sum_{s=1}^{m}{ }^{A} x[r] \cdot{ }^{A \otimes B} u[r, s] \cdot{ }^{B} y[s]=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y
$$

Proof. Proof is same as in theorem 2.2.7. Here we provide an alternate proof. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be any another basis of V and $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be any another basis of W. It is enough to show that

$$
\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y=\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y
$$

Let $M \in \mathbb{F}^{n \times n}$ be the transformation matrix from basis A to C. Then,

$$
{ }^{C} x=M \cdot{ }^{A} x
$$

Let $N \in \mathbb{F}^{m \times m}$ be the transformation matrix from basis B to D. Then,

$$
{ }^{D} y=N \cdot{ }^{D} y
$$

It is also shown that

$$
\begin{aligned}
&{ }^{C \otimes D} u=\left(M^{-1}\right)^{T} \cdot{ }^{A \otimes B} u \cdot N^{-1} \\
&\left({ }^{C} x\right)^{T} \cdot{ }^{C \otimes D} u \cdot{ }^{D} y=\left(M \cdot{ }^{A} x\right)^{T} \cdot\left(M^{-1}\right)^{T} \cdot{ }^{A \otimes B} u \cdot N^{-1} \cdot N \cdot{ }^{B} y \\
&=\left({ }^{A} x\right)^{T} \cdot M^{T} \cdot\left(M^{-1}\right)^{T} \cdot{ }^{A \otimes B} u \cdot N^{-1} \cdot N \cdot{ }^{B} y \\
&=\left({ }^{A} x\right)^{T} \cdot{ }^{A \otimes B} u \cdot{ }^{B} y
\end{aligned}
$$

$3.3 k$-fold tensor product spaces

3.3.1 Multi-linear Functions

Definition 3.3.1. Let $V_{1}, V_{2}, \ldots, V_{k}$ be vector spaces over field \mathbb{F}. A function $u: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}$ is called multi-linear if the following holds,

1. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i}, \tilde{x}_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k$,

$$
u\left(x_{1}, x_{2}, \ldots, x_{i}+\tilde{x}_{i}, \ldots, x_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{k}\right)+u\left(x_{1}, x_{2}, \ldots, \tilde{x}_{i}, \ldots, x_{k}\right)
$$

2. $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{i} \in V_{i} \ldots \forall x_{k} \in V_{k}$ where $1 \leq i \leq k \forall \alpha \in \mathbb{F}$,

$$
u\left(x_{1}, x_{2}, \ldots, \alpha x_{i}, \ldots, x_{k}\right)=\alpha u\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

Let set $S=\left\{u: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F} \mid u\right.$ is multi-linear $\}$. Define addition and multiplication on the set S as follows $\forall u, v \in S \forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \forall x_{k} \in V_{k}$ $\forall \alpha \in \mathbb{F}$,

$$
\begin{gathered}
{[u+v]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{k}\right)+v\left(x_{1}, x_{2}, \ldots, x_{k}\right)} \\
{[\alpha u]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\alpha u\left(x_{1}, x_{2}, \ldots, x_{k}\right)}
\end{gathered}
$$

A multi-linear function $u \in S$ is called a k-tensor or a multi-linear map on $V_{1} \times V_{2} \times \ldots \times V_{k}$. It is easy to verify that S is a vector space over field \mathbb{F} (Using lemma 2.3.1 we get S is closed under addition and scalar multiplication and rest of the axioms of vector space are easy to verify and are left to the reader). The vector space of all k-tensors is defined as the tensor product space of V_{1}, V_{2}, \ldots, V_{k} denoted by $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$ or $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{k}$.

3.3.2 Tensor products on vector spaces $V_{1}, V_{2}, \ldots, V_{k}$

Definition 3.3.2. Let $V_{1}, V_{2}, \ldots, V_{k}$ be finite dimensional inner product spaces over field \mathbb{C} where $\operatorname{dim}\left(V_{i}\right)=n_{i} \forall i \in\{1,2, \ldots, k\}$. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{F}\right) \forall u_{2} \in$ $\mathcal{L}\left(V_{2} \rightarrow \mathbb{F}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{F}\right)$ Define the tensor product of $u_{1}, u_{2}, \ldots, u_{k}$ as a function $\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]: V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}$ as follows $\forall x_{1} \in V_{1} \forall x_{2} \in V_{2}$ $\ldots \forall x_{k} \in V_{k}$,

$$
\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=u_{1}\left(x_{1}\right) \cdot u_{2}\left(x_{2}\right) \cdot \ldots \cdot u_{k}\left(x_{k}\right)=\prod_{i=1}^{k} u_{i}\left(x_{i}\right)
$$

Lemma 3.3.1. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{F}\right) \forall u_{2} \in \mathcal{L}\left(V_{2} \rightarrow \mathbb{F}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{F}\right)$, $\left[u_{1} \otimes u_{2} \otimes \ldots \otimes u_{k}\right]$ is multi-linear.

Proof. Proof is same as in lemma 2.3 .2
Lemma 3.3.2. 1. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{F}\right) \ldots \forall u_{i}, \tilde{u}_{i} \in \mathcal{L}\left(V_{i} \rightarrow \mathbb{F}\right) \ldots \quad \forall u_{k} \in$ $\mathcal{L}\left(V_{k} \rightarrow \mathbb{F}\right)$ where $1 \leq i \leq k$,

$$
\left[u_{1} \otimes \ldots \otimes\left[u_{i}+\tilde{u}_{i}\right] \otimes \ldots \otimes u_{k}\right]=\left[u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}\right]+\left[u_{1} \otimes \ldots \otimes \tilde{u}_{i} \otimes \ldots \otimes u_{k}\right]
$$

2. $\forall u_{1} \in \mathcal{L}\left(V_{1} \rightarrow \mathbb{F}\right) \ldots \forall u_{i} \in \mathcal{L}\left(V_{i} \rightarrow \mathbb{F}\right) \ldots \forall u_{k} \in \mathcal{L}\left(V_{k} \rightarrow \mathbb{F}\right)$ where $1 \leq i \leq k \forall \alpha \in \mathbb{F}$,

$$
\left[u_{1} \otimes \ldots \otimes\left[\alpha u_{i}\right] \otimes \ldots \otimes u_{k}\right]=\alpha\left[u_{1} \otimes \ldots \otimes u_{i} \otimes \ldots \otimes u_{k}\right]
$$

Proof. Proof is same as in lemma 3.3.2

Remark :

1. $u_{1} \otimes \ldots \otimes u_{k}=0 \Longleftrightarrow$ at least one of $u_{i}=0$. It is straight forward to verify and left to reader.

3.3.3 Basis of k-fold tensor product spaces

Definition 3.3.3. Let $A_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 n_{1}}\right\}$ be a basis of $V_{1}, A_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 n_{2}}\right\}$ be a basis of $V_{2}, \ldots, A_{k}=\left\{a_{k 1}, a_{k 2}, \ldots, a_{k n_{k}}\right\}$ be a basis of V_{k}. Define $A_{1} \otimes A_{2} \otimes$ $\ldots \otimes A_{k}=\left\{a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*} \mid 1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{k} \leq n_{k}\right\}$.

Theorem 3.3.3. $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a basis for vector space $\mathcal{L}\left(V_{1} \times V_{2} \ldots \times V_{k} \rightarrow \mathbb{F}\right)$
Proof. Span :
$\forall x_{1} \in V_{1}$ there exist unique $\alpha_{1 i_{1}} \in \mathbb{F}$ such that,

$$
x_{1}=\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}
$$

$\forall x_{2} \in V_{2}$ there exist unique $\alpha_{2 i_{2}} \in \mathbb{F}$ such that,

$$
x_{2}=\sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}
$$

$\forall x_{k} \in V_{k}$ there exist unique $\alpha_{k i_{k}} \in \mathbb{F}$ such that,

$$
x_{k}=\sum_{i_{1}=1}^{n_{k}} \alpha_{k i_{k}} a_{k i_{k}}
$$

$\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$,

$$
\begin{aligned}
u\left(x_{1}, x_{2}, \ldots, x_{k}\right) & =u\left(\sum_{i_{1}=1}^{n_{1}} \alpha_{1 i_{1}} a_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}} \alpha_{2 i_{2}} a_{2 i_{2}}, \ldots, \sum_{i_{k}=1}^{n_{3}} \alpha_{k i_{k}} a_{k i_{k}}\right) \\
& =\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{1 i_{1}} \alpha_{2 i_{2}} \ldots \alpha_{k i_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)
\end{aligned}
$$

$\forall i_{1} \in\left\{1, \ldots, n_{1}\right\} i_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots i_{k} \in\left\{1, \ldots, n_{k}\right\}$,
$\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right)=a_{1 i_{1}}^{*}\left(x_{1}\right) \cdot a_{2 i_{2}}^{*}\left(x_{2}\right) \cdot \ldots \cdot a_{k i_{k}}^{*}\left(x_{k}\right)=\prod_{j=1}^{k} \alpha_{j i_{j}}$

$$
\begin{gathered}
\Longrightarrow u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
\Longrightarrow u=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right)\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right] \\
\Longrightarrow A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k} \text { spans } \mathcal{L}\left(V_{1} \times V_{2} \ldots \times V_{k} \rightarrow \mathbb{F}\right)
\end{gathered}
$$

Linear Independence :

Let $\alpha_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathbb{F} \forall i_{1} \in\left\{1, \ldots, n_{1}\right\} i_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots i_{k} \in\left\{1, \ldots, n_{k}\right\}$. Consider,

$$
\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]=0
$$

$\forall j_{1} \in\left\{1, \ldots, n_{1}\right\} j_{2} \in\left\{1, \ldots, n_{2}\right\} \ldots j_{k} \in\left\{1, \ldots, n_{k}\right\}$,

$$
\begin{aligned}
& \sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}}\left[a_{1 i_{1}}^{*} \otimes a_{2 i_{2}}^{*} \otimes \ldots \otimes a_{k i_{k}}^{*}\right]\left(a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{k j_{k}}\right)=0 \\
& \sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} \alpha_{i_{1}, i_{2}, \ldots, i_{k}} a_{1 i_{1}}^{*}\left(a_{1 j_{1}}\right) a_{2 i_{2}}^{*}\left(a_{2 j_{2}}\right) \ldots a_{k i_{k}}^{*}\left(a_{k j_{k}}\right)=\alpha_{j_{1}, j_{2}, \ldots, j_{k}}=0
\end{aligned}
$$

$\Longrightarrow A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ is a linearly independent set and a basis of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$

3.3.4 Basis transformation

Theorem 3.3.4. Let $B_{1}=\left\{b_{11}, \ldots, b_{1 n_{1}}\right\}$ be any another basis of V_{1}, let $B_{2}=$ $\left\{b_{21}, \ldots, b_{2 n_{2}}\right\}$ be any another basis of V_{2}, \ldots, let $B_{k}=\left\{b_{k 1}, \ldots, b_{k n_{k}}\right\}$ be any another basis of V_{k}. Let $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}=\left\{b_{1 j_{1}}^{*} \otimes b_{2 j_{2}}^{*} \otimes \ldots \otimes b_{k j_{k}}^{*} \mid 1 \leq j_{1} \leq n_{1}, 1 \leq\right.$ $\left.j_{2} \leq n_{2}, \ldots, 1 \leq j_{k} \leq n_{k}\right\}$. Theorem 3.3.3 implies that $A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}$ and $B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}$ form bases of $\mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$. Let ${ }^{i} M \in \mathbb{F}^{n_{i} \times n_{i}}$ be the transformation matrix from A_{i} to B_{i} i.e,

$$
\left[\begin{array}{lllll}
a_{i 1} & a_{i 2} & . & . & .
\end{array} a_{i n_{i}}\right]=\left[\begin{array}{lllll}
b_{i 1} & b_{i 2} & . & . & b_{i n_{i}}
\end{array}\right]^{i} M
$$

where $1 \leq i \leq k . \forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$,

$$
B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} M_{i_{1} j_{1}}^{-1} \cdot{ }^{2} M_{i_{2} j_{2}}^{-1} \cdot \ldots \cdot{ }^{k} M_{i_{k} j_{k}}^{-1} A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]
$$

where $1 \leq j_{1} \leq n_{1} 1 \leq j_{2} \leq n_{2} \ldots 1 \leq j_{k} \leq n_{k}$.
Proof. Since ${ }^{1} M$ is the transformation matrix from basis A_{1} to B_{1} we get that ${ }^{1} M^{-1}$ is the transformation from B_{1} to A_{1} i.e,
$\left[\begin{array}{llllll}b_{11} & b_{12} & . & . & . & b_{1 n_{1}}\end{array}\right]=\left[\begin{array}{llllll}a_{11} & a_{12} & . & . & a_{1 n_{1}}\end{array}\right]^{1} M^{-1} \Longrightarrow b_{1 j_{1}}=\sum_{i_{1}=1}^{n_{1}}{ }^{1} M_{i_{1} j_{1}}^{-1} a_{1 i_{1}}$
Since ${ }^{2} M$ is the transformation matrix from basis A_{2} to B_{2} we get that ${ }^{2} M^{-1}$ is the transformation from B_{2} to A_{2} i.e,

$$
\left[\begin{array}{lllll}
b_{21} & b_{22} & . & . & .
\end{array} b_{2 n_{2}}\right]=\left[\begin{array}{lllll}
a_{21} & a_{22} & . & . & a_{2 n_{2}}
\end{array}\right]^{2} M^{-1} \Longrightarrow b_{2 j_{2}}=\sum_{i_{2}=1}^{n_{2}}{ }^{2} M_{i_{2} j_{2}}^{-1} a_{2 i_{2}}
$$

Since ${ }^{k} M$ is the transformation matrix from basis A_{k} to B_{k}, we get that ${ }^{k} M^{-1}$ is the transformation from B_{k} to A_{k} i.e,

$$
\left[\begin{array}{lllll}
b_{k 1} & b_{k 2} & \cdot & . & . \\
b_{k n_{k}}
\end{array}\right]=\left[\begin{array}{llllll}
a_{k 1} & a_{k 2} & . & . & a_{k n_{k}}
\end{array}\right]^{k} M^{-1} \Longrightarrow b_{k j_{k}}=\sum_{i_{k}=1}^{n_{1}}{ }^{1} M_{i_{k} j_{k}}^{-1} a_{k i_{k}}
$$

$\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right)$,

$$
\begin{aligned}
& u\left(b_{1 j_{1}}, b_{2 j_{2}}, \ldots, b_{k j_{k}}\right)=u\left(\sum_{i_{1}=1}^{n_{1}}{ }^{1} M_{i_{1} j_{1}}^{-1} a_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}}{ }^{2} M_{i_{1} j_{2}}^{-1} a_{2 i_{2}}, \ldots, \sum_{i_{k}=1}^{n_{k}}{ }^{k} M_{i_{k} j_{k}}^{-1} a_{k i_{k}}\right) \\
&=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} M_{i_{1} j_{1}}^{-1}{ }^{2} M_{i_{2} j_{2}}^{-1} .^{k} M_{i_{k} j_{k}}^{-1} u\left(a_{1 i_{1}}, a_{2 i_{2}}, \ldots, a_{k i_{k}}\right) \\
& \Longrightarrow{ }^{B_{1} \otimes B_{2} \otimes \ldots \otimes B_{k}} u\left[j_{1}, j_{2}, \ldots, j_{k}\right]=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{k}=1}^{n_{k}}{ }^{1} M_{i_{1} j_{1}}^{-1}{ }^{2} M_{i_{2} j_{2}}^{-1} \cdots{ }^{k} M_{i_{k} j_{k}}^{-1}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]
\end{aligned}
$$

3.3.5 Invariance of computation of k-tensors under basis transformations

Theorem 3.3.5. $\forall u \in \mathcal{L}\left(V_{1} \times V_{2} \times \ldots \times V_{k} \rightarrow \mathbb{F}\right) \forall x_{1} \in V_{1} \forall x_{2} \in V_{2} \ldots \quad \forall$ $x_{k} \in V_{k}$,

$$
u\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=2}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k}} u\left[i_{1}, i_{2}, \ldots, i_{k}\right]^{A} x_{1}\left[i_{1}\right]^{A} x_{2}\left[i_{2}\right] \ldots{ }^{A} x_{k}\left[i_{k}\right]
$$

Proof. Proof is same as in 2.3.7. Here we provide an alternate proof. It is enough to show that
$\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{1}=k}^{n_{k}}{ }^{A_{1} \otimes \ldots \otimes A_{k}} u\left[i_{1}, \ldots, i_{k}\right]^{A} x_{1}\left[i_{1}\right] \ldots{ }^{A} x_{k}\left[i_{k}\right]=\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}}{ }^{B_{1} \otimes \ldots \otimes B_{k}} u\left[j_{1}, \ldots, j_{k}\right]^{B_{1}} x_{1}\left[j_{1}\right] \ldots{ }^{B_{k}} x_{k}\left[j_{k}\right]$
Using the previous theorem we have,

$$
\begin{aligned}
& \sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}}{ }^{B_{1} \otimes \ldots \otimes B_{k}} u\left[j_{1}, \ldots, j_{k}\right]^{B_{1}} x_{1}\left[j_{1}\right] \ldots{ }^{B_{k}} x_{k}\left[j_{k}\right] \\
& =\sum_{j_{1}=1}^{n_{1}} \ldots \sum_{j_{k}=1}^{n_{k}} \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}}{ }^{1} M_{i_{1} j_{1}}^{-1} .^{k} M_{i_{k} j_{k}}^{-1} u\left(a_{1 i_{1}}, \ldots, a_{k i_{k}}\right)^{B_{1}} x_{1}\left[j_{1}\right] \ldots{ }^{B_{k}} x_{k}\left[j_{k}\right] \\
& =\sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, \ldots, a_{k i_{k}}\right)\left(\sum_{j_{1}=1}^{n_{1}}{ }^{1} M_{i_{1} j_{1}}^{-1}{ }^{B_{1}} x_{1}\left[j_{1}\right]\right) \ldots\left(\sum_{j_{k}=1}^{n_{k}} M_{i_{k} j_{k}}^{-1}{ }^{B_{k}} x_{k}\left[j_{k}\right]\right)
\end{aligned}
$$

$\forall j \in\{1,2, \ldots, k\}$,

$$
\begin{aligned}
& { }^{B_{j}} x_{j}={ }^{j} M \cdot{ }^{A_{j}} x_{j} \Longrightarrow{ }^{j} M^{-1} \cdot{ }^{B_{j}} x_{j}={ }^{A_{j}} x_{j} \\
= & \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{k}=1}^{n_{k}} u\left(a_{1 i_{1}}, \ldots, a_{k i_{k}}\right)^{A_{1}} x_{1}\left[i_{1}\right] \ldots{ }^{A_{k}} x_{k}\left[i_{k}\right]
\end{aligned}
$$

References

[1] Spivak, Michael (2018) [1965], Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus
[2] Sergei Winitziki, Linear Algebra via Exterior Products, 1st edition, 2010
[3] Sheldon Axler, Linear Algebra Done Right, third edition, Undergraduate Texts in Mathematics, Springer, 2015.
[4] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGrawhill New York, 1964.
[5] Steven Roman, Advanced Linear Algebra, Springer-Verlag, Graduate Texts in Mathematics Vol. 135, 1992.
[6] Kenneth Hoffman and Ray Kunze Linear Algebra, Second Edition
[7] Paul R. Halmos, Finite-Dimensional Vector Spaces, Second Edition, Dover Publications, Inc. Mineola, New York
[8] Hongyu Guo, What Are Tensors Exactly?,World Scientific, 16-Jun-2021 Mathematics
[9] Nielsen, M.A. \& Chuang, I.L., 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press.

[^0]: ${ }^{1}$ To explore more about Null space and Singularity refer 3 or 7

