
Vijay V. Vazirani

College of Computing
Georgia Institute of Technology

Copyright c© 2001

Approximation Algorithms

Springer
Berlin Heidelberg NewYork
Barcelona Hong Kong
London Milan Paris
Singapore Tokyo

To my parents

Preface

Although this may seem a paradox, all exact
science is dominated by the idea of approximation.

Bertrand Russell (1872–1970)

Most natural optimization problems, including those arising in important
application areas, are NP-hard. Therefore, under the widely believed con-
jecture that P �= NP, their exact solution is prohibitively time consuming.
Charting the landscape of approximability of these problems, via polynomial
time algorithms, therefore becomes a compelling subject of scientific inquiry
in computer science and mathematics. This book presents the theory of ap-
proximation algorithms as it stands today. It is reasonable to expect the
picture to change with time.

The book is divided into three parts. In Part I we cover a combinato-
rial algorithms for a number of important problems, using a wide variety
of algorithm design techniques. The latter may give Part I a non-cohesive
appearance. However, this is to be expected – nature is very rich, and we
cannot expect a few tricks to help solve the diverse collection of NP-hard
problems. Indeed, in this part, we have purposely refrained from tightly cat-
egorizing algorithmic techniques so as not to trivialize matters. Instead, we
have attempted to capture, as accurately as possible, the individual character
of each problem, and point out connections between problems and algorithms
for solving them.

In Part II, we present linear programming based algorithms. These are
categorized under two fundamental techniques: rounding and the primal–
dual schema. But once again, the exact approximation guarantee obtainable
depends on the specific LP-relaxation used, and there is no fixed recipe for
discovering good relaxations, just as there is no fixed recipe for proving a the-
orem in mathematics (readers familiar with complexity theory will recognize
this as the philosophical point behind the P �= NP question).

Part III covers four important topics. The first is the problem of finding
a shortest vector in a lattice which, for several reasons, deserves individual
treatment (see Chapter 27).

The second topic is the approximability of counting, as opposed to
optimization, problems (counting the number of solutions to a given in-
stance). The counting versions of all known NP-complete problems are #P-
complete1. Interestingly enough, other than a handful of exceptions, this is
true of problems in P as well. An impressive theory has been built for ob-
1 However, there is no theorem to this effect yet.

VIII Preface

taining efficient approximate counting algorithms for this latter class of prob-
lems. Most of these algorithms are based on the Markov chain Monte Carlo
(MCMC) method, a topic that deserves a book by itself and is therefore not
treated here. In Chapter 28 we present combinatorial algorithms, not using
the MCMC method, for two fundamental counting problems.

The third topic is centered around recent breakthrough results, estab-
lishing hardness of approximation for many key problems, and giving new
legitimacy to approximation algorithms as a deep theory. An overview of
these results is presented in Chapter 29, assuming the main technical theo-
rem, the PCP Theorem. The latter theorem, unfortunately, does not have a
simple proof at present.

The fourth topic consists of the numerous open problems of this young
field. The list presented should by no means be considered exhaustive, and
is moreover centered around problems and issues currently in vogue. Exact
algorithms have been studied intensively for over four decades, and yet basic
insights are still being obtained. Considering the fact that among natural
computational problems, polynomial time solvability is the exception rather
than the rule, it is only reasonable to expect the theory of approximation
algorithms to grow considerably over the years.

The set cover problem occupies a special place, not only in the theory of
approximation algorithms, but also in this book. It offers a particularly simple
setting for introducing key concepts as well as some of the basic algorithm
design techniques of Part I and Part II. In order to give a complete treatment
for this central problem, in Part III we give a hardness result for it, even
though the proof is quite elaborate. The hardness result essentially matches
the guarantee of the best algorithm known – this being another reason for
presenting this rather difficult proof.

Our philosophy on the design and exposition of algorithms is nicely il-
lustrated by the following analogy with an aspect of Michelangelo’s art. A
major part of his effort involved looking for interesting pieces of stone in the
quarry and staring at them for long hours to determine the form they natu-
rally wanted to take. The chisel work exposed, in a minimalistic manner, this
form. By analogy, we would like to start with a clean, simply stated problem
(perhaps a simplified version of the problem we actually want to solve in
practice). Most of the algorithm design effort actually goes into understand-
ing the algorithmically relevant combinatorial structure of the problem. The
algorithm exploits this structure in a minimalistic manner. The exposition of
algorithms in this book will also follow this analogy, with emphasis on stating
the structure offered by problems, and keeping the algorithms minimalistic.

An attempt has been made to keep individual chapters short and simple,
often presenting only the key result. Generalizations and related results are
relegated to exercises. The exercises also cover other important results which
could not be covered in detail due to logistic constraints. Hints have been

Preface IX

provided for some of the exercises; however, there is no correlation between
the degree of difficulty of an exercise and whether a hint is provided for it.

This book is suitable for use in advanced undergraduate and graduate level
courses on approximation algorithms. It has more than twice the material
that can be covered in a semester long course, thereby leaving plenty of room
for an instructor to choose topics. An undergraduate course in algorithms
and the theory of NP-completeness should suffice as a prerequisite for most
of the chapters. For completeness, we have provided background information
on several topics: complexity theory in Appendix A, probability theory in
Appendix B, linear programming in Chapter 12, semidefinite programming in
Chapter 26, and lattices in Chapter 27. (A disproportionate amount of space
has been devoted to the notion of self-reducibility in Appendix A because
this notion has been quite sparsely treated in other sources.) This book can
also be used is as supplementary text in basic undergraduate and graduate
algorithms courses. The first few chapters of Part I and Part II are suitable
for this purpose. The ordering of chapters in both these parts is roughly by
increasing difficulty.

In anticipation of this wide audience, we decided not to publish this book
in any of Springer’s series – even its prestigious Yellow Series. (However, we
could not resist spattering a patch of yellow on the cover!) The following
translations are currently planned: French by Claire Kenyon, Japanese by
Takao Asano, and Romanian by Ion Măndoiu. Corrections and comments
from readers are welcome. We have set up a special email address for this
purpose: approx@cc.gatech.edu.

Finally, a word about practical impact. With practitioners looking for
high performance algorithms having error within 2% or 5% of the optimal,
what good are algorithms that come within a factor of 2, or even worse,
O(log n), of the optimal? Further, by this token, what is the usefulness of
improving the approximation guarantee from, say, factor 2 to 3/2?

Let us address both issues and point out some fallacies in these assertions.
The approximation guarantee only reflects the performance of the algorithm
on the most pathological instances. Perhaps it is more appropriate to view
the approximation guarantee as a measure that forces us to explore deeper
into the combinatorial structure of the problem and discover more powerful
tools for exploiting this structure. It has been observed that the difficulty
of constructing tight examples increases considerably as one obtains algo-
rithms with better guarantees. Indeed, for some recent algorithms, obtaining
a tight example has been a paper by itself (e.g., see Section 26.7). Experi-
ments have confirmed that these and other sophisticated algorithms do have
error bounds of the desired magnitude, 2% to 5%, on typical instances, even
though their worst case error bounds are much higher. Additionally, the the-
oretically proven algorithm should be viewed as a core algorithmic idea that
needs to be fine tuned to the types of instances arising in specific applications.

X Preface

We hope that this book will serve as a catalyst in helping this theory grow
and have practical impact.

Acknowledgments

This book is based on courses taught at the Indian Institute of Technology,
Delhi in Spring 1992 and Spring 1993, at Georgia Tech in Spring 1997, Spring
1999, and Spring 2000, and at DIMACS in Fall 1998. The Spring 1992 course
resulted in the first set of class notes on this topic. It is interesting to note
that more than half of this book is based on subsequent research results.

Numerous friends – and family members – have helped make this book a
reality. First, I would like to thank Naveen Garg, Kamal Jain, Ion Măndoiu,
Sridhar Rajagopalan, Huzur Saran, and Mihalis Yannakakis – my extensive
collaborations with them helped shape many of the ideas presented in this
book. I was fortunate to get Ion Măndoiu’s help and advice on numerous
matters – his elegant eye for layout and figures helped shape the presentation.
A special thanks, Ion!

I would like to express my gratitude to numerous experts in the field for
generous help on tasks ranging all the way from deciding the contents and
its organization, providing feedback on the writeup, ensuring correctness and
completeness of references to designing exercises and helping list open prob-
lems. Thanks to Sanjeev Arora, Alan Frieze, Naveen Garg, Michel Goemans,
Mark Jerrum, Claire Kenyon, Samir Khuller, Daniele Micciancio, Yuval Ra-
bani, Sridhar Rajagopalan, Dana Randall, Tim Roughgarden, Amin Saberi,
Leonard Schulman, Amin Shokrollahi, and Mihalis Yannakakis, with special
thanks to Kamal Jain, Éva Tardos, and Luca Trevisan.

Numerous other people helped with valuable comments and discussions.
In particular, I would like to thank Sarmad Abbasi, Cristina Bazgan, Rogerio
Brito Gruia Calinescu, Amit Chakrabarti, Mosses Charikar, Joseph Cheriyan,
Vasek Chvátal, Uri Feige, Cristina Fernandes, Ashish Goel, Parikshit Gopalan,
Mike Grigoriadis, Sudipto Guha, Dorit Hochbaum, Howard Karloff, Leonid
Khachian, Stavros Kolliopoulos, Jan van Leeuwen, Nati Lenial, George
Leuker, Vangelis Markakis, Aranyak Mehta, Rajeev Motwani, Prabhakar
Raghavan, Satish Rao, Miklos Santha, Jiri Sgall, David Shmoys, Alistair
Sinclair, Prasad Tetali, Pete Veinott, Ramarathnam Venkatesan, Nisheeth
Vishnoi, and David Williamson. I am sure I am missing several names – my
apologies and thanks to these people as well. A special role was played by
the numerous students who took my courses on this topic and scribed notes.
It will be impossible to individually remember their names. I would like to
express my gratitude collectively to them.

I would like to thank IIT Delhi – with special thanks to Shachin Mahesh-
wari – Georgia Tech, and DIMACS for providing pleasant, supportive and
academically rich environments. Thanks to NSF for support under grants
CCR-9627308 and CCR-9820896.

Preface XI

It was a pleasure to work with Hans Wössner on editorial matters. The
personal care with which he handled all such matters and his sensitivity to
an author’s unique point of view were especially impressive. Thanks also to
Frank Holzwarth for sharing his expertise with LATEX.

A project of this magnitude would be hard to pull off without whole-
hearted support from family members. Fortunately, in my case, some of them
are also fellow researchers – my wife, Milena Mihail, and my brother, Umesh
Vazirani. Little Michel’s arrival, halfway through this project, brought new
joys and energies, though made the end even more challenging! Above all,
I would like to thank my parents for their unwavering support and inspira-
tion – my father, a distinguished author of several Civil Engineering books,
and my mother, with her deep understanding of Indian Classical Music. This
book is dedicated to them.

Atlanta, Georgia, May 2001 Vijay Vazirani

Table of Contents

1 Introduction . 1
1.1 Lower bounding OPT . 2

1.1.1 An approximation algorithm for cardinality vertex cover 3
1.1.2 Can the approximation guarantee be improved? 3

1.2 Well-characterized problems and min–max relations 5
1.3 Exercises . 7
1.4 Notes . 10

Part I. Combinatorial Algorithms

2 Set Cover . 15
2.1 The greedy algorithm . 16
2.2 Layering . 17
2.3 Application to shortest superstring . 19
2.4 Exercises . 22
2.5 Notes . 26

3 Steiner Tree and TSP . 27
3.1 Metric Steiner tree . 27

3.1.1 MST-based algorithm . 28
3.2 Metric TSP . 30

3.2.1 A simple factor 2 algorithm . 31
3.2.2 Improving the factor to 3/2 . 32

3.3 Exercises . 33
3.4 Notes . 37

4 Multiway Cut and k-Cut . 38
4.1 The multiway cut problem . 38
4.2 The minimum k-cut problem . 40
4.3 Exercises . 44
4.4 Notes . 46

XIV Table of Contents

5 k-Center . 47
5.1 Parametric pruning applied to metric k-center 47
5.2 The weighted version . 50
5.3 Exercises . 52
5.4 Notes . 53

6 Feedback Vertex Set . 54
6.1 Cyclomatic weighted graphs . 54
6.2 Layering applied to feedback vertex set . 57
6.3 Exercises . 60
6.4 Notes . 60

7 Shortest Superstring . 61
7.1 A factor 4 algorithm . 61
7.2 Improving to factor 3 . 64

7.2.1 Achieving half the optimal compression 66
7.3 Exercises . 66
7.4 Notes . 67

8 Knapsack . 68
8.1 A pseudo-polynomial time algorithm for knapsack 69
8.2 An FPTAS for knapsack . 69
8.3 Strong NP-hardness and the existence of FPTAS’s 71

8.3.1 Is an FPTAS the most desirable approximation
algorithm?. 72

8.4 Exercises . 72
8.5 Notes . 73

9 Bin Packing . 74
9.1 An asymptotic PTAS . 74
9.2 Exercises . 77
9.3 Notes . 78

10 Minimum Makespan Scheduling . 79
10.1 Factor 2 algorithm . 79
10.2 A PTAS for minimum makespan . 80

10.2.1 Bin packing with fixed number of object sizes 81
10.2.2 Reducing makespan to restricted bin packing 81

10.3 Exercises . 83
10.4 Notes . 83

11 Euclidean TSP . 84
11.1 The algorithm . 84
11.2 Proof of correctness . 87
11.3 Exercises . 89
11.4 Notes . 89

Table of Contents XV

Part II. LP-Based Algorithms

12 Introduction to LP-Duality . 93
12.1 The LP-duality theorem . 93
12.2 Min–max relations and LP-duality . 97
12.3 Two fundamental algorithm design techniques 100

12.3.1 A comparison of the techniques and the notion of
integrality gap . 101

12.4 Exercises . 103
12.5 Notes . 107

13 Set Cover via Dual Fitting . 108
13.1 Dual-fitting-based analysis for the greedy set cover algorithm 108

13.1.1 Can the approximation guarantee be improved? 111
13.2 Generalizations of set cover . 112

13.2.1 Dual fitting applied to constrained set multicover 112
13.3 Exercises . 116
13.4 Notes . 118

14 Rounding Applied to Set Cover . 119
14.1 A simple rounding algorithm . 119
14.2 Randomized rounding . 120
14.3 Half-integrality of vertex cover . 122
14.4 Exercises . 123
14.5 Notes . 124

15 Set Cover via the Primal–Dual Schema 125
15.1 Overview of the schema . 125
15.2 Primal–dual schema applied to set cover 127
15.3 Exercises . 129
15.4 Notes . 129

16 Maximum Satisfiability . 131
16.1 Dealing with large clauses . 132
16.2 Derandomizing via the method of conditional expectation . . . 132
16.3 Dealing with small clauses via LP-rounding 134
16.4 A 3/4 factor algorithm . 136
16.5 Exercises . 137
16.6 Notes . 139

17 Scheduling on Unrelated Parallel Machines 140
17.1 Parametric pruning in an LP setting . 140
17.2 Properties of extreme point solutions . 141
17.3 The algorithm . 142

XVI Table of Contents

17.4 Additional properties of extreme point solutions 143
17.5 Exercises . 144
17.6 Notes . 145

18 Multicut and Integer Multicommodity Flow in Trees 146
18.1 The problems and their LP-relaxations . 146
18.2 Primal–dual schema based algorithm . 149
18.3 Exercises . 152
18.4 Notes . 154

19 Multiway Cut . 155
19.1 An interesting LP-relaxation . 155
19.2 Randomized rounding algorithm . 157
19.3 Half-integrality of node multiway cut . 160
19.4 Exercises . 163
19.5 Notes . 167

20 Multicut in General Graphs . 168
20.1 Sum multicommodity flow . 168
20.2 LP-rounding-based algorithm . 170

20.2.1 Growing a region: the continuous process 171
20.2.2 The discrete process . 172
20.2.3 Finding successive regions . 173

20.3 A tight example . 175
20.4 Some applications of multicut . 176
20.5 Exercises . 177
20.6 Notes . 179

21 Sparsest Cut . 180
21.1 Demands multicommodity flow . 180
21.2 Linear programming formulation . 181
21.3 Metrics, cut packings, and �1-embeddability 183

21.3.1 Cut packings for metrics . 183
21.3.2 �1-embeddability of metrics . 185

21.4 Low distortion �1-embeddings for metrics 186
21.4.1 Ensuring that a single edge is not overshrunk 187
21.4.2 Ensuring that no edge is overshrunk 190

21.5 LP-rounding-based algorithm . 191
21.6 Applications . 192

21.6.1 Edge expansion . 192
21.6.2 Conductance . 192
21.6.3 Balanced cut . 193
21.6.4 Minimum cut linear arrangement 194

21.7 Exercises . 195
21.8 Notes . 197

Table of Contents XVII

22 Steiner Forest . 198
22.1 LP-relaxation and dual . 198
22.2 Primal–dual schema with synchronization 199
22.3 Analysis . 204
22.4 Exercises . 207
22.5 Notes . 212

23 Steiner Network . 213
23.1 The LP-relaxation and half-integrality . 213
23.2 The technique of iterated rounding . 217
23.3 Characterizing extreme point solutions . 219
23.4 A counting argument . 221
23.5 Exercises . 224
23.6 Notes . 231

24 Facility Location . 232
24.1 An intuitive understanding of the dual . 233
24.2 Relaxing primal complementary slackness conditions 234
24.3 Primal–dual schema based algorithm . 235
24.4 Analysis . 236

24.4.1 Running time . 238
24.4.2 Tight example . 238

24.5 Exercises . 239
24.6 Notes . 242

25 k-Median . 243
25.1 LP-relaxation and dual . 243
25.2 The high-level idea . 244
25.3 Randomized rounding . 247

25.3.1 Derandomization . 248
25.3.2 Running time . 249
25.3.3 Tight example . 249
25.3.4 Integrality gap . 250

25.4 A Lagrangian relaxation technique
for approximation algorithms . 250

25.5 Exercises . 251
25.6 Notes . 254

26 Semidefinite Programming . 255
26.1 Strict quadratic programs and vector programs 255
26.2 Properties of positive semidefinite matrices 257
26.3 The semidefinite programming problem 258
26.4 Randomized rounding algorithm . 260
26.5 Improving the guarantee for MAX-2SAT 263
26.6 Exercises . 265
26.7 Notes . 268

XVIII Table of Contents

Part III. Other Topics

27 Shortest Vector . 273
27.1 Bases, determinants, and orthogonality defect 274
27.2 The algorithms of Euclid and Gauss . 276
27.3 Lower bounding OPT using Gram–Schmidt orthogonalization 278
27.4 Extension to n dimensions . 280
27.5 The dual lattice and its algorithmic use 284
27.6 Exercises . 288
27.7 Notes . 292

28 Counting Problems . 294
28.1 Counting DNF solutions . 295
28.2 Network reliability . 297

28.2.1 Upperbounding the number of near-minimum cuts 298
28.2.2 Analysis . 300

28.3 Exercises . 302
28.4 Notes . 305

29 Hardness of Approximation . 306
29.1 Reductions, gaps, and hardness factors . 306
29.2 The PCP theorem . 309
29.3 Hardness of MAX-3SAT . 311
29.4 Hardness of MAX-3SAT with bounded occurrence

of variables . 313
29.5 Hardness of vertex cover and Steiner tree 316
29.6 Hardness of clique . 318
29.7 Hardness of set cover . 322

29.7.1 The two-prover one-round characterization of NP 322
29.7.2 The gadget . 324
29.7.3 Reducing error probability by parallel repetition 325
29.7.4 The reduction . 326

29.8 Exercises . 329
29.9 Notes . 332

30 Open Problems . 334
30.1 Problems having constant factor algorithms 334
30.2 Other optimization problems . 336
30.3 Counting problems . 338

Table of Contents XIX

Appendix

A An Overview of Complexity Theory
for the Algorithm Designer . 343
A.1 Certificates and the class NP . 343
A.2 Reductions and NP-completeness . 344
A.3 NP-optimization problems and approximation algorithms . . . 345

A.3.1 Approximation factor preserving reductions 347
A.4 Randomized complexity classes . 347
A.5 Self-reducibility . 348
A.6 Notes . 351

B Basic Facts from Probability Theory . 352
B.1 Expectation and moments . 352
B.2 Deviations from the mean . 353
B.3 Basic distributions . 354
B.4 Notes . 354

References . 355

Problem Index . 371

Subject Index . 375

1 Introduction

NP-hard optimization problems exhibit a rich set of possibilities, all the
way from allowing approximability to any required degree, to essentially not
allowing approximability at all. Despite this diversity, underlying the process
of design of approximation algorithms are some common principles. We will
explore these in the current chapter.

An optimization problem is polynomial time solvable only if it has
the algorithmically relevant combinatorial structure that can be used as
“footholds” to efficiently home in on an optimal solution. The process of
designing an exact polynomial time algorithm is a two-pronged attack: un-
raveling this structure in the problem and finding algorithmic techniques that
can exploit this structure.

Although NP-hard optimization problems do not offer footholds for find-
ing optimal solutions efficiently, they may still offer footholds for finding
near-optimal solutions efficiently. So, at a high level, the process of design of
approximation algorithms is not very different from that of design of exact
algorithms. It still involves unraveling the relevant structure and finding al-
gorithmic techniques to exploit it. Typically, the structure turns out to be
more elaborate, and often the algorithmic techniques result from generalizing
and extending some of the powerful algorithmic tools developed in the study
of exact algorithms.

On the other hand, looking at the process of designing approximation
algorithms a little more closely, one can see that it has its own general princi-
ples. We illustrate some of these principles in Section 1.1, using the following
simple setting.

Problem 1.1 (Vertex cover) Given an undirected graph G = (V,E), and
a cost function on vertices c : V → Q+, find a minimum cost vertex cover,
i.e., a set V ′ ⊆ V such that every edge has at least one endpoint incident at
V ′. The special case, in which all vertices are of unit cost, will be called the
cardinality vertex cover problem.

Since the design of an approximation algorithm involves delicately attack-
ing NP-hardness and salvaging from it an efficient approximate solution, it
will be useful for the reader to review some key concepts from complexity
theory. Appendix A and some exercises in Section 1.3 have been provided for
this purpose.

2 1 Introduction

It is important to give precise definitions of an NP-optimization problem
and an approximation algorithm for it (e.g., see Exercises 1.9 and 1.10). Since
these definitions are quite technical, we have moved them to Appendix A.
We provide essentials below to quickly get started.

An NP-optimization problem Π is either a minimization or a maximiza-
tion problem. Each valid instance I of Π comes with a nonempty set of
feasible solutions, each of which is assigned a nonnegative rational number
called its objective function value. There exist polynomial time algorithms
for determining validity, feasibility, and the objective function value. A fea-
sible solution that achieves the optimal objective function value is called an
optimal solution. OPTΠ(I) will denote the objective function value of an
optimal solution to instance I. We will shorten this to OPT when there is
no ambiguity. For the problems studied in this book, computing OPTΠ(I) is
NP-hard.

For example, valid instances of the vertex cover problem consist of an
undirected graph G = (V,E) and a cost function on vertices. A feasible
solution is a set S ⊆ V that is a cover for G. Its objective function value is
the sum of costs of all vertices in S. A minimum cost such set is an optimal
solution.

An approximation algorithm, A, for Π produces, in polynomial time, a
feasible solution whose objective function value is “close” to the optimal;
by “close” we mean within a guaranteed factor of the optimal. In the next
section, we will present a factor 2 approximation algorithm for the cardinality
vertex cover problem, i.e., an algorithm that finds a cover of cost ≤ 2 · OPT
in time polynomial in |V |.

1.1 Lower bounding OPT

When designing an approximation algorithm for an NP-hard NP-optimiza-
tion problem, one is immediately faced with the following dilemma. In order
to establish the approximation guarantee, the cost of the solution produced
by the algorithm needs to be compared with the cost of an optimal solution.
However, for such problems, not only is it NP-hard to find an optimal solu-
tion, but it is also NP-hard to compute the cost of an optimal solution (see
Appendix A). In fact, in Section A.5 we show that computing the cost of an
optimal solution (or even solving its decision version) is precisely the difficult
core of such problems. So, how do we establish the approximation guarantee?
Interestingly enough, the answer to this question provides a key step in the
design of approximation algorithms.

Let us demonstrate this in the context of the cardinality vertex cover
problem. We will get around the difficulty mentioned above by coming up
with a “good” polynomial time computable lower bound on the size of the
optimal cover.

1.1 Lower bounding OPT 3

1.1.1 An approximation algorithm for cardinality vertex cover

We provide some definitions first. Given a graph H = (U,F), a subset of
the edges M ⊆ F is said to be a matching if no two edges of M share an
endpoint. A matching of maximum cardinality in H is called a maximum
matching, and a matching that is maximal under inclusion is called a maximal
matching. A maximal matching can clearly be computed in polynomial time
by simply greedily picking edges and removing endpoints of picked edges.
More sophisticated means lead to polynomial time algorithms for finding a
maximum matching as well.

Let us observe that the size of a maximal matching in G provides a lower
bound. This is so because any vertex cover has to pick at least one endpoint
of each matched edge. This lower bounding scheme immediately suggests the
following simple algorithm:

Algorithm 1.2 (Cardinality vertex cover)

Find a maximal matching in G and output the set of matched vertices.

Theorem 1.3 Algorithm 1.2 is a factor 2 approximation algorithm for the
cardinality vertex cover problem.

Proof: No edge can be left uncovered by the set of vertices picked – other-
wise such an edge could have been added to the matching, contradicting its
maximality. Let M be the matching picked. As argued above, |M | ≤ OPT.
The approximation factor follows from the observation that the cover picked
by the algorithm has cardinality 2 |M |, which is at most 2 ·OPT. ✷

Observe that the approximation algorithm for vertex cover was very much
related to, and followed naturally from, the lower bounding scheme. This is in
fact typical in the design of approximation algorithms. In Part II of this book,
we show how linear programming provides a unified way of obtaining lower
bounds for several fundamental problems. The algorithm itself is designed
around the LP that provides the lower bound.

1.1.2 Can the approximation guarantee be improved?

The following questions arise in the context of improving the approximation
guarantee for cardinality vertex cover:

1. Can the approximation guarantee of Algorithm 1.2 be improved by a
better analysis?

4 1 Introduction

2. Can an approximation algorithm with a better guarantee be designed
using the lower bounding scheme of Algorithm 1.2, i.e., size of a maximal
matching in G?

3. Is there some other lower bounding method that can lead to an improved
approximation guarantee for vertex cover?

Example 1.4 shows that the answer to the first question is “no”, i.e.,
the analysis presented above for Algorithm 1.2 is tight. It gives an infinite
family of instances in which the solution produced by Algorithm 1.2 is twice
the optimal. An infinite family of instances of this kind, showing that the
analysis of an approximation algorithm is tight, will be referred to as a tight
example. The importance of finding tight examples for an approximation
algorithm one has designed cannot be overemphasized. They give critical
insight into the functioning of the algorithm and have often led to ideas for
obtaining algorithms with improved guarantees. (The reader is advised to
run algorithms on the tight examples presented in this book.)

Example 1.4 Consider the infinite family of instances given by the complete
bipartite graphs Kn,n. �� �

�� �
�� �

�� �

��������

◗
◗
◗
◗
◗
◗
◗
◗

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙

✏✏
✏✏

✏✏
✏✏

��������

❅
❅
❅
❅
❅
❅
❅
❅

✑
✑
✑
✑
✑
✑
✑
✑

✏✏
✏✏

✏✏
✏✏

◗
◗
◗
◗
◗
◗
◗
◗�

�
�
�
�
�
�
�
�
��

✑
✑
✑
✑
✑
✑
✑
✑

�
�
�
�
�
�
�
�

...
...

When run on Kn,n, Algorithm 1.2 will pick all 2n vertices, whereas picking
one side of the bipartition gives a cover of size n. ✷

Let us assume that we will establish the approximation factor for an
algorithm by simply comparing the cost of the solution it finds with the lower
bound. Indeed, almost all known approximation algorithms operate in this
manner. Under this assumption, the answer to the second question is also
“no”. This is established in Example 1.5, which gives an infinite family of
instances on which the lower bound, of size of a maximal matching, is in fact
half the size of an optimal vertex cover. In the case of linear-programming-
based approximation algorithms, the analogous question will be answered by
determining a fundamental quantity associated with the linear programming
relaxation – its integrality gap (see Chapter 12).

The third question, of improving the approximation guarantee for ver-
tex cover, is currently a central open problem in the field of approximation
algorithms (see Section 30.1).

1.2 Well-characterized problems and min–max relations 5

Example 1.5 The lower bound, of size of a maximal matching, is half the
size of an optimal vertex cover for the following infinite family of instances.
Consider the complete graph Kn, where n is odd. The size of any maximal
matching is (n− 1)/2, whereas the size of an optimal cover is n− 1. ✷

1.2 Well-characterized problems and min–max relations

Consider decision versions of the cardinality vertex cover and maximum
matching problems.

• Is the size of the minimum vertex cover in G at most k?
• Is the size of the maximum matching in G at least l?

Both these decision problems are inNP and therefore have Yes certificates
(see Appendix A for definitions). Do these problems also have No certificates?
We have already observed that the size of a maximum matching is a lower
bound on the size of a minimum vertex cover. If G is bipartite, then in fact
equality holds; this is the classic König-Egerváry theorem.

Theorem 1.6 In any bipartite graph,

max
matching M

|M | = min
vertex cover U

|U |.

Therefore, if the answer to the first decision problem is “no”, there must be
a matching of size k + 1 in G that suffices as a certificate. Similarly, a vertex
cover of size l−1 must exist in G if the answer to the second decision problem
is “no”. Hence, when restricted to bipartite graphs, both vertex cover and
maximum matching problems have No certificates and are in co-NP. In fact,
both problems are also in P under this restriction. It is easy to see that any
problem in P trivially has Yes as well as No certificates (the empty string
suffices). This is equivalent to the statement that P ⊆ NP ∩ co-NP. It is
widely believed that the containment is strict; the conjectured status of these
classes is depicted below.

P

NP co-NP

6 1 Introduction

Problems that have Yes and No certificates, i.e., are in NP∩ co-NP, are
said to be well-characterized. The importance of this notion can be gauged
from the fact that the quest for a polynomial time algorithm for matching
started with the observation that it is well-characterized.

Min–max relations of the kind given above provide proof that a problem is
well-characterized. Such relations are some of the most powerful and beautiful
results in combinatorics, and some of the most fundamental polynomial time
algorithms (exact) have been designed around such relations. Most of these
min–max relations are actually special cases of the LP-duality theorem (see
Section 12.2). As pointed out above, LP-duality theory plays a vital role in
the design of approximation algorithms as well.

What if G is not restricted to be bipartite? In this case, a maximum
matching may be strictly smaller than a minimum vertex cover. For instance,
if G is simply an odd length cycle on 2p + 1 vertices, then the size of a max-
imum matching is p, whereas the size of a minimum vertex cover is p + 1.
This may happen even for graphs having a perfect matching, for instance,
the Petersen graph:

� �
�� ���

� �

�

❇
❇
❇
❇
❇✂

✂
✂
✂
✂

✚
✚

✚
✚✚

✚
✚
✚
✚✚

✂
✂
✂
✂
✂✂❇

❇
❇
❇
❇❇

❏❏✡✡

 ✥✥

This graph has a perfect matching of cardinality 5; however, the minimum
vertex cover has cardinality 6. One can show that there is no vertex cover of
size 5 by observing that any vertex cover must pick at least p + 1 vertices
from an odd cycle of length 2p + 1, just to cover all the edges of the cycle,
and the Petersen graph has two disjoint cycles of length 5.

Under the widely believed assumption that NP �= co-NP, NP-hard prob-
lems do not have No certificates. Thus, the minimum vertex cover problem in
general graphs, which is NP-hard, does not have a No certificate, assuming
NP �= co-NP. The maximum matching problem in general graphs is in P.
However, the No certificate for this problem is not a vertex cover, but a more
general structure: an odd set cover.

An odd set cover C in a graph G = (V,E) is a collection of disjoint odd
cardinality subsets of V , S1, . . . , Sk, and a collection v1, . . . , vl of vertices such
that each edge of G is either incident at one of the vertices vi or has both
endpoints in one of the sets Si. The weight of this cover C is defined to be
w(C) = l +

∑k
i=1 (|Si| − 1)/2. The following min–max relation holds.

1.3 Exercises 7

Theorem 1.7 In any graph, max
matching M

|M | = min
odd set cover C

w(C).

As shown above, in general graphs a maximum matching can be smaller
than a minimum vertex cover. Can it be arbitrarily smaller? The answer is
“no”. A corollary of Theorem 1.3 is that in any graph, the size of a maximum
matching is at least half the size of a minimum vertex cover. More precisely,
Theorem 1.3 gives, as a corollary, the following approximate min–max rela-
tion. Approximation algorithms frequently yield such approximate min–max
relations, which are of independent interest.

Corollary 1.8 In any graph,

max
matching M

|M | ≤ min
vertex cover U

|U | ≤ 2 ·
(

max
matching M

|M |
)

.

Although the vertex cover problem does not have No certificate under the
assumption NP �= co-NP, surely there ought to be a way of certifying that
(G, k) is a “no” instance for small enough values of k. Algorithm 1.2 (more
precisely, the lower bounding scheme behind this approximation algorithm)
provides such a method. Let A(G) denote the size of vertex cover output by
Algorithm 1.2. Then, OPT(G) ≤ A(G) ≤ 2 · OPT(G). If k < A(G)/2 then
k < OPT(G), and therefore (G, k) must be a “no” instance. Furthermore,
if k < OPT(G)/2 then k < A(G)/2. Hence, Algorithm 1.2 provides a No
certificate for all instances (G, k) such that k < OPT(G)/2.

A No certificate for instances (I,B) of a minimization problem Π satis-
fying B < OPT(I)/α is called a factor α approximate No certificate. As in
the case of normal Yes and No certificates, we do not require that this certifi-
cate be polynomial time computable. An α factor approximation algorithm
A for Π provides such a certificate. Since A has polynomial running time,
this certificate is polynomial time computable. In Chapter 27 we will show
an intriguing result – that the shortest vector problem has a factor n approx-
imate No certificate; however, a polynomial time algorithm for constructing
such a certificate is not known.

1.3 Exercises

1.1 Give a factor 1/2 algorithm for the following.

Problem 1.9 (Acyclic subgraph) Given a directed graph G = (V,E), pick
a maximum cardinality set of edges from E so that the resulting subgraph is
acyclic.
Hint: Arbitrarily number the vertices and pick the bigger of the two sets,
the forward-going edges and the backward-going edges. What scheme are you
using for upper bounding OPT?

8 1 Introduction

1.2 Design a factor 2 approximation algorithm for the problem of finding a
minimum cardinality maximal matching in an undirected graph.
Hint: Use the fact that any maximal matching is at least half the maximum
matching.

1.3 (R. Bar-Yehuda) Consider the following factor 2 approximation algo-
rithm for the cardinality vertex cover problem. Find a depth first search tree
in the given graph, G, and output the set, say S, of all the nonleaf vertices
of this tree. Show that S is indeed a vertex cover for G and |S| ≤ 2 ·OPT.
Hint: Show that G has a matching of size |S|.

1.4 Perhaps the first strategy one tries when designing an algorithm for an
optimization problem is the greedy strategy. For the vertex cover problem,
this would involve iteratively picking a maximum degree vertex and removing
it, together with edges incident at it, until there are no edges left. Show that
this algorithm achieves an approximation guarantee of O(log n). Give a tight
example for this algorithm.
Hint: The analysis is similar to that in Theorem 2.4.

1.5 A maximal matching can be found via a greedy algorithm: pick an edge,
remove its two endpoints, and iterate until there are no edges left. Does this
make Algorithm 1.2 a greedy algorithm?

1.6 Give a lower bounding scheme for the arbitrary cost version of the vertex
cover problem.
Hint: Not easy if you don’t use LP-duality.

1.7 Let A = {a1, . . . , an} be a finite set, and let “≤” be a relation on
A that is reflexive, antisymmetric, and transitive. Such a relation is called
a partial ordering of A. Two elements ai, aj ∈ A are said to be comparable
if ai ≤ aj or aj ≤ ai. Two elements that are not comparable are said to
be incomparable. A subset S ⊆ A is a chain if its elements are pairwise
comparable. If the elements of S are pairwise incomparable, then it is an
antichain. A chain (antichain) cover is a collection of chains (antichains)
that are pairwise disjoint and cover A. The size of such a cover is the number
of chains (antichains) in it. Prove the following min–max result. The size of
a longest chain equals the size of a smallest antichain cover.
Hint: Let the size of the longest chain be m. For a ∈ A, let φ(a) denote the
size of the longest chain in which a is the smallest element. Now, consider
the partition of A, Ai = {a ∈ A | φ(a) = i}, for 1 ≤ i ≤ m.

1.8 (Dilworth’s theorem, see [195]) Prove that in any finite partial order,
the size of a largest antichain equals the size of a smallest chain cover.
Hint: Derive from the König-Egerváry Theorem. Given a partial order on n-
element set A, consider the bipartite graph G = (U, V,E) with |U | = |V | = n
and (ui, vj) ∈ E iff ai ≤ aj .

1.3 Exercises 9

The next ten exercises are based on Appendix A.

1.9 Is the following an NP-optimization problem? Given an undirected
graph G = (V,E), a cost function on vertices c : V → Q+, and a positive
integer k, find a minimum cost vertex cover for G containing at most k
vertices.
Hint: Can valid instances be recognized in polynomial time (such an instance
must have at least one feasible solution)?

1.10 Let A be an algorithm for a minimization NP-optimization problem Π
such that the expected cost of the solution produced by A is ≤ αOPT, for a
constant α > 1. What is the best approximation guarantee you can establish
for Π using algorithm A?
Hint: A guarantee of 2α − 1 follows easily. For guarantees arbitrarily close
to α, run the algorithm polynomially many times and pick the best solution.
Apply Chernoff’s bound.

1.11 Show that if SAT has been provenNP-hard, and SAT has been reduced,
via a polynomial time reduction, to the decision version of vertex cover, then
the latter is also NP-hard.
Hint: Show that the composition of two polynomial time reductions is also
a polynomial time reduction.

1.12 Show that if the vertex cover problem is in co-NP, then NP = co-NP.

1.13 (Pratt [222]) Let L be the language consisting of all prime numbers.
Show that L ∈ NP.
Hint: Consider the multiplicative group modn, Z∗

n = {a ∈ Z+ | 1 ≤ a <
n and (a, n) = 1}. Clearly, |Z∗

n| ≤ n − 1. Use the fact that |Z∗
n| = n − 1 iff

n is prime, and that Z∗
n is cyclic if n is prime. The Yes certificate consists

of a primitive root of Z∗
n, the prime factorization of n − 1, and, recursively,

similar information about each prime factor of n− 1.

1.14 Give proofs of self-reducibility for the optimization problems discussed
later in this book, in particular, maximum matching, MAX-SAT (Problem
16.1), clique (Problem 29.15), shortest superstring (Problem 2.9), and Mini-
mum makespan scheduling (Problem 10.1).
Hint: For clique, consider two possibilities, that v is or isn’t in the optimal
clique. Correspondingly, either restrict G to v and its neighbors, or remove
v from G. For shortest superstring, remove two strings and replace them
by a legal overlap (may even be a simple concatenation). If the length of
the optimal superstring remains unchanged, work with this smaller instance.
Generalize the scheduling problem a bit – assume that you are also given
the number of time units already scheduled on each machine as part of the
instance.

10 1 Introduction

1.15 Give a suitable definition of self-reducibility for problems in NP, i.e.,
decision problems and not optimization problems, which enables you to ob-
tain a polynomial time algorithm for finding a feasible solution given an
oracle for the decision version, and moreover, yields a self-reducibility tree
for instances.
Hint: Impose an arbitrary order among the atoms of a solution, e.g., for
SAT, this was achieved by arbitrarily ordering the n variables.

1.16 Let Π1 and Π2 be two minimization problems such that there is an
approximation factor preserving reduction from Π1 to Π2. Show that if there
is an α factor approximation algorithm for Π2 then there is also an α factor
approximation algorithm for Π1.
Hint: First prove that if the reduction transforms instance I1 of Π1 to
instance I2 of Π2 then OPTΠ1(I1) = OPTΠ2(I2).

1.17 Show that

L ∈ ZPP iff L ∈ (RP ∩ co-RP).

1.18 Show that if NP ⊆ co-RP then NP ⊆ ZPP.
Hint: If SAT instance φ is satisfiable, a satisfying truth assignment for φ
can be found, with high probability, using self-reducibility and the co-RP
machine for SAT. If φ is not satisfiable, a “no” answer from the co-RP
machine for SAT confirms this; the machine will output such an answer with
high probability.

1.4 Notes

The notion of well-characterized problems was given by Edmonds [69] and
was precisely formulated by Cook [51]. In the same paper, Cook initiated the
theory of NP-completeness. Independently, this discovery was also made by
Levin [186]. It gained its true importance with the work of Karp [164], show-
ing NP-completeness of a diverse collection of fundamental computational
problems.

Interestingly enough, approximation algorithms were designed even before
the discovery of the theory of NP-completeness, by Vizing [255] for the min-
imum edge coloring problem, by Graham [113] for the minimum makespan
problem (Problem 10.1), and by Erdös [73] for the MAX-CUT problem (Prob-
lem 2.14). However, the real significance of designing such algorithms emerged
only after belief in the P �= NP conjecture grew. The notion of an approx-
imation algorithm was formally introduced by Garey, Graham, and Ullman
[91] and Johnson [150]. The first use of linear programming in approximation

1.4 Notes 11

algorithms was due to Lovász [192], for analyzing the greedy set cover algo-
rithm (see Chapter 13). An early work exploring the use of randomization in
the design of algorithms was due to Rabin [224] – this notion is useful in the
design of approximation algorithms as well. Theorem 1.7 is due to Edmonds
[69] and Algorithm 1.2 is due to Gavril [93].

For basic books on algorithms, see Cormen, Leiserson, Rivest, and Stein
[54], Papadimitriou and Steiglitz [217], and Tarjan [246]. For a good treatment
of min–max relations, see Lovász and Plummer [195]. For books on approx-
imation algorithms, see Hochbaum [126] and Ausiello, Crescenzi, Gambosi,
Kann, Marchetti, and Protasi [17]. Books on linear programming, complexity
theory, and randomized algorithms are listed in Sections 12.5, A.6, and B.4,
respectively.

Part I

Combinatorial Algorithms

2 Set Cover

The set cover problem plays the same role in approximation algorithms that
the maximum matching problem played in exact algorithms – as a problem
whose study led to the development of fundamental techniques for the entire
field. For our purpose this problem is particularly useful, since it offers a very
simple setting in which many of the basic algorithm design techniques can be
explained with great ease. In this chapter, we will cover two combinatorial
techniques: the fundamental greedy technique and the technique of layering.
In Part II we will explain both the basic LP-based techniques of rounding
and the primal–dual schema using this problem.

Among the first strategies one tries when designing an algorithm for an
optimization problem is some form of the greedy strategy. Even if this strat-
egy does not work for a specific problem, proving this via a counterexample
can provide crucial insights into the structure of the problem.

Perhaps the most natural use of this strategy in approximation algorithms
is to the set cover problem. Besides the greedy set cover algorithm, we will
also present the technique of layering in this chapter. Because of its generality,
the set cover problem has wide applicability, sometimes even in unexpected
ways. In this chapter we will illustrate such an application – to the shortest
superstring problem (see Chapter 7 for an improved algorithm for the latter
problem).

Problem 2.1 (Set cover) Given a universe U of n elements, a collection
of subsets of U , S = {S1, . . . , Sk}, and a cost function c : S → Q+, find a
minimum cost subcollection of S that covers all elements of U .

Define the frequency of an element to be the number of sets it is in.
A useful parameter is the frequency of the most frequent element. Let us
denote this by f . The various approximation algorithms for set cover achieve
one of two factors: O(log n) or f . Clearly, neither dominates the other in all
instances. The special case of set cover with f = 2 is essentially the vertex
cover problem (see Exercise 2.7), for which we gave a factor 2 approximation
algorithm in Chapter 1.

16 2 Set Cover

2.1 The greedy algorithm

The greedy strategy applies naturally to the set cover problem: iteratively
pick the most cost-effective set and remove the covered elements, until all
elements are covered. Let C be the set of elements already covered at the be-
ginning of an iteration. During this iteration, define the cost-effectiveness of a
set S to be the average cost at which it covers new elements, i.e., c(S)/|S − C|.
Define the price of an element to be the average cost at which it is covered.
Equivalently, when a set S is picked, we can think of its cost being distributed
equally among the new elements covered, to set their prices.

Algorithm 2.2 (Greedy set cover algorithm)

1. C ← ∅
2. While C �= U do

Find the most cost-effective set in the current iteration, say S.
Let α = cost(S)

|S−C| , i.e., the cost-effectiveness of S.
Pick S, and for each e ∈ S − C, set price(e) = α.
C ← C ∪ S.

3. Output the picked sets.

Number the elements of U in the order in which they were covered by the
algorithm, resolving ties arbitrarily. Let e1, . . . , en be this numbering.

Lemma 2.3 For each k ∈ {1, . . . , n}, price(ek) ≤ OPT/(n− k + 1).

Proof: In any iteration, the leftover sets of the optimal solution can cover
the remaining elements at a cost of at most OPT. Therefore, among these
sets, there must be one having cost-effectiveness of at most OPT/|C|. In the
iteration in which element ek was covered, C contained at least n − k + 1
elements. Since ek was covered by the most cost-effective set in this iteration,
it follows that

price(ek) ≤ OPT
|C| ≤ OPT

n− k + 1
.

✷

From Lemma 2.3 we immediately obtain:

Theorem 2.4 The greedy algorithm is an Hn factor approximation algo-
rithm for the minimum set cover problem, where Hn = 1 + 1

2 + · · ·+ 1
n .

Proof: Since the cost of each set picked is distributed among the new ele-
ments covered, the total cost of the set cover picked is equal to

∑n
k=1 price(ek).

By Lemma 2.3, this is at most
(
1 + 1

2 + · · ·+ 1
n

) ·OPT. ✷

2.2 Layering 17

Example 2.5 The following is a tight example for Algorithm 2.2:

...

1/n 1/(n-1) 1

1+ε

When run on this instance the greedy algorithm outputs the cover consisting
of the n singleton sets, since in each iteration some singleton is the most
cost-effective set. Thus, the algorithm outputs a cover of cost

1
n

+
1

n− 1
+ · · ·+ 1 = Hn.

On the other hand, the optimal cover has a cost of 1 + ε. ✷

Surprisingly enough, for the minimum set cover problem the obvious al-
gorithm given above is essentially the best one can hope for; see Sections 29.7
and 29.9.

In Chapter 1 we pointed out that finding a good lower bound on OPT
is a basic starting point in the design of an approximation algorithm for a
minimization problem. At this point the reader may be wondering whether
there is any truth to this claim. We will show in Section 13.1 that the correct
way to view the greedy set cover algorithm is in the setting of the LP-duality
theory – this will not only provide the lower bound on which this algorithm
is based, but will also help obtain algorithms for several generalizations of
this problem.

2.2 Layering

The algorithm design technique of layering is also best introduced via set
cover. We note, however, that this is not a very widely applicable technique.
We will give a factor 2 approximation algorithm for vertex cover, assuming
arbitrary weights, and leave the problem of generalizing this to a factor f
approximation algorithm for set cover, where f is the frequency of the most
frequent element (see Exercise 2.13).

The idea in layering is to decompose the given weight function on vertices
into convenient functions, called degree-weighted, on a nested sequence of
subgraphs of G. For degree-weighted functions, we will show that we will be
within twice the optimal even if we pick all vertices in the cover.

Let us introduce some notation. Let w : V → Q+ be the function assigning
weights to the vertices of the given graph G = (V,E). We will say that a
function assigning vertex weights is degree-weighted if there is a constant

18 2 Set Cover

c > 0 such that the weight of each vertex v ∈ V is c ·deg(v). The significance
of such a weight function is captured in:

Lemma 2.6 Let w : V → Q+ be a degree-weighted function. Then w(V) ≤
2 ·OPT.

Proof: Let c be the constant such that w(v) = c · deg(v), and let U be an
optimal vertex cover in G. Since U covers all the edges,∑

v∈U
deg(v) ≥ |E|.

Therefore, w(U) ≥ c|E|. Now, since
∑

v∈V deg(v) = 2|E|, w(V) = 2c|E|. The
lemma follows. ✷

Let us define the largest degree-weighted function in w as follows: remove
all degree zero vertices from the graph, and over the remaining vertices, com-
pute c = min{w(v)/deg(v)}. Then, t(v) = c · deg(v) is the desired function.
Define w′(v) = w(v)− t(v) to be the residual weight function.

The algorithm for decomposing w into degree-weighted functions is as
follows. Let G0 = G. Remove degree zero vertices from G0, say this set is D0,
and compute the largest degree-weighted function in w. Let W0 be vertices of
zero residual weight; these vertices are included in the vertex cover. Let G1 be
the graph induced on V −(D0∪W0). Now, the entire process is repeated on G1
w.r.t. the residual weight function. The process terminates when all vertices
are of degree zero; let Gk denote this graph. The process is schematically
shown in the following figure.

Dk

G0 W0 D0

G1 W1

Dk-1Wk-1Gk-1

Gk

D1

..

.

Let t0, ..., tk−1 be the degree-weighted functions defined on graphs G0, ..., Gk−1.
The vertex cover chosen is C = W0∪. . .∪Wk−1. Clearly, V −C = D0∪. . .∪Dk.

Theorem 2.7 The layer algorithm achieves an approximation guarantee of
factor 2 for the vertex cover problem, assuming arbitrary vertex weights.

Proof: We need to show that set C is a vertex cover for G and w(C) ≤
2 ·OPT. Assume, for contradiction, that C is not a vertex cover for G. Then

2.3 Application to shortest superstring 19

there must be an edge (u, v) with u ∈ Di and v ∈ Dj , for some i, j. Assume
i ≤ j. Therefore, (u, v) is present in Gi, contradicting the fact that u is a
degree zero vertex.

Let C∗ be an optimal vertex cover. For proving the second part, consider
a vertex v ∈ C. If v ∈ Wj , its weight can be decomposed as

w(v) =
∑
i≤j

ti(v).

Next, consider a vertex v ∈ V −C. If v ∈ Dj , a lower bound on its weight is
given by

w(v) ≥
∑
i<j

ti(v).

The important observation is that in each layer i, C∗ ∩ Gi is a vertex
cover for Gi, since Gi is a vertex-induced graph. Therefore, by Lemma 2.6,
ti(C ∩ Gi) ≤ 2 · ti(C∗ ∩ Gi). By the decomposition of weights given above,
we get

w(C) =
k−1∑
i=0

ti(C ∩Gi) ≤ 2
k−1∑
i=0

ti(C∗ ∩Gi) ≤ 2 · w(C∗).

✷

Example 2.8 A tight example is provided by the family of complete bi-
partite graphs, Kn,n, with all vertices of unit weight. The layering algorithm
will pick all 2n vertices of Kn,n in the cover, whereas the optimal cover picks
only one side of the bipartition. ✷

2.3 Application to shortest superstring

The following algorithm is given primarily to demonstrate the wide applica-
bility of set cover. A constant factor approximation algorithm for shortest
superstring will be given in Chapter 7.

Let us first provide motivation for this problem. The human DNA can
be viewed as a very long string over a four-letter alphabet. Scientists are
attempting to decipher this string. Since it is very long, several overlapping
short segments of this string are first deciphered. Of course, the locations of
these segments on the original DNA are not known. It is hypothesized that
the shortest string which contains these segments as substrings is a good
approximation to the original DNA string.

20 2 Set Cover

Problem 2.9 (Shortest superstring) Given a finite alphabet Σ, and a
set of n strings, S = {s1, . . . , sn} ⊆ Σ+, find a shortest string s that contains
each si as a substring. Without loss of generality, we may assume that no
string si is a substring of another string sj , j �= i.

This problem is NP-hard. Perhaps the first algorithm that comes to mind
for finding a short superstring is the following greedy algorithm. Define the
overlap of two strings s, t ∈ Σ∗ as the maximum length of a suffix of s that is
also a prefix of t. The algorithm maintains a set of strings T ; initially T = S.
At each step, the algorithm selects from T two strings that have maximum
overlap and replaces them with the string obtained by overlapping them as
much as possible. After n − 1 steps, T will contain a single string. Clearly,
this string contains each si as a substring. This algorithm is conjectured to
have an approximation factor of 2. To see that the approximation factor of
this algorithm is no better than 2, consider an input consisting of 3 strings:
abk, bkc, and bk+1. If the first two strings are selected in the first iteration,
the greedy algorithm produces the string abkcbk+1. This is almost twice as
long as the shortest superstring, abk+1c.

We will obtain a 2Hn factor approximation algorithm, using the greedy
set cover algorithm. The set cover instance, denoted by S, is constructed as
follows. For si, sj ∈ S and k > 0, if the last k symbols of si are the same as
the first k symbols of sj , let σijk be the string obtained by overlapping these
k positions of si and sj :

✛ ✲k
si

sj︸ ︷︷ ︸
σijk

Let M be the set that consists of the strings σijk, for all valid choices of
i, j, k. For a string π ∈ Σ+, define set(π) = {s ∈ S | s is a substring of π}.
The universal set of the set cover instance S is S, and the specified subsets
of S are set(π), for each string π ∈ S ∪ I. The cost of set(π) is |π|, i.e., the
length of string π.

Let OPTS and OPT denote the cost of an optimal solution to S and the
length of the shortest superstring of S, respectively. As shown in Lemma 2.11,
OPTS and OPT are within a factor of 2 of each other, and so an approxima-
tion algorithm for set cover can be used to obtain an approximation algorithm
for shortest superstring. The complete algorithm is:

2.3 Application to shortest superstring 21

Algorithm 2.10 (Shortest superstring via set cover)

1. Use the greedy set cover algorithm to find a cover for the instance S.
Let set(π1), . . . , set(πk) be the sets picked by this cover.

2. Concatenate the strings π1, . . . , πk, in any order.
3. Output the resulting string, say s.

Lemma 2.11 OPT ≤ OPTS ≤ 2 ·OPT.

Proof: Consider an optimal set cover, say {set(πi)|1 ≤ i ≤ l}, and obtain a
string, say s, by concatenating the strings πi, 1 ≤ i ≤ l, in any order. Clearly,
|s| = OPTS . Since each string of S is a substring of some πi, 1 ≤ i ≤ l, it is
also a substring of s. Hence OPTS = |s| ≥ OPT.

To prove the second inequality, let s be a shortest superstring of s1, . . . , sn,
|s| = OPT. It suffices to produce some set cover of cost at most 2 ·OPT.

Consider the leftmost occurrence of the strings s1, . . . , sn in string s. Since
no string among s1, . . . , sn is a substring of another, these n leftmost occur-
rences start at distinct places in s. For the same reason, they also end at
distinct places. Renumber the n strings in the order in which their leftmost
occurrences start. Again, since no string is a substring of another, this is also
the order in which they end.

sb1

se1

sb2

se2

sb3

se3

π1
π2

π3

s
. . .

. . .

. . .

We will partition the ordered list of strings s1, . . . , sn in groups as de-
scribed below. Each group will consist of a contiguous set of strings from this

22 2 Set Cover

list. Let bi and ei denote the index of the first and last string in the ith group
(bi = ei is allowed). Thus, b1 = 1. Let e1 be the largest index of a string that
overlaps with s1 (there exists at least one such string, namely s1 itself). In
general, if ei < n we set bi+1 = ei + 1 and denote by ei+1 the largest index
of a string that overlaps with sbi+1 . Eventually, we will get et = n for some
t ≤ n.

For each pair of strings (sbi
, sei), let ki > 0 be the length of the overlap

between their leftmost occurrences in s (this may be different from their
maximum overlap). Let πi = σbieiki

. Clearly, {set(πi)|1 ≤ i ≤ t} is a solution
for S, of cost

∑
i |πi|.

The critical observation is that πi does not overlap πi+2. We will prove
this claim for i = 1; the same argument applies to an arbitrary i. Assume, for
contradiction, that π1 overlaps π3. Then the occurrence of sb3 in s overlaps
the occurrence of se1 . However, sb3 does not overlap sb2 (otherwise, sb3 would
have been put in the second group). This implies that se1 ends later than
sb2 , contradicting the property of endings of strings established earlier.

Because of this observation, each symbol of s is covered by at most two
of the πi’s. Hence OPTS ≤∑

i |πi| ≤ 2 ·OPT. ✷

The size of the universal set in the set cover instance S is n, the number
of strings in the given shortest superstring instance. This fact, Lemma 2.11,
and Theorem 2.4 immediately give the following theorem.

Theorem 2.12 Algorithm 2.10 is a 2Hn factor algorithm for the shortest
superstring problem, where n is the number of strings in the given instance.

2.4 Exercises

2.1 Given an undirected graph G = (V,E), the cardinality maximum cut
problem asks for a partition of V into sets S and S so that the number of
edges running between these sets is maximized. Consider the following greedy
algorithm for this problem. Here v1 and v2 are arbitrary vertices in G, and
for A ⊂ V , d(v,A) denotes the number of edges running between vertex v
and set A.

Algorithm 2.13

1. Initialization:
A ← {v1}
B ← {v2}

2. For v ∈ V − {v1, v2} do:
if d(v,A) ≥ d(v,B) then B ← B ∪ {v},
else A ← A ∪ {v}.

3. Output A and B.

2.4 Exercises 23

Show that this is a factor 1/2 approximation algorithm and give a tight
example. What is the upper bound on OPT that you are using? Give examples
of graphs for which this upper bound is as bad as twice OPT. Generalize the
problem and the algorithm to weighted graphs.

2.2 Consider the following algorithm for the maximum cut problem, based
on the technique of local search. Given a partition of V into sets, the basic
step of the algorithm, called flip, is that of moving a vertex from one side
of the partition to the other. The following algorithm finds a locally optimal
solution under the flip operation, i.e., a solution which cannot be improved
by a single flip.

The algorithm starts with an arbitrary partition of V . While there is a
vertex such that flipping it increases the size of the cut, the algorithm flips
such a vertex. (Observe that a vertex qualifies for a flip if it has more neigh-
bors in its own partition than in the other side.) The algorithm terminates
when no vertex qualifies for a flip. Show that this algorithm terminates in
polynomial time, and achieves an approximation guarantee of 1/2.

2.3 Consider the following generalization of the maximum cut problem.

Problem 2.14 (MAX k-CUT) Given an undirected graph G = (V,E)
with nonnegative edge costs, and an integer k, find a partition of V into
sets S1, . . . , Sk so that the total cost of edges running between these sets is
maximized.

Give a greedy algorithm for this problem that achieves a factor of (1− 1
k).

Is the analysis of your algorithm tight?

2.4 Give a greedy algorithm for the following problem achieving an approx-
imation guarantee of factor 1/4.

Problem 2.15 (Maximum directed cut) Given a directed graph G =
(V,E) with nonnegative edge costs, find a subset S ⊂ V so as to maximize
the total cost of edges out of S, i.e., cost({(u → v) | u ∈ S and v ∈ S}).

2.5 (N. Vishnoi) Use the algorithm in Exercise 2.2 and the fact that the
vertex cover problem is polynomial time solvable for bipartite graphs to give
a factor �log2 ∆� algorithm for vertex cover, where ∆ is the degree of the
vertex having highest degree.
Hint: Let H denote the subgraph consisting of edges in the maximum
cut found by Algorithm 2.13. Clearly, H is bipartite, and for any vertex v,
degH(v) ≥ (1/2)degG(v).

2.6 (Wigderson [257]) Consider the following problem.

Problem 2.16 (Vertex coloring) Given an undirected graph G = (V,E),
color its vertices with the minimum number of colors so that the two end-
points of each edge receive distinct colors.

24 2 Set Cover

1. Give a greedy algorithm for coloring G with ∆+1 colors, where ∆ is the
maximum degree of a vertex in G.

2. Give an algorithm for coloring a 3-colorable graph with O(
√

n) colors.
Hint: For any vertex v, the induced subgraph on its neighbors, N(v),
is bipartite, and hence optimally colorable. If v has degree >

√
n, color

v ∪ N(v) using 3 distinct colors. Continue until every vertex has degree
≤ √

n. Then use the algorithm in the first part.

2.7 Let 2SC denote the restriction of set cover to instances having f = 2.
Show that 2SC is equivalent to the vertex cover problem, with arbitrary costs,
under approximation factor preserving reductions.

2.8 Prove that Algorithm 2.2 achieves an approximation factor of Hk, where
k is the cardinality of the largest specified subset of U .

2.9 Give a greedy algorithm that achieves an approximation guarantee of Hn

for set multicover, which is a generalization of set cover in which an integral
coverage requirement is also specified for each element and sets can be picked
multiple numbers of times to satisfy all coverage requirements. Assume that
the cost of picking α copies of set Si is α · cost(Si).

2.10 By giving an appropriate tight example, show that the analysis of
Algorithm 2.2 cannot be improved even for the cardinality set cover problem,
i.e., if all specified sets have unit cost.
Hint: Consider running the greedy algorithm on a vertex cover instance.

2.11 Consider the following algorithm for the weighted vertex cover problem.
For each vertex v, t(v) is initialized to its weight, and when t(v) drops to 0,
v is picked in the cover. c(e) is the amount charged to edge e.

Algorithm 2.17

1. Initialization:
C ← ∅
∀v ∈ V , t(v) ← w(v)
∀e ∈ E, c(e) ← 0

2. While C is not a vertex cover do:
Pick an uncovered edge, say (u, v). Let m = min(t(u), t(v)).
t(u) ← t(u)−m
t(v) ← t(v)−m
c(u, v) ← m
Include in C all vertices having t(v) = 0.

3. Output C.

2.4 Exercises 25

Show that this is a factor 2 approximation algorithm.
Hint: Show that the total amount charged to edges is a lower bound on OPT
and that the weight of cover C is at most twice the total amount charged to
edges.

2.12 Consider the layering algorithm for vertex cover. Another weight func-
tion for which we have a factor 2 approximation algorithm is the constant
function – by simply using the factor 2 algorithm for the cardinality vertex
cover problem. Can layering be made to work by using this function instead
of the degree-weighted function?

2.13 Use layering to get a factor f approximation algorithm for set cover,
where f is the frequency of the most frequent element. Provide a tight ex-
ample for this algorithm.

2.14 A tournament is a directed graph G = (V,E), such that for each pair of
vertices, u, v ∈ V , exactly one of (u, v) and (v, u) is in E. A feedback vertex set
for G is a subset of the vertices of G whose removal leaves an acyclic graph.
Give a factor 3 algorithm for the problem of finding a minimum feedback
vertex set in a directed graph.
Hint: Show that it is sufficient to “kill” all length 3 cycles. Use the factor
f set cover algorithm.

2.15 (Hochbaum [125]) Consider the following problem.

Problem 2.18 (Maximum coverage) Given a universal set U of n el-
ements, with nonnegative weights specified, a collection of subsets of U ,
S1, . . . , Sl, and an integer k, pick k sets so as to maximize the weight of
elements covered.

Show that the obvious algorithm, of greedily picking the best set in each
iteration until k sets are picked, achieves an approximation factor of

1−
(

1− 1
k

)k
> 1− 1

e
.

2.16 Using set cover, obtain approximation algorithms for the following
variants of the shortest superstring problem (here sR is the reverse of string
s):

1. Find the shortest string that contains, for each string si ∈ S, both si and
sRi as substrings.
Hint: The universal set for the set cover instance will contain 2n ele-
ments, si and sRi , for 1 ≤ i ≤ n.

2. Find the shortest string that contains, for each string si ∈ S, either si or
sRi as a substring.
Hint: Define set(π) = {s ∈ S | s or sR is a substring of π}. Choose the
strings π appropriately.

26 2 Set Cover

2.5 Notes

Algorithm 2.2 is due to Johnson [150], Lovász [192], and Chvátal [48]. The
hardness result for set cover, showing that this algorithm is essentially the
best possible, is due to Feige [80], improving on the result of Lund and Yan-
nakakis [199]. The application to shortest superstring is due to Li [187].

3 Steiner Tree and TSP

In this chapter, we will present constant factor algorithms for two fundamen-
tal problems, metric Steiner tree and metric TSP. The reasons for considering
the metric case of these problems are quite different. For Steiner tree, this is
the core of the problem – the rest of the problem reduces to this case. For
TSP, without this restriction, the problem admits no approximation factor,
assuming P �= NP. The algorithms, and their analyses, are similar in spirit,
which is the reason for presenting these problems together.

3.1 Metric Steiner tree

The Steiner tree problem was defined by Gauss in a letter he wrote to Schu-
macher (reproduced on the cover of this book). Today, this problem occupies
a central place in the field of approximation algorithms. The problem has a
wide range of applications, all the way from finding minimum length inter-
connection of terminals in VLSI design to constructing phylogeny trees in
computational biology. This problem and its generalizations will be studied
extensively in this book, see Chapters 22 and 23.

Problem 3.1 (Steiner tree) Given an undirected graph G = (V,E) with
nonnegative edge costs and whose vertices are partitioned into two sets, re-
quired and Steiner, find a minimum cost tree in G that contains all the re-
quired vertices and any subset of the Steiner vertices.

We will first show that the core of this problem lies in its restriction to
instances in which the edge costs satisfy the triangle inequality, i.e., G is a
complete undirected graph, and for any three vertices u, v, and w, cost(u, v) ≤
cost(u,w) + cost(v, w). Let us call this restriction the metric Steiner tree
problem.

Theorem 3.2 There is an approximation factor preserving reduction from
the Steiner tree problem to the metric Steiner tree problem.

Proof: We will transform, in polynomial time, an instance I of the Steiner
tree problem, consisting of graph G = (V,E), to an instance I ′ of the metric
Steiner tree problem as follows. Let G′ be the complete undirected graph on

28 3 Steiner Tree and TSP

vertex set V . Define the cost of edge (u, v) in G′ to be the cost of a shortest
u–v path in G. G′ is called the metric closure of G. The partition of V into
required and Steiner vertices in I ′ is the same as in I.

For any edge (u, v) ∈ E, its cost in G′ is no more than its cost in G.
Therefore, the cost of an optimal solution in I ′ does not exceed the cost of
an optimal solution in I.

Next, given a Steiner tree T ′ in I ′, we will show how to obtain, in poly-
nomial time, a Steiner tree T in I of at most the same cost. The cost of an
edge (u, v) in G′ corresponds to the cost of a path in G. Replace each edge
of T ′ by the corresponding path to obtain a subgraph of G. Clearly, in this
subgraph, all the required vertices are connected. However, this subgraph
may, in general, contain cycles. If so, remove edges to obtain tree T . This
completes the approximation factor preserving reduction. ✷

As a consequence of Theorem 3.2, any approximation factor established
for the metric Steiner tree problem carries over to the entire Steiner tree
problem.

3.1.1 MST-based algorithm

Let R denote the set of required vertices. Clearly, a minimum spanning tree
(MST) on R is a feasible solution for this problem. Since the problem of
finding an MST is in P and the metric Steiner tree problem is NP-hard, we
cannot expect the MST on R to always give an optimal Steiner tree; below
is an example in which the MST is strictly costlier.

❜
�

�

�❏
❏
❏
❏
❏❏✡✡

✡
✡
✡✡✟✟✟✟❍❍❍❍

5

5 53

3 3

Even so, an MST on R is not much more costly than an optimal Steiner tree:

Theorem 3.3 The cost of an MST on R is within 2 ·OPT.

Proof: Consider a Steiner tree of cost OPT. By doubling its edges we
obtain an Eulerian graph connecting all vertices of R and, possibly, some
Steiner vertices. Find an Euler tour of this graph, for example by traversing
the edges in DFS (depth first search) order:

3.1 Metric Steiner tree 29

The cost of this Euler tour is 2 · OPT. Next obtain a Hamiltonian cycle
on the vertices of R by traversing the Euler tour and “short-cutting” Steiner
vertices and previously visited vertices of R:

Because of triangle inequality, the shortcuts do not increase the cost of
the tour. If we delete one edge of this Hamiltonian cycle, we obtain a path
that spans R and has cost at most 2 ·OPT. This path is also a spanning tree
on R. Hence, the MST on R has cost at most 2 ·OPT. ✷

Theorem 3.3 gives a straightforward factor 2 algorithm for the metric
Steiner tree problem: simply find an MST on the set of required vertices.
As in the case of set cover, the “correct” way of viewing this algorithm is
in the setting of LP-duality theory. In Chapters 22 and 23 we will see that
LP-duality provides the lower bound on which this algorithm is based and
also helps solve generalizations of this problem.

Example 3.4 For a tight example, consider a graph with n required vertices
and one Steiner vertex. An edge between the Steiner vertex and a required
vertex has cost 1, and an edge between two required vertices has cost 2 (not
all edges of cost 2 are shown below). In this graph, any MST on R has cost
2(n− 1), while OPT = n.

30 3 Steiner Tree and TSP

❝
�

�

��

�

�

�
�

�

✁
✁
✁
✁
✁✁
❧
❧
❧
❧
❧❧

❉
❉
❉
❉
❉
❉❉

✟✟✟✟✟✟

✦✦✦✦
❛❛❛❛

❚
❚
❚

✆
✆
✆✆

�
��

✭✭✭✭❜❜❜
❇
❇
❇❇

❍❍

❍❍
❍

❆
❆
❆
❆❆

�
�
�
�
�

✥✥✥✥✥ ✪
✪
✪
✪

❡
❡
❡
❡

✱
✱
✱
✱

..
.

✷

3.2 Metric TSP

The following is a well-studied problem in combinatorial optimization.

Problem 3.5 (Traveling salesman problem (TSP)) Given a complete
graph with nonnegative edge costs, find a minimum cost cycle visiting every
vertex exactly once.

In its full generality, TSP cannot be approximated, assuming P �= NP.

Theorem 3.6 For any polynomial time computable function α(n), TSP can-
not be approximated within a factor of α(n), unless P = NP.

Proof: Assume, for a contradiction, that there is a factor α(n) polynomial
time approximation algorithm, A, for the general TSP problem. We will show
that A can be used for deciding the Hamiltonian cycle problem (which is NP-
hard) in polynomial time, thus implying P = NP.

The central idea is a reduction from the Hamiltonian cycle problem to
TSP, that transforms a graph G on n vertices to an edge-weighted complete
graph G′ on n vertices such that

• if G has a Hamiltonian cycle, then the cost of an optimal TSP tour in G′

is n, and
• if G does not have a Hamiltonian cycle, then an optimal TSP tour in G′

is of cost > α(n) · n.

Observe that when run on graph G′, algorithm A must return a solution of
cost ≤ α(n) ·n in the first case, and a solution of cost > α(n) ·n in the second
case. Thus, it can be used for deciding whether G contains a Hamiltonian
cycle.

The reduction is simple. Assign a weight of 1 to edges of G, and a weight
of α(n) · n to nonedges, to obtain G′. Now, if G has a Hamiltonian cycle,
then the corresponding tour in G′ has cost n. On the other hand, if G has

3.2 Metric TSP 31

no Hamiltonian cycle, any tour in G′ must use an edge of cost α(n) · n, and
therefore has cost > α(n) · n. ✷

Notice that in order to obtain such a strong nonapproximability result,
we had to assign edge costs that violate triangle inequality. If we restrict our-
selves to graphs in which edge costs satisfy triangle inequality, i.e., consider
metric TSP, the problem remains NP-complete, but it is no longer hard to
approximate.

3.2.1 A simple factor 2 algorithm

We will first present a simple factor 2 algorithm. The lower bound we will
use for obtaining this factor is the cost of an MST in G. This is a lower
bound because deleting any edge from an optimal solution to TSP gives us
a spanning tree of G.

Algorithm 3.7 (Metric TSP – factor 2)

1. Find an MST, T , of G.
2. Double every edge of the MST to obtain an Eulerian graph.
3. Find an Eulerian tour, T , on this graph.
4. Output the tour that visits vertices of G in the order of their first

appearance in T . Let C be this tour.

Notice that Step 4 is similar to the “short-cutting” step in Theorem 3.3.

Theorem 3.8 Algorithm 3.7 is a factor 2 approximation algorithm for met-
ric TSP.

Proof: As noted above, cost(T) ≤ OPT. Since T contains each edge of T
twice, cost(T) = 2 · cost(T). Because of triangle inequality, after the “short-
cutting” step, cost(C) ≤ cost(T). Combining these inequalities we get that
cost(C) ≤ 2 ·OPT. ✷

Example 3.9 A tight example for this algorithm is given by a complete
graph on n vertices with edges of cost 1 and 2. We present the graph for
n = 6 below, where thick edges have cost 1 and remaining edges have cost 2.
For arbitrary n the graph has 2n−2 edges of cost 1, with these edges forming
the union of a star and an n − 1 cycle; all remaining edges have cost 2. The
optimal TSP tour has cost n, as shown below for n = 6:

�

��

�

�

�

� �

�
�

�

�

❙
❙❙
✏✏✏✏◗
◗

◗◗✑
✑

✑✑
❇
❇
❇
❇

❙
❙
❙

✏✏✏✏

�
�
�

����

✂
✂
✂
✂

◗
◗

◗◗✑
✑

✑✑
❇
❇
❇
❇

❧
❧❧
❜
❜❜✟✟
✟�

��

✁
✁
✁
�
�
��

❆
❆
❆
❉
❉
❉

32 3 Steiner Tree and TSP

Suppose that the MST found by the algorithm is the spanning star created
by edges of cost 1. Moreover, suppose that the Euler tour constructed in Step
3 visits vertices in order shown below for n = 6:

� �

�
�

�
�

�
�
�✂
✂
✂
✂
✂
✂❇
❇
❇
❇
❇
❇

�

�

�
�

�

�
❙
❙
❙

✏✏✏✏

�
�
�

����
✦✦✦✦

1

2

3

4

5 6

Then the tour obtained after short-cutting contains n−2 edges of cost 2 and
has a total cost of 2n−2. Asymptotically, this is twice the cost of the optimal
TSP tour. ✷

3.2.2 Improving the factor to 3/2

Algorithm 3.7 first finds a low cost Euler tour spanning the vertices of G, and
then short-cuts this tour to find a traveling salesman tour. Is there a cheaper
Euler tour than that found by doubling an MST? Recall that a graph has
an Euler tour iff all its vertices have even degrees. Thus, we only need to be
concerned about the vertices of odd degree in the MST. Let V ′ denote this
set of vertices. |V ′| must be even since the sum of degrees of all vertices in the
MST is even. Now, if we add to the MST a minimum cost perfect matching
on V ′, every vertex will have an even degree, and we get an Eulerian graph.
With this modification, the algorithm achieves an approximation guarantee
of 3/2.

Algorithm 3.10 (Metric TSP – factor 3/2)

1. Find an MST of G, say T .
2. Compute a minimum cost perfect matching, M , on the set of

odd-degree vertices of T . Add M to T and obtain an Eulerian graph.
3. Find an Euler tour, T , of this graph.
4. Output the tour that visits vertices of G in order of their first

appearance in T . Let C be this tour.

Interestingly, the proof of this algorithm is based on a second lower bound
on OPT.

Lemma 3.11 Let V ′ ⊆ V , such that |V ′| is even, and let M be a minimum
cost perfect matching on V ′. Then, cost(M) ≤ OPT/2.

Proof: Consider an optimal TSP tour of G, say τ . Let τ ′ be the tour
on V ′ obtained by short-cutting τ . By the triangle inequality, cost(τ ′) ≤

3.3 Exercises 33

cost(τ). Now, τ ′ is the union of two perfect matchings on V ′, each consisting
of alternate edges of τ . Thus, the cheaper of these matchings has cost ≤
cost(τ ′)/2 ≤ OPT/2. Hence the optimal matching also has cost at most
OPT/2. ✷

Theorem 3.12 Algorithm 3.10 achieves an approximation guarantee of 3/2
for metric TSP.

Proof: The cost of the Euler tour,

cost(T) ≤ cost(T) + cost(M) ≤ OPT +
1
2
OPT =

3
2
OPT,

where the first inequality follows by using the two lower bounds on OPT.
Using the triangle inequality, cost(C) ≤ cost(T), and the theorem follows. ✷

Example 3.13 A tight example for this algorithm is given by the following
graph on n vertices, with n odd:

❙
❙

❙
❙❙�

�
�

��❙
❙

❙
❙❙�

�
�

❙❙

�
�
�
��❙

❙
❙
❙❙�

�
�
��

✫ ✪
1 1 1

1

1 1

111

1

1

. . .

. . .

�n/2�

Thick edges represent the MST found in step 1. This MST has only two odd
vertices, and by adding the edge joining them we obtain a traveling salesman
tour of cost (n− 1) + �n/2�. In contrast, the optimal tour has cost n. ✷

Finding a better approximation algorithm for metric TSP is currently
one of the outstanding open problems in this area. Many researchers have
conjectured that an approximation factor of 4/3 may be achievable.

3.3 Exercises

3.1 The hardness of the Steiner tree problem lies in determining the optimal
subset of Steiner vertices that need to be included in the tree. Show this
by proving that if this set is provided, then the optimal Steiner tree can be
computed in polynomial time.
Hint: Find an MST on the union of this set and the set of required vertices.

3.2 Let G = (V,E) be a graph with nonnegative edge costs. S, the senders
and R, the receivers, are disjoint subsets of V . The problem is to find a
minimum cost subgraph of G that has a path connecting each receiver to a

34 3 Steiner Tree and TSP

sender (any sender suffices). Partition the instances into two cases: S∪R = V
and S∪R �= V . Show that these two cases are in P andNP-hard, respectively.
For the second case, give a factor 2 approximation algorithm.
Hint: Add a new vertex which is connected to each sender by a zero cost
edge. Consider the new vertex and all receivers as required and the remaining
vertices as Steiner, and find a minimum cost Steiner tree.

3.3 Give an approximation factor preserving reduction from the set cover
problem to the following problem, thereby showing that it is unlikely to have
a better approximation guarantee than O(log n).

Problem 3.14 (Directed Steiner tree) G = (V,E) is a directed graph
with nonnegative edge costs. The vertex set V is partitioned into two sets,
required and Steiner. One of the required vertices, r, is special. The problem
is to find a minimum cost tree in G rooted into r that contains all the required
vertices and any subset of the Steiner vertices.
Hint: Construct a three layer graph: layer 1 contains a required vertex
corresponding to each element, layer 2 contains a Steiner vertex corresponding
to each set, and layer 3 contains r.

3.4 (Hoogeveen [130]) Consider variants on the metric TSP problem in
which the object is to find a simple path containing all the vertices of the
graph. Three different problems arise, depending on the number (0, 1, or 2) of
endpoints of the path that are specified. Obtain the following approximation
algorithms.

• If zero or one endpoints are specified, obtain a 3/2 factor algorithm.
• If both endpoints are specified, obtain a 5/3 factor algorithm.

Hint: Use the idea behind Algorithm 3.10.

3.5 (Papadimitriou and Yannakakis [219]) Let G be a complete undirected
graph in which all edge lengths are either 1 or 2 (clearly, G satisfies the
triangle inequality). Give a 4/3 factor algorithm for TSP in this special class
of graphs.
Hint: Start by finding a minimum 2-matching in G. A 2-matching is a subset
S of edges so that every vertex has exactly 2 edges of S incident at it.

3.6 (Frieze, Galbiati, and Maffioli [89]) Give an O(log n) factor approxima-
tion algorithm for the following problem.

Problem 3.15 (Asymmetric TSP) We are given a directed graph G on
vertex set V , with a nonnegative cost specified for edge (u → v), for each pair
u, v ∈ V . The edge costs satisfy the directed triangle inequality, i.e., for any
three vertices u, v, and w, cost(u → v) ≤ cost(u → w) + cost(w → v). The
problem is to find a minimum cost cycle visiting every vertex exactly once.

3.3 Exercises 35

Hint: Use the fact that a minimum cost cycle cover (i.e., disjoint cycles
covering all the vertices) can be found in polynomial time. Shrink the cycles
and recurse.

3.7 Let G = (V,E) be a graph with edge costs satisfying the triangle in-
equality, and V ′ ⊆ V be a set of even cardinality. Prove or disprove: The cost
of a minimum cost perfect matching on V ′ is bounded above by the cost of
a minimum cost perfect matching on V .

3.8 Given n points in R2, define the optimal Euclidean Steiner tree to be a
minimum length tree containing all n points and any other subset of points
from R2. Prove that each of the additional points must have degree three,
with all three angles being 120◦.

3.9 (Rao, Sadayappan, Hwang, and Shor [230]) This exercise develops a
factor 2 approximation algorithm for the following problem.

Problem 3.16 (Rectilinear Steiner arborescence) Let p1, . . . , pn be
points given in R2 in the positive quadrant. A path from the origin to point
pi is said to be monotone if it consists of segments traversing in the positive
x direction or the positive y direction (informally, going right or up). The
problem is to find a minimum length tree containing monotone paths from
the origin to each of the n points; such a tree is called rectilinear Steiner
arborescence.

For point p, define xp and yp to be its x and y coordinates, and |p|1 =
|xp| + |yp|. Say that point p dominates point q if xp ≤ xq and yp ≤ yq. For
sets of points A and B, we will say that A dominates B if for each point
b ∈ B, there is a point a ∈ A such that a dominates b. For points p and
q, define dom(p, q) = (x, y), where x = min(xp, xq) and y = min(yp, yq).
If p dominates q, define segments(p, q) to be a monotone path from p to q.
Consider the following algorithm.

Algorithm 3.17 (Rectilinear Steiner arborescence)

1. T ← ∅.
2. P ← {p1, . . . , pn} ∪ {(0, 0)}.
3. while |P | > 1 do:

Pick p, q = arg maxp,q∈P (|dom(p, q)|1).
P ← (P − {p, q}) ∪ {dom(p, q)}.
T ← T ∪ segments(dom(p, q), p) ∪ segments(dom(p, q), q).

4. Output T .

36 3 Steiner Tree and TSP

For z ≥ 0, define �z to be the line x + y = z. For a rectilinear Steiner
arborescence T , let T (z) = |T ∩ �z|. Prove that the length of T is∫ ∞

z=0
T (z) dz.

Also, for every x ≥ 0 define Pz = {p ∈ P s.t. |p|1 > z}, and

N(z) = min{|C| : C ⊂ �z and C dominates Pz}.

Prove that∫ ∞

z=0
N(z) dz

is a lower bound on OPT.
Use these facts to show that Algorithm 3.17 achieves an approximation

guarantee of 2.

3.10 (I. Măndoiu) This exercise develops a factor 9 approximation algorithm
for the following problem, which finds applications in VLSI clock routing.

Problem 3.18 (Rectilinear zero-skew tree) Given a set S of points in
the rectilinear plane, find a minimum length zero-skew tree (ZST) for S, i.e.,
a rooted tree T embedded in the rectilinear plane such that points in S are
leaves of T and all root-to-leaf paths in T have equal length. By length of a
path we mean the sum of the lengths of edges on it.

1. Let T be an arbitrary zero-skew tree, and let R′ denote the common
length of all root-to-leaf paths. For r ≥ 0, let T (r) denote the number of
points of T that are at a length of R′ − r from the root. Prove that the
length of T is

∫ R′

0
T (r)dr

2. A closed �1 ball of radius r centered at point p is the set of all points
whose �1-distance from p is ≤ r. Let R denote the radius of the smallest
�1-ball that contains all points of S. For r ≥ 0, let N(r) denote the
minimum number of closed �1-balls of radius r needed to cover all points
of S. Prove that∫ R

0
N(r)dr

is a lower bound on the length of the optimum ZST.

3.4 Notes 37

3. Consider the following algorithm. First, compute R and find a radius R
�1-ball enclosing all points of S. The center of this ball is chosen as the
root of the resulting ZST. This ball can be partitioned into 4 balls, called
its quadrants, of radius R/2 each. The root can be connected to the center
of any of these balls by an edge of length R/2. These balls can be further
partitioned into 4 balls each of radius R/4, and so on.
The ZST is constructed recursively, starting with the ball of radius R.
The center of the current ball is connected to the centers of each of its
quadrants that has a point of S. The algorithm then recurses on each
of these quadrants. If the current ball contains exactly one point of S,
then this ball is not partitioned into quadrants. Let r′ be the radius of
this ball, c its center, and p ∈ S the point in it. Clearly, the �1 distance
between c and p is ≤ r′. Connect c to p by a rectilinear path of length
exactly r′.
Show that for 0 ≤ r ≤ R, T (r) ≤ 9N(r). Hence, show that this is a factor
9 approximation algorithm.

3.4 Notes

The Steiner tree problem has its origins in a problem posed by Fermat, and
was defined by Gauss in a letter he wrote to his student Schumacher on March
21, 1836. Parts of the letter are reproduced on the cover of this book. Courant
and Robbins [55] popularized this problem under the name of Steiner, a well
known 19th century geometer. See Hwang, Richards, and Winter [133] and
Schreiber [236] for the fascinating history of this problem.

The factor 2 Steiner tree algorithm was discovered independently by
Choukhmane [44], Iwainsky, Canuto, Taraszow, and Villa [136], Kou, Mar-
kowsky, and Berman [177], and Plesńık [221]. The factor 3/2 metric TSP
algorithm is due to Christofides [45], and Theorem 3.6 is due to Sahni and
Gonzalez [232]. The lower bound in Exercise 3.10 is from Charikar, Klein-
berg, Kumar, Rajagopalan, Sahai, and Tomkins [41]. The best factor known
for the rectilinear zero-skew tree problem, due to Zelikovsky and Măndoiu
[263], is 3.

Given n points on the Euclidean plane, the minimum spanning tree on
these points is within a factor of 2/

√
3 of the minimum Steiner tree (which

is allowed to use any set of points on the plane as Steiner points). This was
shown by Du and Hwang [63], thereby settling the conjecture of Gilbert and
Pollak [100].

4 Multiway Cut and k-Cut

The theory of cuts occupies a central place in the study of exact algorithms.
In this chapter, we will present approximation algorithms for natural gener-
alizations of the minimum cut problem. These generalizations are NP-hard.

Given a connected, undirected graph G = (V,E) with an assignment of
weights to edges, w : E → R+, a cut is defined by a partition of V into two
sets, say V ′ and V − V ′, and consists of all edges that have one endpoint in
each partition. Clearly, the removal of the cut from G disconnects G. Given
terminals s, t ∈ V , consider a partition of V that separates s and t. The cut
defined by such a partition will be called an s–t cut. The problems of finding
a minimum weight cut and a minimum weight s–t cut can be efficiently
solved using a maximum flow algorithm. Let us generalize these two notions:

Problem 4.1 (Multiway cut) Given a set of terminals S = {s1, s2, . . . , sk}
⊆ V , a multiway cut is a set of edges whose removal disconnects the terminals
from each other. The multiway cut problem asks for the minimum weight such
set.

Problem 4.2 (Minimum k-cut) A set of edges whose removal leaves k
connected components is called a k-cut. The k-cut problem asks for a mini-
mum weight k-cut.

The problem of finding a minimum weight multiway cut is NP-hard for
any fixed k ≥ 3. Observe that the case k = 2 is precisely the minimum s–t cut
problem. The minimum k-cut problem is polynomial time solvable for fixed
k; however, it is NP-hard if k is specified as part of the input. In this chapter,
we will obtain factor 2 − 2/k approximation algorithms for both problems.
In Chapter 19 we will improve the guarantee for the multiway cut problem
to 3/2.

4.1 The multiway cut problem

Define an isolating cut for si to be a set of edges whose removal disconnects
si from the rest of the terminals.

4.1 The multiway cut problem 39

Algorithm 4.3 (Multiway cut)

1. For each i = 1, . . . , k, compute a minimum weight isolating cut for si,
say Ci.

2. Discard the heaviest of these cuts, and output the union of the rest, say
C.

Each computation in Step 1 can be accomplished by identifying the ter-
minals in S − {si} into a single node, and finding a minimum cut separating
this node from si; this takes one max-flow computation. Clearly, removing C
from the graph disconnects every pair of terminals, and so is a multiway cut.

Theorem 4.4 Algorithm 4.3 achieves an approximation guarantee of 2−2/k.

Proof: Let A be an optimal multiway cut in G. We can view A as the
union of k cuts as follows: The removal of A from G will create k connected
components, each having one terminal (since A is a minimum weight multiway
cut, no more than k components will be created). Let Ai be the cut separating
the component containing si from the rest of the graph. Then A =

⋃k
i=1 Ai.

Since each edge of A is incident at two of these components, each edge
will be in two of the cuts Ai. Hence,

k∑
i=1

w(Ai) = 2w(A).

Clearly, Ai is an isolating cut for si. Since Ci is a minimum weight isolating
cut for si, w(Ci) ≤ w(Ai). Notice that this already gives a factor 2 algorithm,
by taking the union of all k cuts Ci. Finally, since C is obtained by discarding
the heaviest of the cuts Ci,

w(C) ≤
(

1− 1
k

) k∑
i=1

w(Ci) ≤
(

1− 1
k

) k∑
i=1

w(Ai) = 2
(

1− 1
k

)
w(A).

✷

Once again, Algorithm 4.3 is not based on a lower bounding scheme. Exer-
cise 19.2 gives an algorithm with the same guarantee using an LP-relaxation
as the lower bound. The use of LP-relaxations is fruitful for this problem
as well. Section 19.1 gives an algorithm with an improved guarantee, using
another LP-relaxation.

Example 4.5 A tight example for this algorithm is given by a graph on
2k vertices consisting of a k-cycle and a distinct terminal attached to each
vertex of the cycle. The edges of the cycle have weight 1 and edges attach-
ing terminals to the cycle have weight 2 − ε for a small fraction ε > 0.

40 4 Multiway Cut and k-Cut

For example, the graph corresponding to k = 4 is:

�

��

�
�
� �

�

❅
❅
❅❅ �

�
��

❅
❅
❅❅

�
�
��

s1 s2

s3s4

1

11

1

2− ε2− ε

2− ε 2− ε

For each terminal si, the minimum weight isolating cuts for si is given by
the edge incident to si. So, the cut C returned by the algorithm has weight
(k − 1)(2 − ε). On the other hand, the optimal multiway cut is given by the
cycle edges, and has weight k. ✷

4.2 The minimum k-cut problem

A natural algorithm for finding a k-cut is as follows. Starting with G, compute
a minimum cut in each connected component and remove the lightest one;
repeat until there are k connected components. This algorithm does achieve
a guarantee of 2 − 2/k, however, the proof is quite involved. Instead we will
use the Gomory–Hu tree representation of minimum cuts to give a simpler
algorithm achieving the same guarantee.

Minimum cuts, as well as sub-optimal cuts, in undirected graphs have
several interesting structural properties, as opposed to cuts in directed graphs
(the algorithm of Section 28.2 is based on exploiting some of these properties).
The existence of Gomory–Hu trees is one of the remarkable consequences of
these properties.

Let T be a tree on vertex set V ; the edges of T need not be in E. Let e
be an edge in T . Its removal from T creates two connected components. Let
S and S be the vertex sets of these components. The cut defined in graph
G by the partition (S, S) is the cut associated with e in G. Define a weight
function w′ on the edges of T . Tree T will be said to be a Gomory–Hu tree
for G if

1. for each pair of vertices u, v ∈ V , the weight of a minimum u–v cut in G
is the same as that in T .

2. for each edge e ∈ T , w′(e) is the weight of the cut associated with e in
G, and

4.2 The minimum k-cut problem 41

A Gomory–Hu tree encodes, in a succinct manner, a minimum u–v cut in
G, for each pair of vertices u, v ∈ V as follows. A minimum u–v cut in T is
given by a minimum weight edge on the unique path from u to v in T , say e.
By the properties stated above, the cut associated with e in G is a minimum
u–v cut, and has weight w′(e). So, for the

(
n
2

)
pairs of vertices u, v ∈ V , we

need only n − 1 cuts, those encoded by the edges of a Gomory–Hu tree, to
give minimum u–v cuts in G.

The following figure shows a weighted graph and its associated Gomory–
Hu tree. Exercise 4.6 shows how to construct a Gomory–Hu tree for an undi-
rected graph, using only n− 1 max-flow computations.

8

10

4
5

7

3
2 2

3

24a

b c

d

ef

a b c

d

ef18 17 1513

14

We will need the following lemma.

Lemma 4.6 Let S be the union of cuts in G associated with l edges of T .
Then, the removal of S from G leaves a graph with at least l +1 components.

Proof: Removing the corresponding l edges from T leaves exactly l+1 con-
nected components, say with vertex sets V1, V2, . . . , Vl+1. Clearly, removing
S from G will disconnect each pair Vi and Vj . Hence we must get at least
l + 1 connected components. ✷

As a consequence of Lemma 4.6, the union of k − 1 cuts picked from T
will form a k-cut in G. The complete algorithm is given below.

Algorithm 4.7 (Minimum k-cut)

1. Compute a Gomory–Hu tree T for G.
2. Output the union of the lightest k − 1 cuts of the n− 1 cuts associated

with edges of T in G; let C be this union.

42 4 Multiway Cut and k-Cut

By Lemma 4.6, the removal of C from G will leave at least k components.
If more than k components are created, throw back some of the removed
edges until there are exactly k components.

Theorem 4.8 Algorithm 4.7 achieves an approximation factor of 2− 2/k.

Proof: Let A be an optimal k-cut in G. As in Theorem 4.4, we can view
A as the union of k cuts: Let V1, V2, . . . , Vk be the k components formed by
removing A from G, and let Ai denote the cut separating Vi from the rest of
the graph. Then A = A1 ∪ · · · ∪ Ak, and, since each edge of A lies in two of
these cuts,

k∑
i=1

w(Ai) = 2w(A).

Without loss of generality assume that Ak is the heaviest of these cuts. The
idea behind the rest of the proof is to show that there are k − 1 cuts defined
by the edges of T whose weights are dominated by the weight of the cuts
A1, A2, . . . , Ak−1. Since the algorithm picks the lightest k−1 cuts defined by
T , the theorem follows.

The k−1 cuts are identified as follows. Let B be the set of edges of T that
connect across two of the sets V1, V2, . . . , Vk. Consider the graph on vertex set
V and edge set B, and shrink each of the sets V1, V2, . . . , Vk to a single vertex.
This shrunk graph must be connected (since T was connected). Throw edges
away until a tree remains. Let B′ ⊆ B be the left over edges, |B′| = k − 1.
The edges of B′ define the required k − 1 cuts.

Next, root this tree at Vk (recall that Ak was assumed to be the heaviest
cut among the cuts Ai). This helps in defining a correspondence between the
edges in B′ and the sets V1, V2, . . . , Vk−1: each edge corresponds to the set it
comes out of in the rooted tree.

V

Vk

c’(u,v)<c(A)

i
u

v

edge of B-B’

edge of B’
i

4.2 The minimum k-cut problem 43

Suppose edge (u, v) ∈ B′ corresponds to set Vi in this manner. The weight of
a minimum u–v cut in G is w′(u, v). Since Ai is a u–v cut in G,

w(Ai) ≥ w′(u, v).

Thus each cut among A1, A2, . . . , Ak−1 is at least as heavy as the cut defined
in G by the corresponding edge of B′. This, together with the fact that C is
the union of the lightest k − 1 cuts defined by T , gives:

w(C) ≤
∑
e∈B′

w′(e) ≤
k−1∑
i=1

w(Ai) ≤
(

1− 1
k

) k∑
i=1

w(Ai) = 2
(

1− 1
k

)
w(A).

✷

Example 4.9 The tight example given above for multiway cuts on 2k ver-
tices also serves as a tight example for the k-cut algorithm (of course, there is
no need to mark vertices as terminals). Below we give the example for k = 4,
together with its Gomory–Hu tree.

�

��

�
�
� �

�

❅
❅
❅❅ �

�
��

❅
❅
❅❅

�
�
��

1

11

1

2− ε2− ε

2− ε 2− ε

�

��

�
�
� �

�

❅
❅
❅❅ �

�
��

❅
❅
❅❅

�
�
��

2

22

2− ε2− ε

2− ε 2− ε

The lightest k − 1 cuts in the Gomory–Hu tree have weight 2 − ε each,
corresponding to picking edges of weight 2 − ε of G. So, the k-cut returned

44 4 Multiway Cut and k-Cut

by the algorithm has weight (k − 1)(2 − ε). On the other hand, the optimal
k-cut picks all edges of weight 1, and has weight k. ✷

4.3 Exercises

4.1 Show that Algorithm 4.3 can be used as a subroutine for finding a k-cut
within a factor of 2− 2/k of the minimum k-cut. How many subroutine calls
are needed?

4.2 A natural greedy algorithm for computing a multiway cut is the follow-
ing. Starting with G, compute minimum si–sj cuts for all pairs si, sj that are
still connected and remove the lightest of these cuts; repeat this until all pairs
si, sj are disconnected. Prove that this algorithm also achieves a guarantee
of 2− 2/k.

The next 4 exercises provide background and an algorithm for finding
Gomory–Hu trees.

4.3 Let G = (V,E) be a graph and w : E → R+ be an assignment of
nonnegative weights to its edges. For u, v ∈ V let f(u, v) denote the weight
of a minimum u–v cut in G.

1. Let u, v, w ∈ V , and suppose f(u, v) ≤ f(u,w) ≤ f(v, w). Show that
f(u, v) = f(u,w), i.e., the two smaller numbers are equal.

2. Show that among the
(
n
2

)
values f(u, v), for all pairs u, v ∈ V , there are

at most n− 1 distinct values.
3. Show that for u, v, w ∈ V ,

f(u, v) ≥ min{f(u,w), f(w, v)}.

4. Show that for u, v, w1, . . . , wr ∈ V

f(u,w) ≥ min{f(u,w1), f(w1, w2), . . . , f(wr, v)} (4.1)

4.4 Let T be a tree on vertex set V with weight function w′ on its edges.
We will say that T is a flow equivalent tree if it satisfies the first of the two
Gomory–Hu conditions. i.e., for each pair of vertices u, v ∈ V , the weight of
a minimum u–v cut in G is the same as that in T . Let K be the complete
graph on V . Define the weight of each edge (u, v) in K to be f(u, v). Show
that any maximum weight spanning tree in K is a flow equivalent tree for G.
Hint: For u, v ∈ V , let u,w1, . . . , wr, v be the unique path from u to v in
T . Use (4.1) and the fact that since T is a maximum weight spanning tree,
f(u, v) ≤ min{f(u,w1), . . . , f(wr, v)}.

4.3 Exercises 45

4.5 Let (A, Ā) be a minimum s–t cut such that s ∈ A. Let x and y be any
two vertices in A. Consider the graph G′ obtained by collapsing all vertices
of Ā to a single vertex vĀ. The weight of any edge (a, vĀ) in G′ is defined to
be the sum of the weights of edges (a, b) where b ∈ Ā. Clearly, any cut in G′

defines a cut in G. Show that a minimum x–y cut in G′ defines a minimum
x–y cut in G.

4.6 Now we are ready to state the Gomory–Hu algorithm. The algorithm
maintains a partition of V , (S1, S2, . . . St), and a spanning tree T on the
vertex set {S1, . . . , St}. Let w′ be the function assigning weights to the edges
of T . Tree T satisfies the following invariant.
Invariant: For any edge (Si, Sj) in T there are vertices a and b in Si and
Sj respectively, such that w′(Si, Sj) = f(a, b), and the cut defined by edge
(Si, Sj) is a minimum a–b cut in G.

The algorithm starts with the trivial partition V , and proceeds in n − 1
iterations. In each iteration, it selects a set Si in the partition such that
|Si| ≥ 2 and refines the partition by splitting Si, and finding a tree on the
refined partition satisfying the invariant. This is accomplished as follows. Let
x and y be two distinct vertices in Si. Root the current tree T at Si, and
consider the subtrees rooted at the children of Si. Each of these subtrees is
collapsed into a single vertex, to obtain graph G′ (besides these collapsed
vertices, G′ contains all vertices of Si). A minimum x–y cut is found in G′.
Let (A,B) be the partition of the vertices of G′ defining this cut, with x ∈ A
and y ∈ B, and let wxy be the weight of this cut. Compute Sxi = S ∩ A and
Syi = S ∩B, the two sets into which Si splits.

The algorithm updates the partition and the tree as follows. It refines the
partition by replacing Si with two sets Sxi and Syi . The new tree has the edge
(Sxi , S

y
i), with weight wxy. Consider a subtree T ′ that was incident at Si in

T . Assume w.l.o.g. that the node corresponding to T ′ lies in A. Then, T ′ is
connected by an edge to Sxi . The weight of this connecting edge is the same
as the weight of the edge connecting T ′ to Si. All edges in T ′ retain their
weights.

Show that the new tree satisfies the invariant. Hence show that the al-
gorithm terminates (when the partition consists of singleton vertices) with a
Gomory–Hu tree for G.

Consider the graph:

8

10

4
5

7

3
2 2

3

24a

b c

d

ef

46 4 Multiway Cut and k-Cut

The execution of the Gomory–Hu algorithm is demonstrated below:

17 c, d, e, f

c, d, e, f17a 18

d

14

b18a

a, b, c, d, e, f

a, b

b

17b f c, d, e1318a

17 f 13

17b f 1318a

d

14

c, e

c15e

Select b and f:

Select a and b:

Select c and f:

Select d and e:

Select c and e:

Initial partition:

4.7 Prove that if the Gomory–Hu tree for an edge-weighted undirected graph
G contains all n − 1 distinct weights, then G can have only one minimum
weight cut.

4.4 Notes

Algorithm 4.3 is due to Dahlhaus, Johnson, Seymour, Papadimitriou and
Yannakakis [57]. Algorithm 4.7 is due to Saran and Vazirani [233]; the proof
given here is due to R. Ravi. For Gomory–Hu trees see Gomory and Hu [110].

5 k-Center

Consider the following application. Given a set of cities, with intercity dis-
tances specified, pick k cities for locating warehouses in so as to minimize the
maximum distance of a city from its closest warehouse. We will study this
problem, called the k-center problem, and its weighted version, under the
restriction that the edge costs satisfy the triangle inequality. Without this
restriction, the k-center problem cannot be approximated within factor α(n),
for any computable function α(n), assuming P �= NP (see Exercise 5.1).

We will introduce the algorithmic technique of parametric pruning for
solving this problem. In Chapter 17 we will use this technique in a linear
programming setting.

Problem 5.1 (Metric k-center) Let G = (V,E) be a complete undirected
graph with edge costs satisfying the triangle inequality, and k be a positive
integer. For any set S ⊆ V and vertex v ∈ V , define connect(v, S) to be the
cost of the cheapest edge from v to a vertex in S. The problem is to find a
set S ⊆ V , with |S| = k, so as to minimize maxv{connect(v, S)}.

5.1 Parametric pruning applied to metric k-center

If we know the cost of an optimal solution, we may be able to prune away
irrelevant parts of the input and thereby simplify the search for a good so-
lution. However, as stated in Chapter 1, computing the cost of an optimal
solution is precisely the difficult core of NP-hard NP-optimization problems.
The technique of parametric pruning gets around this difficulty as follows.
A parameter t is chosen, which can be viewed as a “guess” on the cost of
an optimal solution. For each value of t, the given instance I is pruned by
removing parts that will not be used in any solution of cost > t. Denote the
pruned instance by I(t). The algorithm consists of two steps. In the first step,
the family of instances I(t) is used for computing a lower bound on OPT, say
t∗. In the second step, a solution is found in instance I(α · t∗), for a suitable
choice of α.

A restatement of the k-center problem shows how parametric pruning
applies naturally to it. Sort the edges of G in nondecreasing order of cost,
i.e., cost(e1) ≤ cost(e2) ≤ . . . ≤ cost(em), and let Gi = (V,Ei), where Ei =

48 5 k-Center

{e1, e2, . . . , ei}. A dominating set in an undirected graph H = (U,F) is a
subset S ⊆ U such that every vertex in U − S is adjacent to a vertex in
S. Let dom(H) denote the size of a minimum cardinality dominating set in
H. Computing dom(H) is NP-hard. The k-center problem is equivalent to
finding the smallest index i such that Gi has a dominating set of size at most
k, i.e., Gi contains k stars spanning all vertices, where a star is the graph
K1,p, with p ≥ 1. If i∗ is the smallest such index, then cost(ei∗) is the cost
of an optimal k-center. We will denoted this by OPT. We will work with the
family of graphs G1, . . . , Gm.

Define the square of graph H to be the graph containing an edge (u, v)
whenever H has a path of length at most two between u and v, u �= v. We
will denote it by H2. The following structural result gives a method for lower
bounding OPT.

Lemma 5.2 Given a graph H, let I be an independent set in H2. Then,
|I| ≤ dom(H).

Proof: Let D be a minimum dominating set in H. Then, H contains |D|
stars spanning all vertices. Since each of these stars will be a clique in H2,
H2 contains |D| cliques spanning all vertices. Clearly, I can pick at most one
vertex from each clique, and the lemma follows. ✷

The k-center algorithm is:

Algorithm 5.3 (Metric k-center)

1. Construct G2
1, G

2
2, . . . , G

2
m.

2. Compute a maximal independent set, Mi, in each graph G2
i .

3. Find the smallest index i such that |Mi| ≤ k, say j.
4. Return Mj .

The lower bound on which this algorithm is based is:

Lemma 5.4 For j as defined in the algorithm, cost(ej) ≤ OPT.

Proof: For every i < j we have that |Mi| > k. Now, by Lemma 5.2,
dom(Gi) > k, and so i∗ > i. Hence, j ≤ i∗. ✷

Theorem 5.5 Algorithm 5.3 achieves an approximation factor of 2 for the
metric k-center problem.

Proof: The key observation is that a maximal independent set, I, in a graph
is also a dominating set (for, if some vertex v is not dominated by I, then
I∪{v} must also be an independent set, contradicting I’s maximality). Thus,

5.1 Parametric pruning applied to metric k-center 49

there exist stars in G2
j , centered on the vertices of Mj , covering all vertices.

By the triangle inequality, each edge used in constructing these stars has cost
at most 2 · cost(ej). The theorem follows from Lemma 5.4. ✷

Example 5.6 A tight example for the previous algorithm is given by a wheel
graph on n + 1 vertices, where all edges incident to the center vertex have
cost 1, and the rest of the edges have cost 2:

�

�

�

��

�

�

�
�

�

✁
✁
✁
✁
✁
✁
✁
❧
❧
❧
❧
❧
❧❧

❉
❉
❉
❉
❉
❉
❉
❉

✟✟✟✟✟✟✟

✦✦✦✦✦
❛❛❛❛❛

❚
❚
❚
❚

✆
✆
✆
✆

�
�
�
✭✭✭✭✭❜❜❜❜

❇
❇
❇
❇❇

❍❍

❍❍
❍❍

❆
❆
❆
❆
❆
❆

�
�
�
�
�
��

✥✥✥✥✥✥✥ ✪
✪
✪
✪
✪

❡
❡
❡
❡
❡

✱
✱
✱
✱
✱

. .
.

(Here, thin edges have cost 1 and thick edges have cost 2; not all edges of
cost 2 are shown.)

For k = 1, the optimal solution is the center of the wheel, and OPT = 1.
The algorithm will compute index j = n. Now, G2

n is a clique and, if a
peripheral vertex is chosen as the maximal independent set, then the cost of
the solution found is 2. ✷

Next, we will show that 2 is essentially the best approximation factor
achievable for the metric k-center problem.

Theorem 5.7 Assuming P �= NP, there is no polynomial time algorithm
achieving a factor of 2− ε, ε > 0, for the metric k-center problem.

Proof: We will show that such an algorithm can solve the dominating set
problem in polynomial time. The idea is similar to that of Theorem 3.6 and
involves giving a reduction from the dominating set problem to metric k-
center. Let G = (V,E), k be an instance of the dominating set problem.
Construct a complete graph G′ = (V,E′) with edge costs given by

cost(u, v) =
{

1, if (u, v) ∈ E,
2, if (u, v) �∈ E.

Clearly, G′ satisfies the triangle inequality. This reduction satisfies the con-
ditions:

• if dom(G) ≤ k, then G′ has a k-center of cost 1, and

50 5 k-Center

• if dom(G) > k, then the optimum cost of a k-center in G′ is 2.

In the first case, when run on G′, the (2− ε)-approximation algorithm must
give a solution of cost 1, since it cannot use an edge of cost 2. Hence, using
this algorithm, we can distinguish between the two possibilities, thus solving
the dominating set problem. ✷

5.2 The weighted version

We will use the technique of parametric pruning to obtain a factor 3 ap-
proximation algorithm for the following generalization of the metric k-center
problem.

Problem 5.8 (Metric weighted k-center) In addition to a cost function
on edges, we are given a weight function on vertices, w : V → R+, and a
bound W ∈ R+. The problem is to pick S ⊆ V of total weight at most W ,
minimizing the same objective function as before, i.e.,

max
v∈V

{min
u∈S

{cost(u, v)}}.

Let wdom(G) denote the weight of a minimum weight dominating set in
G. Then, with respect to the graphs Gi defined above, we need to find the
smallest index i such that wdom(Gi) ≤ W . If i∗ is this index, then the cost
of the optimal solution is OPT = cost(ei∗).

Given a vertex weighted graph H, let I be an independent set in H2. For
each u ∈ I, let s(u) denote a lightest neighbor of u in H, where u is also
considered a neighbor of itself. (Notice that the neighbor is picked in H and
not in H2.) Let S = {s(u)| u ∈ I}. The following fact, analogous to Lemma
5.2, will be used to derive a lower bound on OPT:

Lemma 5.9 w(S) ≤ wdom(H).

Proof: Let D be a minimum weight dominating set of H. Then there exists
a set of disjoint stars in H, centered on the vertices of D and covering all the
vertices. Since each of these stars becomes a clique in H2, I can pick at most
one vertex from each of them. Thus, each vertex in I has the center of the
corresponding star available as a neighbor in H. Hence, w(S) ≤ w(D). ✷

The algorithm is given below. In it, si(u) will denote a lightest neighbor
of u in Gi; for this definition, u will also be considered a neighbor of itself.

5.2 The weighted version 51

Algorithm 5.10 (Metric weighted k-center)

1. Construct G2
1, G

2
2, . . . , G

2
m.

2. Compute a maximal independent set, Mi, in each graph G2
i .

3. Compute Si = {si(u)| u ∈ Mi}.
4. Find the minimum index i such that w(Si) ≤ W , say j.
5. Return Sj .

Theorem 5.11 Algorithm 5.10 achieves an approximation factor of 3 for
the weighted k-center problem.

Proof: By Lemma 5.9, cost(ej) is a lower bound on OPT; the argument is
identical to that in Lemma 5.4 and is omitted here. Since Mj is a dominating
set in G2

j , we can cover V with stars of G2
j centered in vertices of Mj . By the

triangle inequality these stars use edges of cost at most 2 · cost(ej).

�

�

�
�

�

�

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

...
...........

...........
...........

...........
.....

�����������

✦✦✦✦✦✦✦✦✦

❏
❏

❏
❏

❏❏

✭✭✭✭✭✭✭✭✭✭✭
≤ c(ei)

≤ 2c(ei)

≤ 3c(ei)

u

si(u)

Each star center is adjacent to a vertex in Sj , using an edge of cost at most
cost(ej). Move each of the centers to the adjacent vertex in Sj and redefine
the stars. Again, by the triangle inequality, the largest edge cost used in
constructing the final stars is at most 3 · cost(ej). ✷

Example 5.12 A tight example is provided by the following graph on n+4
vertices. Vertex weights and edge costs are as marked; all missing edges have
a cost given by the shortest path.

� � � ��
�

�

❅
❅
❅
❅
❅❅

������

�
�
�
�
��...

111

1 + ε

1 + ε

1 + ε

∞

∞

∞

a

1

b

2

c

2

d

2

52 5 k-Center

It is not difficult to see that for W = 3 the optimum cost of a k-center
is 1 + ε: a k-center achieving this cost is {a, c}. For any i < n + 3, the
set Si computed by the algorithm will contain a vertex of infinite weight.
Suppose that, for i = n+3, the algorithm chooses Mn+3 = {b} as a maximal
independent set. Then Sn+3 = {a}, and this is the output of the algorithm.
The cost of this solution is 3. ✷

5.3 Exercises

5.1 Show that if the edge costs do not satisfy the triangle inequality, then
the k-center problem cannot be approximated within factor α(n) for any
computable function α(n).
Hint: Put together ideas from Theorems 3.6 and 5.7.

5.2 Consider Step 2 of Algorithm 5.3, in which a maximal independent set
is found in G2

i . Perhaps a more natural choice would have been to find a
minimal dominating set. Modify Algorithm 5.3 so that Mi is picked to be
a minimal dominating set in G2

i . Show that this modified algorithm does
not achieve an approximation guarantee of 2 for the k-center problem. What
approximation factor can you establish for this algorithm?
Hint: With this modification, the lower bounding method does not work,
since Lemma 5.2 does not hold if I is picked to be a minimal dominating set
in H2.

5.3 (Gonzalez [111]) Consider the following problem.

Problem 5.13 (Metric k-cluster) Let G = (V,E) be a complete undi-
rected graph with edge costs satisfying the triangle inequality, and let k be
a positive integer. The problem is to partition V into sets V1, . . . , Vk so as
to minimize the costliest edge between two vertices in the same set, i.e.,
minimize

max
1≤i≤k, u,v∈Vi

cost(u, v).

1. Give a factor 2 approximation algorithm for this problem, together with
a tight example.

2. Show that this problem cannot be approximated within a factor of 2− ε,
for any ε > 0, unless P = NP.

5.4 (Khuller, Pless, and Sussmann [169]) The fault-tolerant version of the
metric k-center problem has an additional input, α ≤ k, which specifies the

5.4 Notes 53

number of centers that each city should be connected to. The problem again
is to pick k centers so that the length of the longest edge used is minimized.

A set S ⊆ V in an undirected graph H = (V,E) is an α-dominating set
if each vertex v ∈ V is adjacent to at least α vertices in S (assuming that
a vertex is adjacent to itself). Let domα(H) denote the size of a minimum
cardinality α-dominating set in H.

1. Let I be an independent set in H2. Show that α|I| ≤ domα(H).
2. Give a factor 3 approximation algorithm for the fault-tolerant k-center

problem.
Hint: Compute a maximal independent set Mi in G2

i , for 1 ≤ i ≤ m.
Find the smallest index i such that |Mi| ≤ � kα�, and moreover, the degree
of each vertex of Mi in Gi is ≥ α − 1.

5.5 (Khuller, Pless, and Sussmann [169]) Consider a modification of the
problem of Exercise 5.4 in which vertices of S have no connectivity require-
ments and only vertices of V −S have connectivity requirements. Each vertex
of V −S needs to be connected to α vertices in S. The object again is to pick
S, |S| = k, so that the length of the longest edge used is minimized.

The algorithm for this problem works on each graph Gi. It starts with
Si = ∅. Vertex v ∈ V − Si is said to be j-connected if it is adjacent to j
vertices in Si, using edges of G2

i . While there is a vertex v ∈ V − Si that is
not k-connected, pick the vertex with minimum connectivity, and include it
in Si. Finally, find the minimum index i such that |Si| ≤ k, say l. Output Sl.
Prove that this is a factor 2 approximation algorithm.

5.4 Notes

Both k-center algorithms presented in this chapter are due to Hochbaum and
Shmoys [127], and Theorem 5.7 is due to Hsu and Nemhauser [132].

6 Feedback Vertex Set

In this chapter we will use the technique of layering, introduced in Chapter
2, to obtain a factor 2 approximation algorithm for:

Problem 6.1 (Feedback vertex set) Given an undirected graph G =
(V,E) and a function w assigning nonnegative weights to its vertices, find a
minimum weight subset of V whose removal leaves an acyclic graph.

6.1 Cyclomatic weighted graphs

Order the edges of G in an arbitrary order. The characteristic vector of a sim-
ple cycle C in G is a vector in GF[2]m, m = |E|, which has 1’s in components
corresponding to edges of C and 0’s in the remaining components. The cycle
space of G is the subspace of GF[2]m that is spanned by the characteristic
vectors of all simple cycles of G, and the cyclomatic number of G, denoted
cyc(G), is the dimension of this space.

Theorem 6.2 cyc(G) = |E| − |V | + κ(G), where κ(G) denotes the number
of connected components of G.

Proof: The cycle space of a graph is the direct sum of the cycle spaces of
its connected components, and so its cyclomatic number is the sum of the
cyclomatic numbers of its connected components. Therefore, it is sufficient
to prove the theorem for a connected graph G.

Let T be a spanning tree in G. For each nontree edge e, define its funda-
mental cycle to be the unique cycle formed in T∪{e}. The set of characteristic
vectors of all such cycles is linearly independent (each cycle includes an edge
that is in no other fundamental cycle). Thus, cyc(G) ≥ |E| − |V |+ 1.

Each edge e of T defines a fundamental cut (S, S) in G, S ⊂ V (S and S
are the vertex sets of two connected components formed by removing e from
T). Define the characteristic vector of a cut to be a vector in GF[2]m that
has 1’s in components corresponding to the edges of G in the cut and 0’s
in the remaining components. Consider the |V | − 1 vectors defined by edges
of T . Since each cycle must cross each cut an even number of times, these
vectors are orthogonal to the cycle space of G. Furthermore, these |V | − 1

6.1 Cyclomatic weighted graphs 55

vectors are linearly independent, since each cut has an edge (the tree edge
defining this cut) that is not in any of the other |V | − 2 cuts. Therefore the
dimension of the orthogonal complement to the cycle space is at least |V |−1.
Hence, cyc(G) ≤ |E| − |V | + 1. Combining with the previous inequality we
get cyc(G) = |E| − |V |+ 1. ✷

Denote by δG(v) the decrease in the cyclomatic number of the graph on
removing vertex v. Since the removal of a feedback vertex set F = {v1, . . . , vf}
decreases the cyclomatic number of G down to 0,

cyc(G) =
f∑
i=1

δGi−1(vi),

where G0 = G and, for i > 0, Gi = G − {v1, . . . , vi}. By Lemma 6.4 below,
we get:

cyc(G) ≤
∑
v∈F

δG(v). (6.1)

Let us say that a function assigning vertex weights is cyclomatic if there
is a constant c > 0 such that the weight of each vertex v is c · δG(v). By
inequality (6.1), for such a weight function, c · cyc(G) is a lower bound on
OPT. The importance of cyclomatic weight functions is established in Lemma
6.5 below, which shows that for such a weight function, any minimal feedback
vertex set has a weight within twice the optimal.

Let degG(v) denote the degree of v in G, and comps(G − v) denote the
number of connected components formed by removing v from G. The claim
below follows in a straightforward way by applying Theorem 6.2 to G and
G− v.

Claim 6.3 For a connected graph G, δG(v) = degG(v)− comps(G− v).

Lemma 6.4 Let H be a subgraph of G (not necessarily vertex induced).
Then, δH(v) ≤ δG(v).

Proof: It is sufficient to prove the lemma for the connected components
of G and H containing v. We may thus assume w.l.o.g. that G and H are
connected (H may be on a smaller set of vertices). By Claim 6.3, proving the
following inequality is sufficient:

degH(v)− comps(H − v) ≤ degG(v)− comps(G− v).

We will show that edges in G − H can only help this inequality. Let
c1, c2, . . . , ck be components formed by removing v from H. Edges of G−H
not incident at v can only help merge some of these components (and of

56 6 Feedback Vertex Set

course, they don’t change the degree of v). An edge of G−H that is incident
at v can lead to an additional component, but this is compensated by the
contribution the edge has to the degree of v. ✷

Lemma 6.5 If F is a minimal feedback vertex set of G, then∑
v∈F

δG(v) ≤ 2 · cyc(G).

Proof: Since the cycle space of G is the direct sum of the cycle spaces of its
connected components, it suffices to prove the lemma for a connected graph
G.

Let F = {v1, . . . , vf}, and let k be the number of connected components
obtained by deleting F from G. Partition these components into two types:
those that have edges incident to only one of the vertices of F , and those
that have edges incident to two or more vertices of F . Let t and k − t be
the number of components of the first and second type, respectively. We will
prove that

f∑
i=1

δG(vi) =
f∑
i=1

(degG(vi)− comps(G− vi)) ≤ 2(|E| − |V |),

thereby proving the lemma. Clearly,
∑f

i=1 comps(G− vi) = f + t. Therefore,
we are left to prove

f∑
i=1

degG(vi) ≤ 2(|E| − |V |) + f + t.

comp. 1 comp. 2 comp. k
. . .

. . .
v v v1 2 k

Since F is a feedback vertex set, each of the k components is acyclic and is
therefore a tree. Thus, the number of edges in these components is |V |−f−k.
Next, we put a lower bound on the number of edges in the cut (F, V − F).

6.2 Layering applied to feedback vertex set 57

Since F is minimal, each vi ∈ F must be in a cycle that contains no other
vertices of F . Therefore, each vi must have at least two edges incident at one
of the components. For each vi, arbitrarily remove one of these edges from
G, thus removing a total of f edges. Now, each of the t components must
still have at least one edge and each of the k − t components must still have
at least two edges incident at F . Therefore, the number of edges in the cut
(F, V − F) is at least f + t + 2(k − t) = f + 2k − t.

These two facts imply that

f∑
i=1

degG(vi) ≤ 2|E| − 2(|V | − f − k)− (f + 2k − t).

The lemma follows. ✷

Corollary 6.6 Let w be a cyclomatic weight function on the vertices of G,
and let F be a minimal feedback vertex set in it. Then w(F) ≤ 2 ·OPT.

6.2 Layering applied to feedback vertex set

Let us now deal with arbitrary weighted graphs. Consider the following basic
operation: Given graph G = (V,E) and a weight function w, let

c = min
v∈V

{
w(v)
δG(v)

}
.

The weight function t(v) = cδG(v) is the largest cyclomatic weight function
in w. Define w′(v) = w(v) − t(v) to be the residual weight function. Finally,
let V ′ be the set of vertices having positive residual weight (clearly, V ′ ⊂ V),
and let G′ be the subgraph of G induced on V ′.

Using this basic operation, decompose G into a nested sequence of induced
subgraphs, until an acyclic graph is obtained, each time finding the largest
cyclomatic weight function in the current residual weight function. Let these
graphs be G = G0 ⊃ G1 ⊃ · · · ⊃ Gk, where Gk is acyclic; Gi is the induced
subgraph of G on vertex set Vi, where V = V0 ⊃ V1 ⊃ · · · ⊃ Vk. Let ti, i =
0, . . . , k − 1 be the cyclomatic weight function defined on graph Gi. Thus,
w0 = w is the residual weight function for G0, t0 is the largest cyclomatic
weight function in w0, w1 = w0 − t0 is the residual weight function for G1,
and so on. Finally, wk is the residual weight function for Gk. For convenience,
define tk = wk. Since the weight of a vertex v has been decomposed into the
weights t0, t1, . . . , tk, we have∑

i: v∈Vi

ti(v) = w(v).

58 6 Feedback Vertex Set

The next fact suggests an algorithm for constructing a feedback vertex
set on which Lemma 6.5 can be applied.

Lemma 6.7 Let H be a subgraph of G = (V,E), induced on vertex set V ′ ⊂
V . Let F be a minimal feedback vertex set in H, and let F ′ ⊆ V − V ′ be a
minimal set such that F ∪ F ′ is a feedback vertex set for G. Then F ∪ F ′ is
a minimal feedback vertex set for G.

Proof: Since F is minimal for H, for each v ∈ F , there is a cycle, say C, in
H that does not use any other vertex of F . Since F ′ ∩ V ′ = ∅, C uses only
one vertex, v, from F ∪ F ′ as well, and so v is not redundant. ✷

After the entire decomposition, Fk = ∅ is a minimal feedback vertex set
of Gk. For i = k, k− 1, . . . , 1, the minimal feedback vertex set Fi found in Gi

is extended in a minimal way using vertices of Vi−1 − Vi to yield a minimal
feedback vertex set, say Fi−1, for Gi−1. The last set, F0, is a feedback vertex
set for G.

F2F1 -

0 F1-F0

G1

Fk-1Gk-1

Gk

. . .

G

Algorithm 6.8 (Feedback vertex set)

1. Decomposition phase
H ← G, w′ ← w, i ← 0
While H is not acyclic,

c ← minu∈H
{
w′(u)
δH(u)

}
Gi ← H, ti ← c · δGi

, w′ ← w′ − ti
H ← the subgraph of Gi induced by vertices u with w′(u) > 0
i ← i + 1,

k ← i, Gk ← H
2. Extension phase

Fk ← ∅
For i = k, . . . , 1, extend Fi to a feedback vertex set Fi−1 of Gi−1 by

adding a minimal set of vertices from Vi−1 − Vi.
Output F0.

6.2 Layering applied to feedback vertex set 59

Theorem 6.9 Algorithm 6.8 achieves an approximation guarantee of factor
2 for the feedback vertex set problem.

Proof: Let F ∗ be an optimal feedback vertex set for G. Since Gi is an
induced subgraph of G, F ∗ ∪ Vi must be a feedback vertex set for Gi (not
necessarily optimal). Since the weights of vertices have been decomposed into
the functions ti, we have

OPT = w(F ∗) =
k∑
i=0

ti(F ∗ ∩ Vi) ≥
k∑
i=0

OPTi,

where OPTi is the weight of an optimal feedback vertex set of Gi with weight
function ti.

By decomposing the weight of F0, we get

w(F0) =
k∑
i=0

ti(F0 ∩ Vi) =
k∑
i=0

ti(Fi).

By Lemma 6.7, Fi is a minimal feedback vertex set in Gi. Since for 0 ≤ i ≤
k − 1, ti is a cyclomatic weight function, by Lemma 6.5, ti(Fi) ≤ 2OPTi;
recall that Fk = ∅. Therefore,

w(F0) ≤ 2
k∑
i=0

OPTi ≤ 2 ·OPT.

✷

Example 6.10 A tight example for the algorithm is given by the graph
obtained by removing a perfect matching from a complete bipartite graph
and duplicating every edge. (Note that the algorithm works for parallel edges
as well. If a tight example without parallel edges is desired, then a vertex
with very high weight can be placed on every edge.)�

�
�

� �

�
�
����������

◗
◗
◗
◗
◗
◗
◗
◗◗

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✑

✑
✑
✑
✑
✑
✑
✑✑

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

✏✏
✏✏

✏✏
✏✏✏

���������

❅
❅
❅
❅
❅
❅
❅
❅
❅

✑
✑
✑
✑
✑
✑
✑
✑✑

✏✏
✏✏

✏✏
✏✏✏

◗
◗
◗
◗
◗
◗
◗
◗◗

...
...

..

..

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

.

60 6 Feedback Vertex Set

Assuming that the graph is cyclomatic weighted, each vertex receives the
same weight. The decomposition obtained by the algorithm consists of only
one nontrivial graph, G itself, on which the algorithm computes a minimal
feedback vertex set. A possible output of the algorithm is the set shown
above; this set contains 2n − 2 vertices as compared with the optimum of n
given by one side of the bipartition. ✷

6.3 Exercises

6.1 A natural greedy algorithm for finding a minimum feedback vertex set
is to repeatedly pick and remove the most cost-effective vertex, i.e., a vertex
minimizing w(v)/δH(v), where H is the current graph, until there are no
more cycles left. Give examples to show that this is not a constant factor
algorithm. What is the approximation guarantee of this algorithm?

6.2 Give an approximation factor preserving reduction from the vertex cover
problem to the feedback vertex set problem (thereby showing that improving
the factor for the latter problem will also improve it for the former; also see
Section 30.1).

6.4 Notes

Algorithm 6.8 is due to Bafna, Berman, and Fujito [19] (see also Becker and
Geiger [23] and Chudak, Goemans, Hochbaum, and Williamson [46] for other
factor 2 algorithms for the feedback vertex set problem).

7 Shortest Superstring

In Chapter 2 we defined the shortest superstring problem (Problem 2.9) and
gave a preliminary approximation algorithm using set cover. In this chapter,
we will first give a factor 4 algorithm, and then we will improve this to factor
3.

7.1 A factor 4 algorithm

We begin by developing a good lower bound on OPT. Let us assume that
s1, s2, . . . , sn are numbered in order of leftmost occurrence in the shortest
superstring, s.

✛ ✲ ✛ ✲✛ ✲✛ ✲pref(s1, s2) pref(sn, s1)pref(sn−1, sn) over(sn, s1)

s

s1

s2
. . .

sn−1

sn

s1

Let overlap(si, sj) denote the maximum overlap between si and sj , i.e.,
the longest suffix of si that is a prefix of sj . Also, let prefix(si, sj) be the prefix
of si obtained by removing its overlap with sj . The overlap in s between two
consecutive si’s is maximum possible, because otherwise a shorter superstring
can be obtained. Hence, assuming that no si is a substring of another, we get

OPT = |prefix(s1, s2)|+ |prefix(s2, s3)|+ . . . + |prefix(sn, s1)|
+ |overlap(sn, s1)|. (7.1)

Notice that we have repeated s1 at the end in order to obtain the last two
terms of (7.1). This equality shows the close relation between the shortest

62 7 Shortest Superstring

superstring of S and the minimum traveling salesman tour on the prefix graph
of S, defined as the directed graph on vertex set {1, . . . , n} that contains an
edge i → j of weight |prefix(si, sj)| for each i, j (self loops included). Clearly,
|prefix(s1, s2)|+ |prefix(s2, s3)|+ . . .+ |prefix(sn, s1)| represents the weight of
the tour 1 → 2 → . . . → n → 1. Hence, by (7.1), the minimum weight of a
traveling salesman tour of the prefix graph gives a lower bound on OPT. As
such, this lower bound is not very useful, since we cannot efficiently compute
a minimum traveling salesman tour.

The key idea is to lower-bound OPT using the minimum weight of a
cycle cover of the prefix graph (a cycle cover is a collection of disjoint cycles
covering all vertices). Since the tour 1 → 2 → . . . → n → 1 is a cycle cover,
from (7.1) we get that the minimum weight of a cycle cover lower-bounds
OPT.

Unlike minimum TSP, a minimum weight cycle cover can be computed in
polynomial time. Corresponding to the prefix graph, construct the following
bipartite graph, H. U = {u1, . . . , un} and V = {v1, . . . , vn} are the vertex
sets of the two sides of the bipartition. For each i, j ∈ {1, . . . , n} add edge
(ui, vj) of weight |prefix(si, sj)|. It is easy to see that each cycle cover of the
prefix graph corresponds to a perfect matching of the same weight in H and
vice versa. Hence, finding a minimum weight cycle cover reduces to finding a
minimum weight perfect matching in H.

If c = (i1 → i2 → . . . il → i1) is a cycle in the prefix graph, let

α(c) = prefix(si1 , si2) ◦ . . . ◦ prefix(sil−1 , sil) ◦ prefix(sil , si1).

Notice that each string si1 , si2 , . . . , sil is a substring of (α(c))∞. Next, let

σ(c) = α(c) ◦ si1 .

Then σ(c) is a superstring of si1 , . . . , sil .
1 In the above construction, we

“opened” cycle c at an arbitrary string si1 . For the rest of the algorithm, we
will call si1 the representative string for c. We can now state the complete
algorithm:

Algorithm 7.1 (Shortest superstring – factor 4)

1. Construct the prefix graph corresponding to strings in S.
2. Find a minimum weight cycle cover of the prefix graph, C = {c1, . . . , ck}.
3. Output σ(c1) ◦ . . . ◦ σ(ck).

1 This remains true even for the shorter string α(c) ◦ overlap(sl, s1). We will work
with σ(c), since it will be needed for the factor 3 algorithm presented in the next
section, where we use the property that σ(c) begins and ends with a copy of si1 .

7.1 A factor 4 algorithm 63

Clearly, the output is a superstring of the strings in S. Notice that if in
each of the cycles we can find a representative string of length at most the
weight of the cycle, then the string output is within 2 ·OPT. Thus, the hard
case is when all strings of some cycle c are long. But since they must all
be substrings of (α(c))∞, they must be periodic. This will be used to prove
Lemma 7.3, which establishes another lower bound on OPT.

Lemma 7.2 If each string in S′ ⊆ S is a substring of t∞ for a string t,
then there is a cycle of weight at most |t| in the prefix graph covering all the
vertices corresponding to strings in S′.

Proof: For each string in S′, locate the starting point of its first occurrence
in t∞. Clearly, all these starting points will be distinct (since no string in S
is a substring of another) and will lie in the first copy of t. Consider the cycle
in the prefix graph visiting the corresponding vertices in this order. Clearly,
the weight of this cycle is at most |t|. ✷

Lemma 7.3 Let c and c′ be two cycles in C, and let r, r′ be representative
strings from these cycles. Then

|overlap(r, r′)| < wt(c) + wt(c′).

Proof: Suppose, for contradiction, that |overlap(r, r′)| ≥ wt(c)+wt(c′). De-
note by α (α′) the prefix of length wt(c) (wt(c′), respectively) of overlap(r, r′).

✛ ✲α ◦ α′ = α′ ◦ α

✛ ✲

α′ α′ α′

α

overlap(r, r′)

αr

r′

Clearly, overlap(r, r′) is a prefix of both α∞ and (α′)∞. In addition, α is
a prefix of (α′)∞ and α′ is a prefix of α∞. Since overlap(r, r′) ≥ |α|+ |α′|, it
follows that α and α′ commute, i.e., α ◦ α′ = α′ ◦ α. But then, α∞ = (α′)∞.
This is so because for any k > 0,

αk ◦ (α′)k = (α′)k ◦ αk.

Hence, for any N > 0, the prefix of length N of α∞ is the same as that of
(α′)∞.

Now, by Lemma 7.2, there is a cycle of weight at most wt(c) in the
prefix graph covering all strings in c and c′, contradicting the fact that C is
a minimum weight cycle cover. ✷

64 7 Shortest Superstring

Theorem 7.4 Algorithm 7.1 achieves an approximation factor of 4 for the
shortest superstring problem.

Proof: Let wt(C) =
∑k

i=1 wt(ci). The output of the algorithm has length

k∑
i=1

|σ(ci)| = wt(C) +
k∑
i=1

|ri|,

where ri denotes the representative string from cycle ci. We have shown that
wt(C) ≤ OPT. Next, we show that the sum of the lengths of representative
strings is at most 3 ·OPT.

Assume that r1, . . . , rk are numbered in order of their leftmost occurrence
in the shortest superstring of S. Using Lemma 7.3, we get the following lower
bound on OPT:

OPT ≥
k∑
i=1

|ri| −
k−1∑
i=1

|overlap(ri, ri+1)| ≥
k∑
i=1

|ri| − 2
k∑
i=1

wt(ci).

Hence,

k∑
i=1

|ri| ≤ OPT + 2
k∑
i=1

wt(ci) ≤ 3 ·OPT.

✷

7.2 Improving to factor 3

Notice that any superstring of the strings σ(ci), i = 1, . . . , k, is also a super-
string of all strings in S. Instead of simply concatenating these strings, let
us make them overlap as much as possible (this may sound circular, but it is
not!).

Let X be a set of strings. We will denote by ||X|| the sum of the lengths
of the strings in X. Let us define the compression achieved by a superstring
s as the difference between the sum of the lengths of the input strings and
|s|, i.e., ||S|| − |s|. Clearly, maximum compression is achieved by the shortest
superstring. Several algorithms are known to achieve at least half the optimal
compression. For instance, the greedy superstring algorithm, described in
Section 2.3, does so; however, its proof is based on a complicated case analysis.
For a less efficient algorithm, see Section 7.2.1. Either of these algorithms can
be used in Step 3 of Algorithm 7.5.

7.2 Improving to factor 3 65

Algorithm 7.5 (Shortest superstring – factor 3)

1. Construct the prefix graph corresponding to strings in S.
2. Find a minimum cycle cover of the prefix graph, C = {c1, . . . , ck}.
3. Run the greedy superstring algorithm on {σ(c1), . . . , σ(ck)} and output

the resulting string, say τ .

Let OPTσ denote the length of the shortest superstring of the strings in
Sσ = {σ(c1) . . . σ(ck)}, and let ri be the representative string of ci.

Lemma 7.6 |τ | ≤ OPTσ + wt(C).

Proof: Assume w.l.o.g. that σ(c1), . . . , σ(ck) appear in this order in a short-
est superstring of Sσ. The maximum compression that can be achieved on
Sσ is given by

k−1∑
i=1

|overlap(σ(ci), σ(ci+1))|.

Since each string σ(ci) has ri as a prefix as well as suffix, by Lemma 7.3,

|overlap(σ(ci), σ(ci+1))| ≤ wt(ci) + wt(ci+1).

Hence, the maximum compression achievable on Sσ is at most 2 ·wt(C), i.e.,
||Sσ|| −OPTσ ≤ 2 · wt(C).

The compression achieved by the greedy superstring algorithm on Sσ is
at least half the maximum compression. Therefore,

||Sσ|| − |τ | ≥ 1
2
(||Sσ|| −OPTσ).

Therefore,

2(|τ | −OPTσ) ≤ ||Sσ|| −OPTσ ≤ 2 · wt(C).

The lemma follows. ✷

Finally, we relate OPTσ to OPT.

Lemma 7.7 OPTσ ≤ OPT + wt(C).

Proof: Let OPTr denote the length of the shortest superstring of the strings
in Sr = {r1, . . . , rk}. The key observation is that each σ(ci) begins and ends
with ri. Therefore, the maximum compression achievable on Sσ is at least as
large as that achievable on Sr, i.e.,

66 7 Shortest Superstring

||Sσ|| −OPTσ ≥ ||Sr|| −OPTr.

Clearly, ||Sσ|| = ||Sr||+ wt(C). This gives

OPTσ ≤ OPTr + wt(C).

The lemma follows by noticing that OPTr ≤ OPT. ✷

Combining the previous two lemmas we get:

Theorem 7.8 Algorithm 7.5 achieves an approximation factor of 3 for the
shortest superstring problem.

7.2.1 Achieving half the optimal compression

We give a superstring algorithm that achieves at least half the optimal com-
pression. Suppose that the strings to be compressed, s1, · · · , sn, are numbered
in the order in which they appear in a shortest superstring. Then, the optimal
compression is given by

n−1∑
i=1

|overlap(σi, σi+1)|.

This is the weight of the traveling salesman path 1 → 2 → . . . → n in the
overlap graph, H, of the strings s1, · · · , sn. H is a directed graph that has a
vertex vi corresponding to each string si, and contains an edge (vi → vj) of
weight |overlap(si, sj)| for each i �= j, 1 ≤ i, j ≤ n (H has no self loops).

The optimal compression is upper bounded by the cost of a maximum
traveling salesman tour in H, which in turn is upper bounded by the cost
of a maximum cycle cover. The latter can be computed in polynomial time
using matching, similar to the way we computed a minimum weight cycle
cover. Since H has no self loops, each cycle has length at least 2. Remove
the lightest edge from each cycle of the maximum cycle cover to obtain a set
of disjoint paths. The sum of weights of edges on these paths is at least half
the optimal compression. Overlap strings s1, · · · , sn according to the edges
of these paths and concatenate the resulting strings. This gives a superstring
achieving at least half the optimal compression.

7.3 Exercises

7.1 Show that Lemma 7.3 cannot be strengthened to

|overlap(r, r′)| < max {wt(c),wt(c′)}.

7.4 Notes 67

7.2 (Jiang, Li, and Du [148]) Obtain constant factor approximation algo-
rithms for the variants of the shortest superstring problem given in Exercise
2.16.

7.4 Notes

The algorithms given in this chapter are due to Blum, Jiang, Li, Tromp, and
Yannakakis [27].

8 Knapsack

In Chapter 1 we mentioned that some NP-hard optimization problems allow
approximability to any required degree. In this chapter, we will formalize this
notion and will show that the knapsack problem admits such an approxima-
bility.

Let Π be an NP-hard optimization problem with objective function fΠ .
We will say that algorithm A is an approximation scheme for Π if on input
(I, ε), where I is an instance of Π and ε > 0 is an error parameter, it outputs
a solution s such that:

• fΠ(I, s) ≤ (1 + ε) ·OPT if Π is a minimization problem.
• fΠ(I, s) ≥ (1− ε) ·OPT if Π is a maximization problem.

A will be said to be a polynomial time approximation scheme, abbreviated
PTAS, if for each fixed ε > 0, its running time is bounded by a polynomial
in the size of instance I.

The definition given above allows the running time of A to depend arbi-
trarily on ε. This is rectified in the following more stringent notion of approx-
imability. If the previous definition is modified to require that the running
time of A be bounded by a polynomial in the size of instance I and 1/ε, then
A will be said to be a fully polynomial approximation scheme, abbreviated
FPTAS.

In a very technical sense, an FPTAS is the best one can hope for an NP-
hard optimization problem, assuming P �= NP; see Section 8.3.1 for a short
discussion on this issue. The knapsack problem admits an FPTAS.

Problem 8.1 (Knapsack) Given a set S = {a1, . . . , an} of objects, with
specified sizes and profits, size(ai) ∈ Z+ and profit(ai) ∈ Z+, and a “knapsack
capacity” B ∈ Z+, find a subset of objects whose total size is bounded by B
and total profit is maximized.

An obvious algorithm for this problem is to sort the objects by decreasing
ratio of profit to size, and then greedily pick objects in this order. It is easy
to see that as such this algorithm can be made to perform arbitrarily badly
(Exercise 8.1).

8.2 An FPTAS for knapsack 69

8.1 A pseudo-polynomial time algorithm for knapsack

Before presenting an FPTAS for knapsack, we need one more concept. For
any optimization problem Π, an instance consists of objects, such as sets or
graphs, and numbers, such as cost, profit, size, etc. So far, we have assumed
that all numbers occurring in a problem instance I are written in binary. The
size of the instance, denoted |I|, was defined as the number of bits needed
to write I under this assumption. Let us say that Iu will denote instance I
with all numbers occurring in it written in unary. The unary size of instance
I, denoted |Iu|, is defined as the number of bits needed to write Iu.

An algorithm for problem Π is said to be efficient if its running time on
instance I is bounded by a polynomial in |I|. Let us consider the following
weaker definition. An algorithm for problem Π whose running time on in-
stance I is bounded by a polynomial in |Iu| will be called a pseudo-polynomial
time algorithm.

The knapsack problem, being NP-hard, does not admit a polynomial
time algorithm; however, it does admit a pseudo-polynomial time algorithm.
This fact is used critically in obtaining an FPTAS for it. All known pseudo-
polynomial time algorithms for NP-hard problems are based on dynamic
programming.

Let P be the profit of the most profitable object, i.e., P = maxa∈S profit(a).
Then nP is a trivial upperbound on the profit that can be achieved by any
solution. For each i ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, let Si,p denote a subset
of {a1, . . . , ai} whose total profit is exactly p and whose total size is mini-
mized. Let A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set
exists). Clearly A(1, p) is known for every p ∈ {1, . . . , nP}. The following
recurrence helps compute all values A(i, p) in O(n2P) time:

A(i + 1, p) ={
min {A(i, p), size(ai+1) + A(i, p− profit(ai+1))} if profit(ai+1) < p
A(i + 1, p) = A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is
max {p| A(n, p) ≤ B}. We thus get a pseudo-polynomial algorithm for knap-
sack.

8.2 An FPTAS for knapsack

Notice that if the profits of objects were small numbers, i.e., they were
bounded by a polynomial in n, then this would be a regular polynomial
time algorithm, since its running time would be bounded by a polynomial in
|I|. The key idea behind obtaining an FPTAS is to exploit precisely this fact:
we will ignore a certain number of least significant bits of profits of objects

70 8 Knapsack

(depending on the error parameter ε), so that the modified profits can be
viewed as numbers bounded by a polynomial in n and 1/ε. This will enable
us to find a solution whose profit is at least (1 − ε) · OPT in time bounded
by a polynomial in n and 1/ε.

Algorithm 8.2 (FPTAS for knapsack)

1. Given ε > 0, let K = εP
n .

2. For each object ai, define profit′(ai) =
⌊profit(ai)

K

⌋
.

3. With these as profits of objects, using the dynamic programming
algorithm, find the most profitable set, say S′.

4. Output S′.

Lemma 8.3 Let A denote the set output by the algorithm. Then,

profit(A) ≥ (1− ε) ·OPT.

Proof: Let O denote the optimal set. For any object a, because of rounding
down, K · profit′(a) can be smaller than profit(a), but by not more than K.
Therefore,

profit(O)−K · profit′(O) ≤ nK.

The dynamic programming step must return a set at least as good as O under
the new profits. Therefore,

profit(S′)≥K · profit′(O) ≥ profit(O)− nK = OPT− εP

≥ (1− ε) ·OPT ,

where the last inequality follows from the observation that OPT ≥ P . ✷

Theorem 8.4 Algorithm 8.2 is a fully polynomial approximation scheme for
knapsack.

Proof: By Lemma 8.3, the solution found is within (1 − ε) factor of OPT.
Since the running time of the algorithm is O

(
n2
⌊
P
K

⌋)
= O

(
n2
⌊
n
ε

⌋)
, which

is polynomial in n and 1/ε, the theorem follows. ✷

8.3 Strong NP-hardness and the existence of FPTAS’s 71

8.3 Strong NP-hardness and the existence of FPTAS’s

In this section, we will prove in a formal sense that very few of the known NP-
hard problems admit an FPTAS. First, here is a strengthening of the notion
of NP-hardness in a similar sense in which a pseudo-polynomial algorithm is
a weakening of the notion of an efficient algorithm. A problem Π is strongly
NP-hard if every problem in NP can be polynomially reduced to Π in such
a way that numbers in the reduced instance are always written in unary.

The restriction automatically forces the transducer to use polynomially
bounded numbers only. Most known NP-hard problems are in fact strongly
NP-hard; this includes all the problems in previous chapters for which ap-
proximation algorithms were obtained. A strongly NP-hard problem cannot
have a pseudo-polynomial time algorithm, assuming P �= NP (Exercise 8.4).
Thus, knapsack is not strongly NP-hard, assuming P �= NP.

We will show below that under some very weak restrictions, any NP-
hard problem admitting an FPTAS must admit a pseudo-polynomial time
algorithm. Theorem 8.5 is proven for a minimization problem; a similar proof
holds for a maximization problem.

Theorem 8.5 Let p be a polynomial and Π be an NP-hard minimization
problem such that the objective function fΠ is integer valued and on any
instance I, OPT(I) < p(|Iu|). If Π admits an FPTAS, then it also admits a
pseudo-polynomial time algorithm.

Proof: Suppose there is an FPTAS for Π whose running time on instance
I and error parameter ε is q(|I|, 1/ε), where q is a polynomial.

On instance I, set the error parameter to ε = 1/p(|Iu|), and run the
FPTAS. Now, the solution produced will have objective function value less
than or equal to:

(1 + ε)OPT(I) < OPT(I) + εp(|Iu|) = OPT(I) + 1.

In fact, with this error parameter, the FPTAS will be forced to produce an
optimal solution. The running time will be q(|I|, p(|Iu|)), i.e., polynomial in
|Iu|. Therefore, we have obtained a pseudo-polynomial time algorithm for Π.
✷

The following corollary applies to most known NP-hard problems.

Corollary 8.6 Let Π be an NP-hard optimization problem satisfying the
restrictions of Theorem 8.5. If Π is strongly NP-hard, then Π does not admit
an FPTAS, assuming P �= NP.

Proof: If Π admits an FPTAS, then it admits a pseudo-polynomial time
algorithm by Theorem 8.5. But then it is not strongly NP-hard, assuming
P �= NP, leading to a contradiction. ✷

72 8 Knapsack

The stronger assumption that OPT < p(|I|) in Theorem 8.5 would have
enabled us to prove that there is a polynomial time algorithm for Π. However,
this stronger assumption is less widely applicable. For instance, it is not
satisfied by the minimum makespan problem, which we will study in Chapter
10.

8.3.1 Is an FPTAS the most desirable approximation algorithm?

The design of almost all known FPTAS’s and PTAS’s is based on the idea
of trading accuracy for running time – the given problem instance is mapped
to a coarser instance, depending on the error parameter ε, which is solved
optimally by a dynamic programming approach. The latter ends up being an
exhaustive search of polynomially many different possibilities (for instance,
for knapsack, this involves computing A(i, p) for all i and p). In most such
algorithms, the running time is prohibitive even for reasonable n and ε. Fur-
ther, if the algorithm had to resort to exhaustive search, does the problem
really offer “footholds” to home in on a solution efficiently? Is an FPTAS or
PTAS the best one can hope for for an NP-hard problem? Clearly, the issue
is complex and there is no straightforward answer.

8.4 Exercises

8.1 Consider the greedy algorithm for the knapsack problem. Sort the objects
by decreasing ratio of profit to size, and then greedily pick objects in this
order. Show that this algorithm can be made to perform arbitrarily badly.

8.2 Consider the following modification to the algorithm given in Exercise
8.1. Let the sorted order of objects be a1, . . . , an. Find the lowest k such that
the size of the first k objects exceeds B. Now, pick the more profitable of
{a1, . . . , ak−1} and {ak} (we have assumed that the size of each object is at
most B). Show that this algorithm achieves an approximation factor of 2.

8.3 (Bazgan, Santha, and Tuza [22]) Obtain an FPTAS for the following
problem.

Problem 8.7 (Subset-sum ratio problem) Given n positive integers,
a1 < . . . < an, find two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} with∑

i∈S1
ai ≥

∑
i∈S2

ai, such that the ratio

∑
i∈S1

ai∑
i∈S2

ai

is minimized.

8.5 Notes 73

Hint: First, obtain a pseudo-polynomial time algorithm for this problem.
Then, scale and round appropriately.

8.4 Show that a stronglyNP-hard problem cannot have a pseudo-polynomial
time algorithm, assuming P �= NP.

8.5 Notes

Algorithm 8.2 is due to Ibarra and Kim [134]. Theorem 8.5 is due to Garey
and Johnson [92].

9 Bin Packing

Consider the following problem.

Problem 9.1 (Bin packing) Given n items with sizes a1, . . . , an ∈ (0, 1],
find a packing in unit-sized bins that minimizes the number of bins used.

This problem finds many industrial applications. For instance, in the
stock-cutting problem, bins correspond to a standard length of paper and
items correspond to specified lengths that need to be cut.

It is easy to obtain a factor 2 approximation algorithm for this problem.
For instance, let us consider the algorithm called First-Fit. This algorithm
considers items in an arbitrary order. In the ith step, it has a list of partially
packed bins, say B1, . . . , Bk. It attempts to put the next item, ai, in one of
these bins, in this order. If ai does not fit into any of these bins, it opens a
new bin Bk+1, and puts ai in it. If the algorithm uses m bins, then at least
m− 1 bins are more than half full. Therefore,

n∑
i=1

ai >
m− 1

2
.

Since the sum of the item sizes is a lower bound on OPT, m − 1 < 2OPT,
i.e., m ≤ 2OPT (see Notes for a better analysis). On the negative side:

Theorem 9.2 For any ε > 0, there is no approximation algorithm having a
guarantee of 3/2− ε for the bin packing problem, assuming P �= NP.

Proof: If there were such an algorithm, then we show how to solve the NP-
hard problem of deciding if there is a way to partition n nonnegative numbers
a1, . . . , an into two sets, each adding up to 1

2

∑
i ai. Clearly, the answer to

this question is ‘yes’ iff the n items can be packed in 2 bins of size 1
2

∑
i ai. If

the answer is ‘yes’ the 3/2 − ε factor algorithm will have to give an optimal
packing, and thereby solve the partitioning problem. ✷

9.1 An asymptotic PTAS

Notice that the argument in Theorem 9.2 uses very special instances: those
for which OPT is a small number, such as 2 or 3, even though the number

9.1 An asymptotic PTAS 75

of items is unbounded. What can we say about “typical” instances, those for
which OPT increases with n?

Theorem 9.3 For any ε, 0 < ε ≤ 1/2, there is an algorithm Aε that runs
in time polynomial in n and finds a packing using at most (1 + 2ε)OPT + 1
bins.

The sequence of algorithms, Aε, form an asymptotic polynomial time ap-
proximation scheme for bin packing, since for each ε > 0 ∃N > 0, and a
polynomial time algorithm in this sequence, say B, such that B has an ap-
proximation guarantee of 1 + ε for all instances having OPT ≥ N . However,
Theorem 9.3 should not be considered a practical solution to the bin packing
problem, since the running times of the algorithms Aε are very high.

We will prove Theorem 9.3 in three steps.

Lemma 9.4 Let ε > 0 be fixed, and let K be a fixed nonnegative integer.
Consider the restriction of the bin packing problem to instances in which each
item is of size at least ε and the number of distinct item sizes is K. There is
a polynomial time algorithm that optimally solves this restricted problem.

Proof: The number of items in a bin is bounded by �1/ε�. Denote this by
M . Therefore, the number of different bin types is bounded by R =

(
M+K
M

)
(see Exercise 9.4), which is a (large!) constant. Clearly, the total number
of bins used is at most n. Therefore, the number of possible feasible pack-
ings is bounded by P =

(
n+R
R

)
, which is polynomial in n (see Exercise 9.4).

Enumerating them and picking the best packing gives the optimal answer. ✷

Lemma 9.5 Let ε > 0 be fixed. Consider the restriction of the bin packing
problem to instances in which each item is of size at least ε. There is a
polynomial time approximation algorithm that solves this restricted problem
within a factor of (1 + ε).

Proof: Let I denote the given instance. Sort the n items by increasing size,
and partition them into K = �1/ε2� groups each having at most Q = �nε2�
items. Notice that two groups may contain items of the same size.

J’

J

Construct instance J by rounding up the size of each item to the size of
the largest item in its group. Instance J has at most K different item sizes.

76 9 Bin Packing

Therefore, by Lemma 9.4, we can find an optimal packing for J . Clearly, this
will also be a valid packing for the original item sizes. We show below that
OPT(J) ≤ (1 + ε)OPT(I), thereby proving the lemma.

The following clever argument accomplishes this. Let us construct another
instance, say J ′, by rounding down the size of each item to that of the smallest
item in its group. Clearly OPT(J ′) ≤ OPT(I). The crucial observation is that
a packing for instance J ′ yields a packing for all but the largest Q items of
instance J (Exercise 9.6 asks for a formal proof). Therefore,

OPT(J) ≤ OPT(J ′) + Q ≤ OPT(I) + Q.

Since each item in I has size at least ε, OPT(I) ≥ nε. Therefore, Q = �nε2� ≤
εOPT. Hence, OPT(J) ≤ (1 + ε)OPT(I). ✷

Proof of Theorem 9.3: Let I denote the given instance, and I ′ denote the
instance obtained by discarding items of size < ε from I. By Lemma 9.5, we
can find a packing for I ′ using at most (1 + ε)OPT(I ′) bins. Next, we start
packing the small items (of size < ε) in a First-Fit manner in the bins opened
for packing I ′. Additional bins are opened if an item does not fit into any of
the already open bins.

If no additional bins are needed, then we have a packing in (1+ε)OPT(I ′) ≤
(1 + ε)OPT(I) bins. In the second case, let M be the total number of bins
used. Clearly, all but the last bin must be full to the extent of at least 1− ε.
Therefore, the sum of the item sizes in I is at least (M − 1)(1− ε). Since this
is a lower bound on OPT, we get

M ≤ OPT
(1− ε)

+ 1 ≤ (1 + 2ε)OPT + 1,

where we have used the assumption that ε ≤ 1/2. Hence, for each value of ε,
0 < ε ≤ 1/2, we have a polynomial time algorithm achieving a guarantee of
(1 + 2ε)OPT + 1. ✷

Algorithm Aε is summarized below.

Algorithm 9.6 (Algorithm Aε for bin packing)

1. Remove items of size < ε.
2. Round to obtain constant number of item sizes (Lemma 9.5).
3. Find optimal packing (Lemma 9.4).
4. Use this packing for original item sizes.
5. Pack items of size < ε using First-Fit.

9.2 Exercises 77

9.2 Exercises

9.1 Give an example on which First-Fit does at least as bad as 5/3 ·OPT.

9.2 (Johnson [149]) Consider a more restricted algorithm than First-Fit,
called Next-Fit, which tries to pack the next item only in the most recently
started bin. If it does not fit, it is packed in a new bin. Show that this
algorithm also achieves factor 2. Give a factor 2 tight example.

9.3 (C. Kenyon) Say that a bin packing algorithm is monotonic if the number
of bins it uses for packing a subset of the items is at most the number of bins
it uses for packing all n items. Show that whereas Next-Fit is monotonic,
First-Fit is not.

9.4 Prove the bounds on R and P stated in Lemma 9.4.
Hint: Use the fact that the number of ways of throwing n identical balls
into k distinct bins is

(
n+k−1
n

)
.

9.5 Consider an alternative way of establishing Lemma 9.5. All items having
sizes in the interval (ε(1 + ε)r, ε(1 + ε)r+1] are rounded up to min(ε(1 +
ε)r+1, 1), for r ≥ 0. Clearly, this yields a constant number of item sizes. Does
the rest of the proof go through?
Hint: Consider the situation that there are lots of items of size 1/2, and
1/2 �= ε(1 + ε)r for any r ≥ 0.

9.6 Prove the following statement made in Lemma 9.5, “A packing for
instance J ′ yields a packing for all but the largest Q items of instance J .”
Hint: Throw away the Q largest items of J and the Q smallest items of J ′,
and establish a domination.

9.7 Use the fact that integer programming with a fixed number of variables
is in P to give an alternative proof of Lemma 9.4. (Because of the exorbi-
tant running time of the integer programming algorithm, this variant is also
impractical.)

9.8 Show that if there is an algorithm for bin packing having a guarantee
of OPT(I) + log2(OPT(I)), then there is a fully polynomial approximation
scheme for this problem.

9.9 (C. Kenyon) Consider the following problem.

Problem 9.7 (Bin covering) Given n items with sizes a1, . . . , an ∈ (0, 1],
maximize the number of bins opened so that each bin has items summing to
at least 1.

Give an asymptotic PTAS for this problem when restricted to instances
in which item sizes are bounded below by c, for a fixed constant c > 0.
Hint: The main idea of Algorithm 9.6 applies to this problem as well.

78 9 Bin Packing

9.3 Notes

The first nontrivial bin packing result, showing that First-Fit requires at most
(17/10)OPT+3 bins, was due to Ullman [248]. The asymptotic PTAS is due
to Fernandez de la Vega and Lueker [86]. An improved algorithm, having
a guarantee of OPT(I) + log2(OPT(I)) was given by Karmarkar and Karp
[163]. For further results, see the survey of Coffman, Garey, and Johnson [50].
The result cited in Exercise 9.7, showing that integer programming with a
fixed number of variables is in P, is due to Lenstra [185]. Bin packing has
also been extensively studied in the on-line model. For these and other on-line
algorithms see Borodin and El-Yaniv [31].

10 Minimum Makespan Scheduling

A central problem in scheduling theory is the following.

Problem 10.1 (Minimum makespan scheduling) Given processing
times for n jobs, p1, p2, . . . , pn, and an integer m, find an assignment of the
jobs to m identical machines so that the completion time, also called the
makespan, is minimized.

We will give a simple factor 2 algorithm for this problem before presenting
a PTAS for it.

10.1 Factor 2 algorithm

The algorithm is very simple: schedule the jobs one by one, in an arbitrary
order, each job being assigned to a machine with least amount of work so far.
This algorithm is based on the following two lower bounds on the optimal
makespan, OPT:

1. The average time for which a machine has to run, (
∑

i pi) /m; and
2. The largest processing time.

Let LB denote the combined lower bound, i.e.,

LB = max

{
1
m

∑
i

pi, max
i
{pi}

}
.

Algorithm 10.2 (Minimum makespan scheduling)

1. Order the jobs arbitrarily.
2. Schedule jobs on machines in this order, scheduling the next job on the

machine that has been assigned the least amount of work so far.

Theorem 10.3 Algorithm 10.2 achieves an approximation guarantee of 2
for the minimum makespan problem.

80 10 Minimum Makespan Scheduling

Proof: Let Mi be the machine that completes its jobs last in the schedule
produced by the algorithm, and let j be the index of the last job scheduled
on this machine.

✛ ✲✛ ✲pj≤ 1
m

∑
i pi

M1

...

Mi

...

Mm

Let startj be the time at which job j starts execution on Mi. Since the algo-
rithm assigns a job to the least loaded machine, it follows that all machines
are busy until startj . This implies that

startj ≤ 1
m

∑
i

pi ≤ OPT.

Further, pj ≤ OPT. Thus, the makespan of the schedule is startj + pj ≤
2 ·OPT. ✷

Example 10.4 A tight example for this algorithm is provided by a sequence
of m2 jobs with unit processing time, followed by a single job of length m.
The schedule obtained by the algorithm has a makespan of 2m, while OPT =
m + 1. ✷

10.2 A PTAS for minimum makespan

The minimum makespan problem is strongly NP-hard; thus, by Corollary
8.6, it does not admit an FPTAS, assuming P �= NP. We will obtain a
PTAS for it. The minimum makespan problem is closely related to the bin
packing problem by the following observation. There exists a schedule with
makespan t iff n objects of sizes p1, p2, . . . , pn can be packed into m bins of
capacity t each. This suggests a reduction from minimum makespan to bin
packing as follows. Denoting the sizes of the n objects, p1, . . . , pn, by I, let
bins(I, t) represent the minimum number of bins of size t required to pack
these n objects. Then, the minimum makespan is given by

min{t : bins(I, t) ≤ m}.

10.2 A PTAS for minimum makespan 81

As shown above, LB and 2 · LB are lower and upper bounds on the mini-
mum makespan. Thus, we can determine the minimum makespan by a bi-
nary search in this interval. At first sight, this reduction may not seem very
useful since the bin packing problem is also NP-hard. However, it turns out
that this problem is polynomial time solvable if the object sizes are drawn
from a set of fixed cardinality. We will use this fact critically for solving the
minimum makespan problem.

10.2.1 Bin packing with fixed number of object sizes

We first present a dynamic programming algorithm for the restricted bin
packing problem, thereby improving on the result of Lemma 9.4 in two ways.
We will not require a lower bound on item sizes and will improve on the
running time. Let k be the fixed number of object sizes, and assume that
bins have capacity 1. Fix an ordering on the object sizes. Now, an instance
of the bin packing problem can be described by a k-tuple, (i1, i2, . . . , ik),
specifying the number of objects of each size. Let BINS(i1, i2, . . . , ik) denote
the minimum number of bins needed to pack these objects.

For a given instance, (n1, n2, . . . , nk),
∑k

i=1 ni = n, we first compute Q,
the set of all k-tuples (q1, q2, . . . , qk) such that BINS(q1, q2, . . . , qk) = 1 and
0 ≤ qi ≤ ni, 1 ≤ i ≤ k. Clearly, Q contains at most O(nk) elements. Next, we
compute all entries of the k-dimensional table BINS(i1, i2, . . . , ik) for every
(i1, i2, . . . , ik) ∈ {0, . . . , n1} × {0, . . . , n2} × . . . × {0, . . . , nk}. The table is
initialized by setting BINS(q) = 1 for every q ∈ Q. Then, we use the following
recurrence to compute the remaining entries:

BINS(i1, i2, . . . , ik) = 1 + min
q∈Q

BINS(i1 − q1, . . . , ik − qk). (10.1)

Computing each entry takes O(nk) time. Thus, the entire table can be com-
puted in O(n2k) time, thereby determining BINS(n1, n2, . . . , nk).

10.2.2 Reducing makespan to restricted bin packing

The basic idea is that if we can tolerate some error in computing the minimum
makespan, then we can reduce this problem to the restricted version of bin
packing in polynomial time. There will be two sources of error:

• rounding object sizes so that there are a bounded number of different sizes,
and

• terminating the binary search to ensure polynomial running time.

Each error can be made as small as needed, at the expense of running time.
Moreover, for any fixed error bound, the running time is polynomial in n,
and thus we obtain a polynomial approximation scheme.

82 10 Minimum Makespan Scheduling

Let ε be an error parameter and t be in the interval [LB, 2 · LB]. We say
that an object is small if its size is less than tε; small objects are discarded
for now. The rest of the objects are rounded down as follows: each pj in the
interval

[
tε(1 + ε)i, tε(1 + ε)i+1

)
is replaced by p′

j = tε(1+ε)i, for i ≥ 0. The
resulting p′

j ’s can assume at most k = �log1+ε
1
ε� distinct values. Determine

an optimal packing for the rounded objects in bins of size t using the dynamic
programming algorithm. Since rounding reduces the size of each object by a
factor of at most 1 + ε, if we consider the original sizes of the objects, then
the packing determined is valid for a bin size of t(1 + ε). Keeping this as the
bin size, pack the small objects greedily in leftover spaces in the bins; open
new bins only if needed. Clearly, any time a new bin is opened, all previous
bins must be full to the extent of at least t. Denote with α(I, t, ε) the number
of bins used by this algorithm; recall that these bins are of size t(1 + ε).

Let us call the algorithm presented above the core algorithm since it will
form the core of the PTAS for computing makespan. As shown in Lemma
10.5 and its corollary, the core algorithm also helps establish a lower bound
on the optimal makespan.

Lemma 10.5 α(I, t, ε) ≤ bins(I, t).

Proof: If the algorithm does not open any new bins for the small objects,
then the assertion clearly holds since the rounded down pieces have been
packed optimally in bins of size t. In the other case, all but the last bin are
packed at least to the extent of t. Hence, the optimal packing of I in bins of
size t must also use at least α(I, t, ε) bins. ✷

Since OPT = min{t : bins(I, t) ≤ m}, Lemma 10.5 gives:

Corollary 10.6 min{t : α(I, t, ε) ≤ m} ≤ OPT.

If min{t : α(I, t, ε) ≤ m} could be determined with no additional error
during the binary search, then clearly we could use the core algorithm to
obtain a schedule with a makespan of (1 + ε)OPT. Next, we will specify the
details of the binary search and show how to control the error it introduces.
The binary search is performed on the interval [LB, 2 · LB]. Thus, the length
of the available interval is LB at the start of the search, and it reduces by
a factor of 2 in each iteration. We continue the search until the available
interval drops to a length of ε · LB. This will require �log2

1
ε� iterations. Let

T be the right endpoint of the interval we terminate with.

Lemma 10.7 T ≤ (1 + ε) ·OPT.

Proof: Clearly, min{t : α(I, t, ε) ≤ m}must be in the interval [T − ε · LB, T].
Hence,

T ≤ min{t : α(I, t, ε) ≤ m}+ ε · LB.

10.4 Notes 83

Now, using Corollary 10.6 and the fact that LB ≤ OPT, the lemma follows.
✷

Finally, the output of the core algorithm for t = T gives a schedule whose
makespan is at most T · (1 + ε). We get:

Theorem 10.8 The algorithm produces a valid schedule having makespan at
most

(1 + ε)2 ·OPT ≤ (1 + 3ε) ·OPT.

The running time of the entire algorithm is O
(
n2k�log2

1
ε�
)
, where k =

�log1+ε
1
ε�.

10.3 Exercises

10.1 (Graham [114]) The tight example for the factor 2 algorithm, Example
10.4, involves scheduling a very long job last. This suggests sorting the jobs
by decreasing processing times before scheduling them. Show that this leads
to a 4/3 factor algorithm. Provide a tight example for this algorithm.

10.2 (Horowitz and Sahni [131]) Give an FPTAS for the variant of the
minimum makespan scheduling problem in which the number of machines,
m, is a fixed constant.

10.4 Notes

Algorithm 10.2 is due to Graham [113]. The PTAS is due to Hochbaum and
Shmoys [128].

11 Euclidean TSP

In this chapter, we will give a PTAS for the special case of the traveling
salesman problem in which the points are given in a d-dimensional Euclidean
space. As before, the central idea of the PTAS is to define a “coarse solution”,
depending on the error parameter ε, and to find it using dynamic program-
ming. A feature this time is that we do not know a deterministic way of
specifying the coarse solution – it is specified probabilistically.

Problem 11.1 (Euclidean TSP) For fixed d, given n points in Rd, the
problem is to find the minimum length tour of the n points. The distance
between any two points x and y is defined to be the Euclidean distance

between them, i.e.,
(∑d

i=1 (xi − yi)2
)1/2

.

11.1 The algorithm

We will give the algorithm for points on the plane, i.e., d = 2. The extension
to arbitrary d is straightforward. The algorithm involves numerous details.
In the interest of highlighting the main ideas, some of these details will be
left as exercises.

Define the bounding box of the instance to be the smallest axis-parallel
square that contains all n points. Via a simple perturbation of the instance,
we may assume that the length of this square, L, is 4n2 and that there is
a unit grid defined on the square such that each point lies on a gridpoint
(see Exercise 11.1). Further, assume w.l.o.g. that n is a power of 2, and let
L = 2k, k = 2 + log2 n.

The basic dissection of the bounding box is a recursive partitioning into
smaller squares. Thus, the L×L square is divided into four L/2×L/2 squares,
and so on. It will be convenient to view this dissection as a 4-ary tree, T ,
whose root is the bounding box. The four children of the root are the four
L/2×L/2 squares, and so on. The nodes of T are assigned levels. The root is
at level 0, its children at level 1, and so on. The squares represented by nodes
get levels accordingly. Thus, squares at level i have dimensions L/2i × L/2i.
The dissection is continued until we obtain unit squares. Clearly, T has depth
k = O(log n). By a useful square we mean a square represented by a node in
T .

11.1 The algorithm 85

Next, let us define levels for the horizontal and vertical lines that accom-
plish the basic dissection (these are all the lines of the grid defined on the
bounding box). The two lines that divide the bounding box into four squares
have level 1. In general, the 2i lines that divide the level i − 1 squares into
level i squares each have level i. Therefore, a line of level i forms the edge of
useful squares at levels i, i + 1, . . . , i.e., the largest useful square on it has
dimensions L/2i × L/2i:

Level 1 line

Level 2 line

Level 3 line

Each line will have a special set of points called portals. The coarse solution
we will be seeking is allowed to cross a line only at a portal. The portals
on each line are equidistant points. On a line of level i, these points are
L/(2im) apart, where the parameter m is fixed to be a power of 2 in the
range [k/ε, 2k/ε]. Clearly, m = O(log n/ε). Since the largest useful square on
a level i line has dimensions L/2i × L/2i, each useful square has a total of
at most 4m portals on its four sides and corners. We have chosen m to be a
power of 2 so that a portal in a lower level square is a portal for all higher
level squares it lies in.

We will say that a tour τ is well behaved w.r.t. the basic dissection if it
is a tour on the n points and any subset of the portals. In addition, this
tour is allowed to visit portals multiple times, but other than that it must be
non-self-intersecting. The key structural fact to be established is that there
is such a tour of length at most (1 + ε) · OPT. This requires a probabilistic
argument, and we will return to it. First let us show why a PTAS follows
from this fact.

We will say that tour τ is well behaved w.r.t. the basic dissection and
has limited crossings if it is well behaved w.r.t. the basic dissection, and
furthermore, it visits each portal at most twice.

Lemma 11.2 Let tour τ be well behaved w.r.t. the basic dissection. Then
there must be a tour that is well behaved with limited crossings, whose length
is at most that of τ .

Proof: The basic reason is that removing self-intersections by “short-
cutting” can only result in a shorter tour, since Euclidean distance satisfies

86 11 Euclidean TSP

the triangle inequality. If τ uses a portal on line l more than twice, we can keep
“short-cutting” on the two sides of l until the portal is used at most twice.
If this introduces additional self-intersections, they can also be removed. ✷

Lemma 11.3 The optimal well behaved tour w.r.t. the basic dissection, hav-
ing limited crossings, can be computed in time 2O(m) = nO(1/ε).

Proof: We will build a table, using dynamic programming, that contains,
for each useful square, the cost of each valid visit. We will sketch the main
ideas, leaving details as Exercise 11.2.

Let τ be the optimal tour we wish to find. Clearly, the total number of
times τ can enter and exit a useful square, S, is at most 8m. The part of τ
inside S is simply a set of at most 4m paths, each entering and exiting S at
portals, and together covering all the points inside the square. Furthermore,
the paths must be internally non-self-intersecting, i.e., two paths can intersect
only at their entrance or exit points. This means that the pairing of entrance
and exit points of the paths must form a balanced arrangement of parentheses.

Invalid pairing Valid pairing
Let us call such a listing of portals, together with their pairing as entrance
and exit points, a valid visit.

The number of useful squares is clearly poly(n). Let us first show that the
number of valid visits in a useful square is at most nO(1/ε), thereby showing
that the number of entries in the table is bounded by nO(1/ε).

Consider a useful square S. Each of its portals is used 0, 1, or 2 times, a
total of 34m = nO(1/ε) possibilities. Of these, retain only those possibilities
that involve an even number of portal usages. Consider one such possibility,
and suppose that it uses 2r portals. Next, we need to consider all possible
pairings of these portals that form a balanced arrangement of parentheses.
The number of such arrangements is the rth Catalan number, and is bounded
by 22r = nO(1/ε). Hence, the total number of valid visits in S is bounded by
nO(1/ε).

For each entry in the table, we need to compute the optimal length of
this valid visit. The table is built up the decomposition tree, starting at its
leaves. Consider a valid visit V in a square S. Let S be a level i square. We
have already fixed the entrances and exits on the boundary of S. Square S
has four children at level i + 1, which have four sides internal to S, with a
total of at most 4m more portals. Each of these portals is used 0, 1, or 2
times, giving rise again to nO(1/ε) possibilities. Consider one such possibility,
and consider all its portal usages together with portal usages of a valid visit
V . Obtain all possible valid pairings of these portals that are consistent with
those of visit V . Again, using Catalan numbers, their number is bounded by
nO(1/ε). Each such pairing will give rise to valid visits in the four squares.

11.2 Proof of correctness 87

The cost of the optimal way of executing these valid visits in the four squares
has already been computed. Compute their sum. The smallest of these sums
is the optimal way of executing visit V in square S. ✷

11.2 Proof of correctness

For the proof of correctness, it suffices to show that there is a well behaved
tour w.r.t. the basic dissection whose length is bounded by (1 + ε)OPT. It
turns out that this is not always the case (see Exercise 11.3). Instead, we will
construct a larger family of dissections and will show that, for any placement
of the n points, at least half these dissections have short well behaved tours
with limited crossings. So, picking a random dissection from this set suffices.

Let us define L2 different dissections of the bounding box, which are shifts
of the basic dissection. Given integers a, b with 0 ≤ a, b < L, the (a, b)-shifted
dissection is obtained by moving each vertical line from its original location x
to (a+x) mod L, and moving each horizontal line from its original location y
to (b + y) mod L. Thus, the middle lines of the shifted dissection are located
at (a + L/2) mod L and (b + L/2) mod L, respectively.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

b

a

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
����������������������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

The entire bounding box is thought of as being “wrapped around”. Useful
squares that extend beyond L in their x or y coordinates will thus be thought
of as “wrapped around”, and will still be thought of as a single square. Of
course, the positions of the given n points remains unchanged; only the dis-
section is shifted.

Let π be the optimal tour, and N(π) be the total number of times π
crosses horizontal and vertical grid lines. If π uses a point at the intersection
of two grid lines, then we will count it as two crossings. The following fact is
left as Exercise 11.4.

Lemma 11.4 N(π) ≤ 2 ·OPT.

88 11 Euclidean TSP

Following is the central fact leading to the PTAS.

Theorem 11.5 Pick a and b uniformly at random from [0, L). Then, the
expected increase in cost in making π well behaved w.r.t. the (a, b)-shifted
dissection is bounded by 2ε ·OPT.

Proof: Given any dissection, consider the process of making π well behaved
w.r.t. it. This involves replacing a segment of π that does not cross a line l
at a portal by two segments so that the crossing is at the closest portal on
l. The corresponding increase in the length of the tour is bounded by the
interportal distance on line l.

Consider the expected increase in length due to one of the crossings of tour
π with a line. Let l be this line. l will be a level i line in the randomly picked
dissection with probability 2i/L. If l is a level i line, then the interportal
distance on it is L/(2im). Thus, the expected increase in the length of the
tour due to this crossing is at most

∑
i

L

2im
2i

L
=

k

m
≤ ε,

where we have used the fact that m lies in [k/ε, 2k/ε]. The theorem follows
by summing over all N(π) crossings and using Lemma 11.4. ✷

Remark 11.6 The ideas leading up to Theorem 11.5 can be summarized as
follows. Since lower level lines have bigger useful squares incident at them, we
had to place portals on them further apart to ensure that any useful square
had at most 4m portals on it (thereby ensuring that dynamic programming
could be carried out in polynomial time). But this enabled us to construct
instances for which there was no short well behaved tour w.r.t. the basic
dissection (Exercise 11.3). On the other hand, there are fewer lines having
lower levels – Theorem 11.5 exploits this fact.

Now, using Markov’s inequality we get:

Corollary 11.7 Pick a and b uniformly at random from [0, L). Then, the
probability that there is a well behaved tour of length at most 4ε ·OPT w.r.t.
the (a, b)-shifted dissection is greater or equal to 1/2.

Notice that Lemma 11.2 holds in the setting of an (a, b)-shifted dissection
as well. The PTAS is now straightforward. Simply pick a random dissection,
and find an optimal well behaved tour with limited crossings w.r.t. this dis-
section using the dynamic programming procedure of Lemma 11.3. Notice
that the same procedure holds even for a shifted dissection. The algorithm
can be derandomized by trying all possible shifts and outputting the shortest
tour obtained. Thus, we get:

Theorem 11.8 There is a PTAS for the Euclidean TSP problem in R2.

11.4 Notes 89

11.3 Exercises

11.1 Show that we may assume that the length of the bounding square can
be taken to be L = 4n2 and that there is a unit grid defined on the square
such that each point lies on a gridpoint.
Hint: Since we started with the smallest axis-parallel bounding square, its
length is a lower bound on OPT. Therefore, moving each point to a grid point
can increase the length of the tour by at most OPT/n2.

11.2 Provide the missing details in the proof of Lemma 11.3.

11.3 Give an instance of the Euclidean TSP problem for which, w.r.t. the ba-
sic dissection, the process of making the optimal tour well behaved increases
its length by a fixed constant factor.
Hint: Make the optimal tour cross the middle line of the dissection that has
the largest interportal distance numerous times.

11.4 Prove Lemma 11.4.
Hint: Notice that the left-hand side simply measures the �1 length of tour
π. The bound of 2

√
2 · OPT is easier to prove, since this applies to single

edges as well. This bound suffices for the PTAS.

11.5 Extend the arguments given to obtain a PTAS for the Euclidean TSP
problem in Rd.

11.6 Generalize the algorithm to norms other than the Euclidean norm.

11.7 (Arora [10]) Obtain a PTAS for the Euclidean Steiner tree problem.
Given n points in Rd, find the minimum length tree containing all n points
and any other subset of points. The latter points are called Steiner. The
distance between two points is assumed to be their Euclidean distance.

11.8 Consider the Euclidean Steiner tree problem in R2. Show that in any
optimal Steiner tree each Steiner point has degree 3 and the three angles so
formed are of 120◦ each. (See Gauss’ figures on cover for an illustration of
this fact.)

11.4 Notes

The first PTAS for Euclidean TSP was given by Arora [9], following a PTAS
for the planar graph TSP problem due to Grigni, Koutsoupias, and Papadim-
itriou [115]. Subsequently, Mitchell [207] independently obtained the same
result. Later, Arora [10] went on to give an n(log n)O(1/ε) algorithm for the
problem for any fixed d. For a PTAS with an improved running time see Rao
and Smith [229]. This chapter is based on Arora [10] and Arora, Raghavan,
and Rao [13].

Part II

LP-Based Algorithms

12 Introduction to LP-Duality

A large fraction of the theory of approximation algorithms, as we know it to-
day, is built around linear programming (LP). In Section 12.1 we will review
some key concepts from this theory. In Section 12.2 we will show how the
LP-duality theorem gives rise to min-max relations which have far-reaching
algorithmic significance. Finally, in Section 12.3 we introduce the two funda-
mental algorithm design techniques of rounding and the primal–dual schema,
as well as the method of dual fitting, which yield all the algorithms of Part
II of this book.

12.1 The LP-duality theorem

Linear programming is the problem of optimizing (i.e., minimizing or maxi-
mizing) a linear function subject to linear inequality constraints. The function
being optimized is called the objective function. Perhaps the most interesting
fact about this problem from our perspective is that it is well-characterized
(see definition in Section 1.2). Let us illustrate this through a simple example.

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

Notice that in this example all constraints are of the kind “≥” and all
variables are constrained to be nonnegative. This is the standard form of a
minimization linear program; a simple transformation enables one to write
any minimization linear program in this manner. The reason for choosing
this form will become clear shortly.

Any solution, i.e., a setting for the variables in this linear program, that
satisfies all the constraints is said to be a feasible solution. Let z∗ denote the
optimum value of this linear program. Let us consider the question, “Is z∗ at
most α?” where α is a given rational number. For instance, let us ask whether
z∗ ≤ 30. A Yes certificate for this question is simply a feasible solution whose

94 12 Introduction to LP-Duality

objective function value is at most 30. For example, x = (2, 1, 3) constitutes
such a certificate since it satisfies the two constraints of the problem, and the
objective function value for this solution is 7 · 2 + 1 + 5 · 3 = 30. Thus, any
Yes certificate to this question provides an upper bound on z∗.

How do we provide a No certificate for such a question? In other words,
how do we place a good lower bound on z∗? In our example, one such bound
is given by the first constraint: since the xi’s are restricted to be nonnegative,
term-by-term comparison of coefficients shows that 7x1 + x2 + 5x3 ≥ x1 −
x2 + 3x3. Since the right-hand side of the first constraint is 10, the objective
function is at least 10 for any feasible solution. A better lower bound can be
obtained by taking the sum of the two constraints: for any feasible solution
x,

7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 16.

The idea behind this process of placing a lower bound is that we are finding
suitable nonnegative multipliers for the constraints so that when we take their
sum, the coefficient of each xi in the sum is dominated by the coefficient in
the objective function. Now, the right-hand side of this sum is a lower bound
on z∗ since any feasible solution has a nonnegative setting for each xi. Notice
the importance of ensuring that the multipliers are nonnegative: they do not
reverse the direction of the constraint inequality.

Clearly, the rest of the game lies in choosing the multipliers in such a
way that the right-hand side of the sum is as large as possible. Interestingly
enough, the problem of finding the best such lower bound can be formulated
as a linear program:

maximize 10y1 + 6y2

subject to y1 + 5y2 ≤ 7

−y1 + 2y2 ≤ 1

3y1 − y2 ≤ 5

y1, y2 ≥ 0

Here y1 and y2 were chosen to be the nonnegative multipliers for the first
and the second constraint, respectively. Let us call the first linear program
the primal program and the second the dual program. There is a systematic
way of obtaining the dual of any linear program; one is a minimization prob-
lem and the other is a maximization problem. Further, the dual of the dual
is the primal program itself (Exercise 12.1). By construction, every feasible
solution to the dual program gives a lower bound on the optimum value of
the primal. Observe that the reverse also holds. Every feasible solution to
the primal program gives an upper bound on the optimal value of the dual.
Therefore, if we can find feasible solutions for the dual and the primal with

12.1 The LP-duality theorem 95

matching objective function values, then both solutions must be optimal. In
our example, x = (7/4, 0, 11/4) and y = (2, 1) both achieve objective func-
tion values of 26, and thus both are optimal solutions (see figure below).
The reader may wonder whether our example was ingeniously constructed to
make this happen. Surprisingly enough, this is not an exception, but the rule!
This is the central theorem of linear programming: the LP-duality theorem.

✲

✛ ✲✛ ✲

260 ∞

dual solutions primal solutions

dual opt = primal opt

In order to state this theorem formally, let us consider the following min-
imization problem, written in standard form, as the primal program; equiv-
alently, we could have started with a maximization problem as the primal
program.

minimize
n∑
j=1

cjxj (12.1)

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are given rational numbers.
Introducing variables yi for the ith inequality, we get the dual program:

maximize
m∑
i=1

biyi (12.2)

subject to
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m

Theorem 12.1 (LP-duality theorem) The primal program has finite
optimum iff its dual has finite optimum. Moreover, if x∗ = (x∗

1, . . . , x
∗
n) and

96 12 Introduction to LP-Duality

y∗ = (y∗
1 , . . . , y

∗
m) are optimal solutions for the primal and dual programs,

respectively, then

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i .

Notice that the LP-duality theorem is really a min–max relation, since
one program is a minimization problem and the other is a maximization
problem. A corollary of this theorem is that the linear programming problem
is well-characterized. Feasible solutions to the primal (dual) provide Yes (No)
certificates to the question, “Is the optimum value less than or equal to α?”
Thus, as a corollary of this theorem we get that linear programming is in
NP ∩ co-NP.

Going back to our example, by construction, any feasible solution to the
dual program gives a lower bound on the optimal value of the primal. In
fact, it also gives a lower bound on the objective function value achieved by
any feasible solution to the primal. This is the easy half of the LP-duality
theorem, sometimes called the weak duality theorem. We give a formal proof
of this theorem, since some steps in the proof will lead to the next important
fact. The design of several exact algorithms have their basis in the LP-duality
theorem. In contrast, in approximation algorithms, typically the weak duality
theorem suffices.

Theorem 12.2 (Weak duality theorem) If x = (x1, . . . , xn) and y =
(y1, . . . , ym) are feasible solutions for the primal and dual program, respec-
tively, then

n∑
j=1

cjxj ≥
m∑
i=1

biyi. (12.3)

Proof: Since y is dual feasible and xj ’s are nonnegative,

n∑
j=1

cjxj ≥
n∑
j=1

(
m∑
i=1

aijyi

)
xj . (12.4)

Similarly, since x is primal feasible and yi’s are nonnegative,

m∑
i=1

 n∑
j=1

aijxj

 yi ≥

m∑
i=1

biyi. (12.5)

The theorem follows by observing that

12.2 Min–max relations and LP-duality 97

n∑
j=1

(
m∑
i=1

aijyi

)
xj =

m∑
i=1

 n∑
j=1

aijxj

 yi.

✷

By the LP-duality theorem, x and y are both optimal solutions iff (12.3)
holds with equality. Clearly, this happens iff both (12.4) and (12.5) hold with
equality. Hence, we get the following result about the structure of optimal
solutions:

Theorem 12.3 (Complementary slackness conditions) Let x and y
be primal and dual feasible solutions, respectively. Then, x and y are both
optimal iff all of the following conditions are satisfied:

Primal complementary slackness conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aijyi = cj; and

Dual complementary slackness conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aijxj = bi.

The complementary slackness conditions play a vital role in the design
of efficient algorithms, both exact and approximation; see Chapter 15 for
details. (For a better appreciation of their importance, we recommend that
the reader study algorithms for the weighted matching problem, see Section
12.5.)

12.2 Min–max relations and LP-duality

In order to appreciate the role of LP-duality theory in approximation algo-
rithms, it is important to first understand its role in exact algorithms. To
do so, we will review some of these ideas in the context of the max-flow
min-cut theorem. In particular, we will show how this and other min–max
relations follow from the LP-duality theorem. Some of the ideas on cuts and
flows developed here will also be used in the study of multicommodity flow
in Chapters 18, 20, and 21.

The problem of computing a maximum flow in a network is: given a
directed1 graph, G = (V,E) with two distinguished nodes, source s and sink
t, and positive arc capacities, c : E → R+, find the maximum amount of flow
that can be sent from s to t subject to

1. capacity constraint: for each arc e, the flow sent through e is bounded by
its capacity, and

1 The maximum flow problem in undirected graphs reduces to that in directed
graphs: replace each edge (u, v) by two directed edges, (u → v) and (v → u),
each of the same capacity as (u, v).

98 12 Introduction to LP-Duality

2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X,X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X,X), equals the value of a feasible flow, then (X,X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
now require flow conservation at s and t as well. If fij denotes the amount of
flow sent through arc (i, j) ∈ E, we can formulate the maximum flow problem
as follows:

maximize fts

subject to fij ≤ cij , (i, j) ∈ E∑
j: (j,i)∈E

fji −
∑

j: (i,j)∈E
fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

The second set of inequalities say that for each node i, the total flow into i
is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.

To obtain the dual program we introduce variables dij and pi correspond-
ing to the two types of inequalities in the primal. We will view these variables
as distance labels on arcs and potentials on nodes, respectively. The dual pro-
gram is:

minimize
∑

(i,j)∈E
cijdij (12.6)

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1

dij ≥ 0, (i, j) ∈ E

12.2 Min–max relations and LP-duality 99

pi ≥ 0, i ∈ V (12.7)

For developing an intuitive understanding of the dual program, it will be
best to first transform it into an integer program that seeks 0/1 solutions to
the variables:

minimize
∑

(i,j)∈E
cijdij

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1}, (i, j) ∈ E

pi ∈ {0, 1}, i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program. The only way
to satisfy the inequality p∗

s − p∗
t ≥ 1 with a 0/1 substitution is to set p∗

s = 1
and p∗

t = 0. This solution naturally defines an s–t cut (X,X), where X is the
set of potential 1 nodes, and X the set of potential 0 nodes. Consider an arc
(i, j) with i ∈ X and j ∈ X. Since p∗

i = 1 and p∗
j = 0, by the first constraint,

d∗
ij ≥ 1. But since we have a 0/1 solution, d∗

ij = 1. The distance label for
each of the remaining arcs can be set to either 0 or 1 without violating the
first constraint; however, in order to minimize the objective function value,
it must be set to 0. The objective function value must thus be equal to the
capacity of the cut (X,X), and (X,X) must be a minimum s–t cut.

Thus, the previous integer program is a formulation of the minimum s–t
cut problem! What about the dual program? The dual program can be viewed
as a relaxation of the integer program where the integrality constraint on the
variables is dropped. This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E
and 1 ≥ pi ≥ 0 for i ∈ V . Next, we notice that the upper bound constraints
on the variables are redundant; their omission cannot give a better solution.
Dropping these constraints gives the dual program in the form given above.
We will say that this program is the LP-relaxation of the integer program.

Consider an s–t cut C. Set C has the property that any path from s to t
in G contains at least one edge of C. Using this observation, we can interpret
any feasible solution to the dual program as a fractional s–t cut: the distance
labels it assigns to arcs satisfy the property that on any path from s to t
the distance labels add up to at least 1. To see this, consider an s–t path
(s = v0, v1, . . . , vk = t). Now, the sum of the potential differences on the
endpoints of arcs on this path is

k−1∑
i=0

(pi − pi+1) = ps − pt.

100 12 Introduction to LP-Duality

By the first constraint, the sum of the distance labels on the arcs must add
up to at least ps−pt, which is ≥ 1. Let us define the capacity of this fractional
s–t cut to be the dual objective function value achieved by it.

In principle, the best fractional s–t cut could have lower capacity than
the best integral cut. Surprisingly enough, this does not happen. Consider
the polyhedron defining the set of feasible solutions to the dual program.
Let us call a feasible solution an extreme point solution if it is a vertex of
this polyhedron, i.e., it cannot be expressed as a convex combination of two
feasible solutions. From linear programming theory we know that for any
objective function, i.e., assignment of capacities to the arcs of G, there is an
extreme point solution that is optimal (for this discussion let us assume that
for the given objective function, an optimal solution exists). Now, it can be
proven that each extreme point solution of the polyhedron is integral, with
each coordinate being 0 or 1 (see Exercise 12.6). Thus, the dual program
always has an integral optimal solution.

By the LP-duality theorem maximum flow in G must equal capacity of
a minimum fractional s–t cut. But since the latter equals the capacity of a
minimum s–t cut, we get the max-flow min-cut theorem.

The max-flow min-cut theorem is therefore a special case of the LP-duality
theorem; it holds because the dual polyhedron has integral vertices. In fact,
most min–max relations in combinatorial optimization hold for a similar rea-
son.

Finally, let us illustrate the usefulness of complementary slackness condi-
tions by utilizing them to derive additional properties of optimal solutions to
the flow and cut programs. Let f∗ be an optimum solution to the primal LP
(i.e., a maximum s–t flow). Also, let (d∗,p∗) be an integral optimum solution
to the dual LP, and let (X,X) be the cut defined by (d∗,p∗). Consider an
arc (i, j) such that i ∈ X and j ∈ X. We have proven above that d∗

ij = 1.
Since d∗

ij �= 0, by the dual complementary slackness condition, f∗
ij = cij .

Next, consider an arc (k, l) such that k ∈ X and l ∈ X. Since p∗
k − p∗

l = −1,
and d∗

kl ∈ {0, 1}, the constraint d∗
kl− p∗

k + p∗
l ≥ 0 must be satisfied as a strict

inequality. By the primal complementary slackness condition, f∗
kl = 0. Thus,

we have proven that arcs going from X to X are saturated by f∗ and the
reverse arcs carry no flow. (Observe that it was not essential to invoke com-
plementary slackness conditions to prove these facts; they also follow from
the fact that flow across cut (X,X) equals its capacity.)

12.3 Two fundamental algorithm design techniques

We can now explain why linear programming is so useful in approximation al-
gorithms. Many combinatorial optimization problems can be stated as integer
programs. Once this is done, the linear relaxation of this program provides
a natural way of lower bounding the cost of the optimal solution. As stated
in Chapter 1, this is typically a key step in the design of an approximation

12.3 Two fundamental algorithm design techniques 101

algorithm. As in the case of the minimum s–t cut problem, a feasible solution
to the LP-relaxation can be thought of as a fractional solution to the original
problem. However, in the case of an NP-hard problem, we cannot expect
the polyhedron defining the set of feasible solutions to have integer vertices.
Thus, our task is not to look for an optimal solution to the LP-relaxation,
but rather a near-optimal integral solution.

There are two basic techniques for obtaining approximation algorithms
using linear programming. The first, and more obvious, method is to solve
the linear program and then convert the fractional solution obtained into
an integral solution, trying to ensure that in the process the cost does not
increase much. The approximation guarantee is established by comparing
the cost of the integral and fractional solutions. This technique is called LP-
rounding or simply rounding.

The second, less obvious and perhaps more sophisticated, method is to use
the dual of the LP-relaxation in the design of the algorithm. This technique
is called the primal–dual schema. Let us call the LP-relaxation the primal
program. Under this schema, an integral solution to the primal program and
a feasible solution to the dual program are constructed iteratively. Notice
that any feasible solution to the dual also provides a lower bound on OPT.
The approximation guarantee is established by comparing the two solutions.

Both these techniques have been used extensively to obtain algorithms for
many fundamental problems. Fortunately, once again, these techniques can
be illustrated in the simple setting of the set cover problem. This is done in
Chapters 14 and 15. Later chapters will present ever more sophisticated use
of these techniques for solving a variety of problems.

LP-duality theory has also been useful in analyzing combinatorially ob-
tained approximation algorithms, using the method of dual fitting. In Chapter
13 we will give an alternative analysis of the greedy set cover algorithm, Al-
gorithm 2.2, using this method. This method has also been used to analyze
greedy algorithms for the metric uncapacitated facility location problem (see
Exercise 24.12). The method seems quite basic and should find other appli-
cations as well.

12.3.1 A comparison of the techniques and the notion of
integrality gap

The reader may suspect that from the viewpoint of approximation guarantee,
the primal–dual schema is inferior to rounding, since an optimal solution to
the primal gives a tighter lower bound than a feasible solution to the dual. It
turns out that this is not so. In order to give a formal explanation, we need
to introduce the crucial notion of integrality gap of an LP-relaxation.

Given an LP-relaxation for a minimization problem Π, let OPTf (I) de-
note the cost of an optimal fractional solution to instance I, i.e., the objective
function value of an optimal solution to the LP-relaxation. Define the inte-

102 12 Introduction to LP-Duality

grality gap, sometimes also called the integrality ratio, of the relaxation to
be

sup
I

OPT(I)
OPTf (I)

,

i.e., the supremum of the ratio of the optimal integral and fractional solutions.
In the case of a maximization problem, the integrality gap will be defined to be
the infimum of this ratio. As stated in Section 12.2, most min–max relations
arise from LP-relaxations that always have integral optimal solutions. Clearly,
the integrality gap of such an LP is 1. We will call such an LP-relaxation an
exact relaxation.

If the cost of the solution found by the algorithm is compared directly
with the cost of an optimal fractional solution (or a feasible dual solution),
as is done in most algorithms, the best approximation factor we can hope to
prove is the integrality gap of the relaxation (see Exercise 12.4). Interestingly
enough, for many problems, both techniques have been successful in yielding
algorithms having guarantees essentially equal to the integrality gap of the
relaxation.

The main difference in performance between the two techniques lies in the
running times of the algorithms produced. An LP-rounding algorithm needs
to find an optimal solution to the linear programming relaxation. Since linear
programming is in P, this can be done in polynomial time if the relaxation
has polynomially many constraints. Even if the relaxation has exponentially
many constraints, this may still be achievable, if a polynomial time separa-
tion oracle can be constructed, i.e., a polynomial time algorithm that given
a point in Rn, where n is the number of variables in the relaxation, either
confirms that this point is a feasible solution (i.e., satisfies all constraints), or
produces a violated constraint (see the notes in Section 12.5 for references).
The running time for both possibilities is high; for the second it may be ex-
orbitant. Let us remark that for certain problems, extreme point solutions
have additional structural properties and some LP-rounding algorithms re-
quire such a solution to the linear programming relaxation. Such solutions
can also be found in polynomial time.

On the other hand, the primal–dual schema leaves enough room to exploit
the special combinatorial structure of individual problems and is thereby
able to yield algorithms having good running times. It provides only a broad
outline of the algorithm – the details have to be designed individually for
specific problems. In fact, for many problems, once the algorithm has been
designed using the primal–dual schema, the scaffolding of linear programming
can be completely dispensed with to get a purely combinatorial algorithm.

This brings us to another advantage of the primal–dual schema – this time
not objectively quantifiable. A combinatorial algorithm is more malleable
than an algorithm that requires an LP-solver. Once a basic problem is solved
using the primal–dual schema, one can also solve variants and generalizations

12.4 Exercises 103

of the basic problem. Exercises in Chapters 22 and 24 illustrate this point.
From a practical standpoint, a combinatorial algorithm is more useful, since
it is easier to adapt it to specific applications and fine tune its performance
for specific types of inputs.

12.4 Exercises

12.1 Show that the dual of the dual of a linear program is the original
program itself.

12.2 Show that any minimization program can be transformed into an equiv-
alent program in standard form, i.e., the form of LP (12.1).

12.3 Change some of the constraints of the primal program (12.1) into
equalities, i.e., so they are of the form

n∑
j=1

aijxj = bi, i ∈ I.

Show that the dual of this program involves modifying program (12.2) so that
the corresponding dual variables yi, i ∈ I are unconstrained, i.e., they are not
constrained to be nonnegative. Additionally, if some of the variables xj , j ∈ J
in program (12.1) are unconstrained, then the corresponding constraints in
the dual become equalities.

12.4 Is the following a theorem: An approximation algorithm designed using
an LP-relaxation cannot achieve a better approximation guarantee than the
integrality gap of the relaxation.
Hint: In principle it may be possible to show, using additional structural
properties, that whenever an instance has a bad gap, the cost of the solution
found by the algorithm is much less that αOPT, where α is the integrality
gap of the relaxation. (Observe that if the instance has a bad gap, the cost
of the solution found cannot be much less than αOPTf .)

12.5 Use the max-flow min-cut theorem to derive Menger’s Theorem:

Theorem 12.4 Let G = (V,E) be a directed graph with s, t ∈ V . Then, the
maximum number of edge-disjoint (vertex-disjoint) s–t paths is equal to the
minimum number of edges (vertices) whose removal disconnects s from t.

12.6 Show that each extreme point solution for LP (12.6) is 0/1, and hence
represents a valid cut.

104 12 Introduction to LP-Duality

Hint: An n×m matrix A is said to be totally unimodular if the determinant
of every square submatrix of A is 1,−1, or 0. Show, by induction, that the
constraint matrix of this LP is totally unimodular. Also, use the fact that
a feasible solution for a set of linear inequalities in Rn is an extreme point
solution iff it satisfies n linearly independent inequalities with equality.

12.7 This exercise develops a proof of the König-Egerváry Theorem (Theo-
rem 1.6). Let G = (V,E) be a bipartite graph.

1. Show that the following is an exact LP-relaxation (i.e., always has an
integral optimal solution) for the maximum matching problem in G.

maximize
∑
e

xe (12.8)

subject to
∑

e: e incident at v
xe ≤ 1, v ∈ V

xe ≥ 0, e ∈ E

Hint: Using the technique of Exercise 12.6 show that each extreme point
solution for LP (12.8) is 0/1, and hence represents a valid matching.

2. Obtain the dual of this LP and show that it is an exact LP-relaxation for
the problem of finding a minimum vertex cover in bipartite graph G.

3. Use the previous result to derive the König-Egerváry Theorem.

12.8 (Edmonds [68])

1. Let G = (V,E) be an undirected graph, with weights we on edges. The
following is an exact LP-relaxation for the problem of finding a maximum
weight matching in G. (By e : e ∈ S we mean edges e that have both
endpoints in S.)

maximize
∑
e

wexe (12.9)

subject to
∑

e: e incident at v
xe ≤ 1, v ∈ V

∑
e: e∈S

xe ≤ |S| − 1
2

, S ⊂ V, |S| odd

xe ≥ 0, e ∈ E

Obtain the dual of this LP. If the weight function is integral, the dual is
also exact. Observe that Theorem 1.7 follows from these facts.

12.4 Exercises 105

2. Assume that |V | is even. The following is an exact LP-relaxation for the
minimum weight perfect matching problem in G (a matching is perfect
if it matches all vertices). Obtain the dual of this LP. Use complemen-
tary slackness conditions to give conditions satisfied by a pair of optimal
primal (integral) and dual solutions for both formulations.

minimize
∑
e

wexe (12.10)

subject to
∑

e: e incident at v
xe = 1, v ∈ V

∑
e: e∈S

xe ≤ |S| − 1
2

, S ⊂ V, |S| odd

xe ≥ 0, e ∈ E

12.9 (Edmonds [71]) Show that the following is an integer programming
formulation for the minimum spanning tree (MST) problem. Assume we are
given graph G = (V,E), |V | = n, with cost function c : E → Q+. For
A ⊆ E, we will denote by κ(A) the number of connected components in
graph GA = (V,A).

minimize
∑
e

cexe (12.11)

subject to
∑
e∈A

xe = n− κ(A), A ⊂ E

∑
e∈E

xe = n− 1

xe ∈ {0, 1}, e ∈ E

The rest of this exercise develops a proof that the LP-relaxation of this integer
program is exact for the MST problem.

1. First, it will be convenient to change the objective function of IP (12.11)
to max

∑
e−cexe. Obtain the LP-relaxation and dual of this modified

formulation.
2. Consider the primal solution produced by Kruskal’s algorithm. Let e1, . . . ,

em be the edges sorted by increasing cost, |E| = m. This algorithm greed-
ily picks a maximal acyclic subgraph from this sorted list. Obtain a suit-
able dual feasible solution so that all complementary slackness conditions
are satisfied.
Hint: Let At = {e1, . . . , et}. Set yAt = et+1 − et, for 1 ≤ t < m, and
yE = −cm, where y is the dual variable.

106 12 Introduction to LP-Duality

3. Show that x is a feasible solution to the above-stated primal program iff
it is a feasible solution to the following LP. That is, prove that this is
also an exact relaxation for the MST problem.

minimize
∑
e

cexe (12.12)

subject to
∑
e∈S

xe = |S| − 1, S ⊂ V

∑
e∈E

xe = n− 1

xe ≥ 0, e ∈ E

12.10 In this exercise, you will derive von Neumann’s minimax theorem
in game theory from the LP-duality theorem. A finite two-person zero-sum
game is specified by an m × n matrix A with real entries. In each round,
the row player, R, selects a row, say i; simultaneously, the column player,
C, selects a column, say j. The payoff to R at the end of this round is aij .
Thus, |aij | is the amount that C pays R (R pays C) if aij is positive (aij
is negative); no money is exchanged if aij is zero. Zero-sum game refers to
the fact that the total amount of money possessed by R and C together is
conserved.

The strategy of each player is specified by a vector whose entries are non-
negative and add up to one, giving the probabilities with which the player
picks each row or column. Let R’s strategy be given by m-dimensional vec-
tor x, and C’s strategy be given by n-dimensional vector y. Then, the ex-
pected payoff to R in a round is xTAy. The job of each player is to pick
a strategy that guarantees maximum possible expected winnings (equiva-
lently, minimum possible expected losses), regardless of the strategy cho-
sen by the other player. If R chooses strategy x, he can be sure of win-
ning only miny xTAy, where the minimum is taken over all possible strate-
gies of C. Thus, the optimal choice for R is given by maxx miny xTAy.
Similarly, C will minimize her losses by choosing the strategy given by
miny maxx xTAy. The minimax theorem states that for every matrix A,
maxx miny xTAy = miny maxx xTAy.

Let us say that a strategy is pure if it picks a single row or column,
i.e., the vector corresponding to it consists of one 1 and the rest 0’s. A key
observation is that for any strategy x of R, miny xTAy is attained for a pure
strategy of C: Suppose the minimum is attained for strategy y. Consider the
pure strategy corresponding to any nonzero component of y. The fact that
the components of y are nonnegative and add up to one leads to an easy
proof that this pure strategy attains the same minimum. Thus, R’s optimum
strategy is given by maxx minj

∑m
i=1 aijxi. The second critical observation

12.5 Notes 107

is that the problem of computing R’s optimal strategy can be expressed as a
linear program:

maximize z

subject to z −
m∑
i=1

aijxi ≤ 0, j = 1, . . . , n

m∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . ,m

Find the dual of this LP and show that it computes the optimal strategy
for C. (Use the fact that for any strategy y of C, maxx xTAy is attained for a
pure strategy of R.) Hence, prove the minimax theorem using the LP-duality
theorem.

12.5 Notes

For a good introduction to theory of linear programming, see Chvátal [49].
There are numerous other books on the topic, e.g., Dantzig [58], Karloff [160],
Nemhauser and Wolsey [212], and Schrijver [237]. Linear programming has
been extensively used in combinatorial optimization, see Cook, Cunningham,
Pulleyblank, and Schrijver [52], Grötschel, Lovász, and Schrijver [117], Lovász
[194], Lovász and Plummer [195], and Papadimitriou and Steiglitz [217]. For
a good explanation of Edmonds’ weighted matching algorithm, see Lovász
and Plummer [195]. For algorithms for finding a solution to an LP, given a
separation oracle, see Grötschel, Lovász, and Schrijver [116, 117] and Schrijver
[237].

13 Set Cover via Dual Fitting

In this chapter we will introduce the method of dual fitting, which helps an-
alyze combinatorial algorithms using LP-duality theory. Using this method,
we will present an alternative analysis of the natural greedy algorithm (Al-
gorithm 2.2) for the set cover problem (Problem 2.1). Recall that in Section
2.1 we deferred giving the lower bounding method on which this algorithm
was based. We will provide the answer below. The power of this approach
will become apparent when we show the ease with which it extends to solving
several generalizations of the set cover problem (see Section 13.2).

The method of dual fitting can be described as follows, assuming a min-
imization problem: The basic algorithm is combinatorial – in the case of set
cover it is in fact the simple greedy algorithm. Using the linear programming
relaxation of the problem and its dual, one shows that the primal integral so-
lution found by the algorithm is fully paid for by the dual computed; however,
the dual is infeasible. By fully paid for we mean that the objective function
value of the primal solution found is at most the objective function value of
the dual computed. The main step in the analysis consists of dividing the
dual by a suitable factor and showing that the shrunk dual is feasible, i.e., it
fits into the given instance. The shrunk dual is then a lower bound on OPT,
and the factor is the approximation guarantee of the algorithm.

13.1 Dual-fitting-based analysis for the greedy set
cover algorithm

To formulate the set cover problem as an integer program, let us assign a
variable xS for each set S ∈ S, which is allowed 0/1 values. This variable will
be set to 1 iff set S is picked in the set cover. Clearly, the constraint is that
for each element e ∈ U we want that at least one of the sets containing it be
picked.

minimize
∑
S∈S

c(S)xS (13.1)

subject to
∑

S: e∈S
xS ≥ 1, e ∈ U

13.1 Dual-fitting-based analysis for the greedy set cover algorithm 109

xS ∈ {0, 1}, S ∈ S

The LP-relaxation of this integer program is obtained by letting the do-
main of variables xS be 1 ≥ xS ≥ 0. Since the upper bound on xS is re-
dundant, we get the following LP. A solution to this LP can be viewed as a
fractional set cover.

minimize
∑
S∈S

c(S)xS (13.2)

subject to
∑

S: e∈S
xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

Example 13.1 Let us give a simple example to show that a fractional set
cover may be cheaper than the optimal integral set cover. Let U = {e, f, g}
and the specified sets be S1 = {e, f}, S2 = {f, g}, S3 = {e, g}, each of unit
cost. An integral cover must pick two of the sets for a cost of 2. On the other
hand, picking each set to the extent of 1/2 gives a fractional cover of cost
3/2. ✷

Introducing a variable ye corresponding to each element e ∈ U , we obtain
the dual program.

maximize
∑
e∈U

ye (13.3)

subject to
∑
e: e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

Intuitively, why is LP (13.3) the dual of LP (13.2)? In our experience,
this is not the right question to be asked. As stated in Section 12.1, there
is a purely mechanical procedure for obtaining the dual of a linear program.
Once the dual is obtained, one can devise intuitive, and possibly physically
meaningful, ways of thinking about it. Using this mechanical procedure, one
can obtain the dual of a complex linear program in a fairly straightforward
manner. Indeed, the LP-duality-based approach derives its wide applicability
from this fact.

An intuitive way of thinking about LP (13.3) is that it is packing “stuff”
into elements, trying to maximize the total amount packed, subject to the
constraint that no set is overpacked. A set is said to be overpacked if the
total amount packed into its elements exceeds the cost of the set. Whenever
the coefficients in the constraint matrix, objective function, and right-hand
side are all nonnegative, the minimization LP is called a covering LP and

110 13 Set Cover via Dual Fitting

the maximization LP is called a packing LP. Thus, (13.2) and (13.3) are a
covering-packing pair of linear programs. Such pairs of programs will arise
frequently in subsequent chapters.

✲

✛ ✲✛ ✲

✛ ✲

0 ∞OPTf OPT

dual fractional solutions primal fractional solutions

primal integral solutions

At this point, we can state the lower bounding scheme being used by
Algorithm 2.2. Denote by OPTf the cost of an optimal fractional set cover,
i.e., an optimal solution to LP (13.2). Clearly OPTf ≤ OPT, the cost of
an optimal (integral) set cover. The cost of any feasible solution to the dual
program, LP (13.3), is a lower bound on OPTf , and hence also on OPT.
Algorithm 2.2 uses this as the lower bound.

Algorithm 2.2 defines dual variables price(e), for each element, e. Observe
that the cover picked by the algorithm is fully payed for by this dual solution.
However, in general, this dual solution is not feasible (see Exercise 13.2). We
will show below that if this dual is shrunk by a factor of Hn, it fits into the
given set cover instance, i.e., no set is overpacked. For each element e define,

ye =
price(e)

Hn
.

Algorithm 2.2 uses the dual feasible solution, y, as the lower bound on OPT.

Lemma 13.2 The vector y defined above is a feasible solution for the dual
program (13.3).

Proof: We need to show that no set is overpacked by the solution y. Consider
a set S ∈ S consisting of k elements. Number the elements in the order
in which they are covered by the algorithm, breaking ties arbitrarily, say
e1, . . . , ek.

Consider the iteration in which the algorithm covers element ei. At this
point, S contains at least k−i+1 uncovered elements. Thus, in this iteration,
S itself can cover ei at an average cost of at most c(S)/(k − i + 1). Since
the algorithm chose the most cost-effective set in this iteration, price(ei) ≤
c(S)/(k − i + 1). Thus,

yei ≤
1

Hn
· c(S)
k − i + 1

.

Summing over all elements in S,

13.1 Dual-fitting-based analysis for the greedy set cover algorithm 111

k∑
i=1

yei ≤
c(S)
Hn

·
(

1
k

+
1

k − 1
+ · · ·+ 1

1

)
=

Hk

Hn
· c(S) ≤ c(S).

Therefore, S is not overpacked. ✷

Theorem 13.3 The approximation guarantee of the greedy set cover algo-
rithm is Hn.

Proof: The cost of the set cover picked is

∑
e∈U

price(e) = Hn

(∑
e∈U

ye

)
≤ Hn ·OPT,

where OPT denotes the cost of the optimal fractional set cover. The last
inequality follows from the fact that y is dual feasible. ✷

13.1.1 Can the approximation guarantee be improved?

Consider the three questions raised in Section 1.1.2 regarding improving the
approximation guarantee for vertex cover. Let us ask analogous questions for
set cover. The first and third questions are already answered in Section 2.1.

As a corollary of Theorem 13.3 we get an upper bound of Hn on the
integrality gap of relaxation (13.2). Example 13.4 shows that this bound is
essentially tight. Since the integrality gap of the LP-relaxation used bounds
the best approximation factor one can hope to achieve using this relaxation,
the answer to the second question is also essentially “no”.

Example 13.4 Consider the following set cover instance. Let n = 2k − 1,
where k is a positive integer, and let U = {e1, e2, . . . , en}. For 1 ≤ i ≤ n,
consider i written as a k-bit number. We can view this as a k-dimensional
vector over GF [2]. Let i denote this vector. For 1 ≤ i ≤ n define set Si =
{ej | i · j = 1}, where i · j denotes the inner product of these two vectors.
Finally, let S = {S1, . . . , Sn}, and define the cost of each set to be 1.

It is easy to check that each set contains 2k−1 = (n + 1)/2 elements, and
each element is contained in (n + 1)/2 sets. Thus, xi = 2/(n + 1), 1 ≤ i ≤ n,
is a fractional set cover. Its cost is 2n/(n + 1).

Next, we will show that any integral set cover must pick at least k of
the sets. Consider the union of any p sets, where p < k. Let i1, . . . , ip be
the indices of these p sets, and let A be a p × k matrix over GF [2] whose
rows consist of vectors i1, . . . , ip, respectively. Since the rank of A is < k, the
dimension of its null space is ≥ 1, and so the null space contains a nonzero
vector, say j. Since Aj = 0, the element ej is not in any of the p sets. Hence
the p sets do not form a cover.

112 13 Set Cover via Dual Fitting

Therefore, any integral set cover has cost at least k = log2 (n + 1). Hence,
the lower bound on the integrality gap established by this example is(

n + 1
2n

)
· log2 (n + 1) >

log2 n

2
.

✷

13.2 Generalizations of set cover

The greedy algorithm and its analysis using dual fitting extend naturally to
several generalizations of the set cover problem (see Exercise 13.4).

• Set multicover: Each element, e, needs to be covered a specified integer
number, re, of times. The objective again is to cover all elements up to their
coverage requirements at minimum cost. We will assume that the cost of
picking a set S k times is kcost(S).

• Multiset multicover: We are given a collection of multisets, rather than
sets, of U . A multiset contains a specified number of copies of each element.
Let M(S, e) denote the multiplicity of element e in set S. The instance
satisfies the condition that the multiplicity of an element in a set is at
most its coverage requirement, i.e., ∀S, e M(S, e) ≤ re. The objective is
the same as before.

• Covering integer programs: These are integer programs of the form

minimize c · x
subject to Ax ≥ b,

where all entries in A, b, c are nonnegative and x is required to be nonneg-
ative and integral.

13.2.1 Dual fitting applied to constrained set multicover

In this section, we will present an Hn factor approximation algorithm for set
multicover with the additional constraint that each set can be picked at most
once. Let us call this the constrained set multicover problem. One interesting
feature of this problem is that its linear relaxation and dual contain negative
coefficients and thus do not form a covering-packing pair of LP’s.

Let re ∈ Z+ be the coverage requirement for each element e ∈ U . The
integer programming formulation of constrained set multicover is not very
different from that of set cover.

13.2 Generalizations of set cover 113

minimize
∑
S∈S

c(S)xS (13.4)

subject to
∑

S: e∈S
xS ≥ re, e ∈ U

xS ∈ {0, 1}, S ∈ S

Notice, however, that in the LP-relaxation, the constraints xS ≤ 1 are no
longer redundant. If we drop them, then a set may be picked multiple times
to satisfy the coverage requirement of the elements. Thus, the LP-relaxation
looks different from that for set cover. In particular, because of the negative
numbers in the constraint matrix and the right-hand side, it is not even
a covering linear program. The analysis given below deals with this added
complexity.

minimize
∑
S∈S

c(S)xS (13.5)

subject to
∑

S: e∈S
xS ≥ re, e ∈ U

−xS ≥ −1, S ∈ S
xS ≥ 0, S ∈ S

The additional constraints in the primal lead to new variables, zS , in
the dual. The dual also has negative numbers in the constraint matrix and
is not a packing program. Now, a set S can be overpacked with the ye’s.
However, this can be done only if we raise zS to ensure feasibility, which in
turn decreases the objective function value. Overall, overpacking may still be
advantageous, since the ye’s appear with coefficients of re in the objective
function.

maximize
∑
e∈U

reye −
∑
S∈S

zS (13.6)

subject to

(∑
e: e∈S

ye

)
− zS ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

zS ≥ 0, S ∈ S

The algorithm is again greedy. Let us say that element e is alive if it
occurs in fewer than re of the picked sets. In each iteration, the algorithm
picks, from amongst the currently unpicked sets, the most cost-effective set,
where the cost-effectiveness of a set is defined to be the average cost at which
it covers alive elements. The algorithm halts when there are no more alive
elements, i.e., each element has been covered to the extent of its requirement.

114 13 Set Cover via Dual Fitting

When a set S is picked, its cost is distributed equally among the alive
elements it covers as follows: if S covers e for the jth time, we set price(e, j)
to the current cost-effectiveness of S. Clearly, the cost-effectiveness of sets
picked is nondecreasing. Hence, for each element e, price(e, 1) ≤ price(e, 2) ≤
. . . ≤ price(e, re).

At the end of the algorithm, the dual variables are set as follows: For each
e ∈ U , let αe = (1/Hn) · price(e, re). For each S ∈ S that is picked by the
algorithm, let

βS =
1

Hn
·

 ∑
e covered by S

(price(e, re)− price(e, je))

 ,

where je is the copy of e that is covered by S. Notice that since price(e, je) ≤
price(e, re), βS is nonnegative. If S is not picked by the algorithm, βS is
defined to be 0.

Lemma 13.5 The multicover picked by the algorithm is fully paid for by the
dual solution (α,β).

Proof: Since the cost of the sets picked by the algorithm is distributed
among the covered elements, it follows that the total cost of the multicover
produced by the algorithm is

∑
e∈U

re∑
j=1

price(e, j).

The objective function value of the dual solution (α,β) is

∑
e∈U

reαe −
∑
S∈S

βS =
∑
e∈U

re∑
j=1

price(e, j).

The lemma follows. ✷

The dual solution defined above is, in general, infeasible. We will show
that when scaled by a factor of Hn, a feasible solution results. Define for each
element e ∈ U and each set S ∈ S,

ye =
αe
Hn

and zS =
βS
Hn

.

Lemma 13.6 The pair (y,z) is a feasible solution for the dual program
(13.6).

13.2 Generalizations of set cover 115

Proof: Consider a set S ∈ S consisting of k elements. Number its elements
in the order in which their requirements are fulfilled, i.e., the order in which
they stopped being alive. Let the ordered elements be e1, . . . , ek.

First, assume that S is not picked by the algorithm. When the algorithm
is about to cover the last copy of ei, S contains at least k−i+1 alive elements,
so

price(ei, rei
) ≤ c(S)

k − i + 1
.

Since zS is zero, we get

(
k∑
i=1

yei

)
− zS =

1
Hn

k∑
i=1

price(ei, rei)

≤ c(S)
Hn

·
(

1
k

+
1

k − 1
+ · · ·+ 1

1

)
≤ c(S) .

Next, assume that S is picked by the algorithm, and before this happens,
k′ ≥ 0 elements of S are already completely covered. Then(

k∑
i=1

yei

)
− zS

=
1

Hn
·
[

k∑
i=1

price(ei, rei
)−

k∑
i=k′+1

(price(ei, rei
)− price(ei, ji))

]

=
1

Hn
·

 k′∑
i=1

price(ei, rei) +
k∑

i=k′+1

price(ei, ji)

 ,

where S covers the jith copy of ei, for each i ∈ {k′ + 1, . . . , k}.
But

∑k
i=k′+1 price(ei, ji) = cost(S), since the cost of S is equally distributed

among the copies it covers. Finally consider elements ei, i ∈ {1, . . . , k′}. When
the last copy of ei is being covered, S is not yet picked and covers at least
k − i + 1 alive elements. Thus, price(ei, rei

) ≤ c(S)/(k − i + 1). Therefore,

(
k∑
i=1

yei

)
− zS ≤ c(S)

Hn
·
(

1
k

+ · · ·+ 1
k − k′ + 1

+ 1
)
≤ c(S).

Hence, (y,z) is feasible for the dual program. ✷

Theorem 13.7 The greedy algorithm achieves an approximation guarantee
of Hn for the constrained set multicover problem.

116 13 Set Cover via Dual Fitting

Proof: By Lemmas 13.5 and 13.6, the total cost of the multicover produced
by the algorithm is

∑
e∈U

reαe −
∑
S∈S

βS = Hn ·
[∑
e∈U

reye −
∑
S∈S

zS

]
≤ Hn ·OPT.

✷

Observe that as a corollary of Theorem 13.7 we get that the integrality
gap of LP (13.5) is bounded by Hn. In contrast, the integrality gap of the
corresponding LP for multiset multicover, with the restriction that each set
be picked at most once, is not bounded by any function of n (see Exercise
13.5).

13.3 Exercises

13.1 Show that the dual-fitting-based analysis for the greedy set cover and
constrained set multicover algorithms actually establishes an approximation
guarantee of Hk, where k is size of the largest set in the given instance.
(Notice the ease with which this can be established using the LP-duality
approach; compare with Exercise 2.8.)

13.2 Give an example in which the dual solution, price(e), for each element e,
computed by Algorithm 2.2 overpacks some sets, S, by a factor of essentially
H|S|.

13.3 Give examples to show that the lower bound used by Algorithm 2.2,
y, can be smaller than OPT by a factor of O(log n).

13.4 Give the following approximation algorithms.

1. Hn factor for set multicover.
2. Hm factor for multiset multicover, where m is the size of the largest

multiset in the given instance (the size of a multiset counts elements
with multiplicity).

3. O(log n) factor for covering integer programs.

Hint: For Hm factor algorithm for multiset multicover, set the dual variables
according to the average price for covering elements, i.e.,

ye =
1

Hm

re∑
i=1

price(e, i)/re.

13.3 Exercises 117

Use scaling and rounding to reduce covering integer programs to multiset
multicover, with m polynomially bounded in n, at the expense of a small
error (which goes into the approximation factor).

13.5 Show that the integrality gap of the relaxation for the following two
variants of multiset multicover, based on LP (13.2), is not bounded by any
function of n.

1. Remove the restriction that M(S, e) ≤ re.
2. Impose the constraint that each set can be picked at most once.

What is the best approximation guarantee you can establish for the greedy
algorithm for the second variant. Why does the proof of factor Hn given in
Section 13.2 not extend to this case?

13.6 (Mihail [206]) Consider the following variant on the set multicover
problem. Let U be the universal set, |U | = n, and S a collection of subsets
of U . For each S ∈ S, its cost is given as a function of time, t ∈ {1, . . . , T}.
Each of these cost functions is nonincreasing with time. In addition, for each
element in U , a coverage requirement is specified, again as a function of
time; these functions are nondecreasing with time. The problem is to pick
sets at a minimum total cost so that the coverage requirements are satisfied
for each element at each time. A set can be picked any number of times;
the cost of picking a set depends on the time at which it is picked. Once
picked, the set remains in the cover for all future times at no additional cost.
Give an Hn factor algorithm for this problem. (An H(n·T) factor algorithm
is straightforward.)

13.7 In many realistic situations, the cost of picking an item a multiple
number of times does not grow linearly. Instead it is given by a concave
function. The following variant of the set multicover problem models this
situation. For each set Si we are given a concave function fi specifying the cost
of picking this set multiple times. The problem again is to satisfy all coverage
requirements of elements at minimum cost. Give a factor Hn algorithm for
this problem.
Hint: Reduce the problem to a multiset multicover problem. For each set Si,
construct sets Sji , j ≥ 1. Set Sji contains each element of Si with multiplicity
j and has a cost of fi(j). The greedy algorithm run on this instance achieves
the required factor. Next show that there is no need to explicitly construct all
the sets Sji . In each iteration of the greedy algorithm, the most cost-effective
set can be computed directly in polynomial time, even if the requirements
are exponentially large.

118 13 Set Cover via Dual Fitting

13.4 Notes

The dual-fitting-based analysis of set cover is due to Lovász [192] and Chvátal
[48]. The analysis of constrained set multicover is due to Rajagopalan and
Vazirani [227]. For algorithms for covering integer programs, see Dobson [61]
and Rajagopalan and Vazirani [227].

14 Rounding Applied to Set Cover

We will introduce the technique of LP-rounding by using it to design two
approximation algorithms for the set cover problem, Problem 2.1. The first
is a simple rounding algorithm achieving a guarantee of f , where f is the
frequency of the most frequent element. The second algorithm, achieving an
approximation guarantee of O(log n), illustrates the use of randomization in
rounding.

Consider the polyhedron defined by feasible solutions to an LP-relaxation.
For some problems, one can find special properties of extreme point solutions
of this polyhedron, which can yield rounding-based algorithms. One such
property is half-integrality, i.e., in each extreme point solution, every coordi-
nate is 0, 1, or 1/2. In Section 14.3 we will show that the vertex cover problem
possesses this remarkable property. This directly gives a factor 2 algorithm
for weighted vertex cover; namely, find an optimal extreme point solution and
round all the halves to 1. A more general property, together with an enhanced
rounding algorithm, called iterated rounding, is introduced in Chapter 23.

14.1 A simple rounding algorithm

A linear programming relaxation for the set cover problem is given in
LP(13.2). One way of converting a solution to this linear program into an
integral solution is to round up all nonzero variables to 1. It is easy to con-
struct examples showing that this could increase the cost by a factor of Ω(n)
(see Example 14.3). However, this simple algorithm does achieve the desired
approximation guarantee of f (see Exercise 14.1). Let us consider a slight
modification of this algorithm that is easier to prove and picks fewer sets in
general:

Algorithm 14.1 (Set cover via LP-rounding)

1. Find an optimal solution to the LP-relaxation.
2. Pick all sets S for which xS ≥ 1/f in this solution.

120 14 Rounding Applied to Set Cover

Theorem 14.2 Algorithm 14.1 achieves an approximation factor of f for
the set cover problem.

Proof: Let C be the collection of picked sets. Consider an arbitrary element
e. Since e is in at most f sets, one of these sets must be picked to the extent
of at least 1/f in the fractional cover. Thus, e is covered by C, and hence C is
a valid set cover. The rounding process increases xS , for each set S ∈ C, by
a factor of at most f . Therefore, the cost of C is at most f times the cost of
the fractional cover, thereby proving the desired approximation guarantee. ✷

The set cover instance arising from a vertex cover problem has f = 2.
Therefore, Algorithm 14.1 gives a factor 2 approximation algorithm for the
weighted vertex cover problem, thus matching the approximation guarantee
established in Theorem 2.7.

Example 14.3 Let us give a tight example for Algorithm 14.1. For sim-
plicity, we will view a set cover instance as a hypergraph: sets correspond to
vertices and elements correspond to hyperedges (this is a generalization of
the transformation that helped us view a set cover instance with each element
having frequency 2 as a vertex cover instance).

Let V1, . . . , Vk be k disjoint sets of cardinality n each. The hypergraph has
vertex set V = V1 ∪ . . . ∪ Vk, and nk hyperedges; each hyperedge picks one
vertex from each Vi. In the set cover instance, elements correspond to hyper-
edges and sets correspond to vertices. Once again, inclusion corresponds to
incidence. Each set has cost 1. Picking each set to the extent of 1/k gives an
optimal fractional cover of cost n. Given this fractional solution, the rounding
algorithm will pick all nk sets. On the other hand, picking all sets correspond-
ing to vertices in V1 gives a set cover of cost n. ✷

14.2 Randomized rounding

A natural idea for rounding an optimal fractional solution is to view the frac-
tions as probabilities, flip coins with these biases and round accordingly. Let
us show how this idea leads to an O(log n) factor randomized approximation
algorithm for the set cover problem.

First, we will show that each element is covered with constant probability
by the sets picked by this process. Repeating this process O(log n) times, and
picking a set if it is chosen in any of the iterations, we get a set cover with high
probability, by a standard coupon collector argument. The expected cost of
cover picked in this manner is O(log n)·OPTf ≤ O(log n)·OPT, where OPTf
is the cost of an optimal solution to the LP-relaxation. Applying Markov’s
Inequality, we convert this into a high probability statement. We provide
details below.

14.2 Randomized rounding 121

Let x = p be an optimal solution to the linear program. For each set
S ∈ S, pick S with probability pS , the entry corresponding to S in p. Let C
be the collection of sets picked. The expected cost of C,

E[cost(C)] =
∑
S∈S

Pr[S is picked] · cS =
∑
S∈S

pS · cS = OPTf .

Next, let us compute the probability that an element a ∈ U is covered
by C. Suppose that a occurs in k sets of S. Let the probabilities associated
with these sets be p1, . . . , pk. Since a is fractionally covered in the optimal
solution, p1 + p2 + · · ·+ pk ≥ 1. Using elementary calculus, it is easy to show
that under this condition, the probability that a is covered by C is minimized
when each of the pi’s is 1/k. Thus,

Pr[a is covered by C] ≥ 1−
(

1− 1
k

)k
≥ 1− 1

e
,

where e is the base of natural logarithms. Hence each element is covered with
constant probability by C.

To get a complete set cover, independently pick c log n such subcollections,
and compute their union, say C′, where c is a constant such that

(
1
e

)c logn

≤ 1
4n

.

Now,

Pr[a is not covered by C′] ≤
(

1
e

)c log n

≤ 1
4n

.

Summing over all elements a ∈ U , we get

Pr[C′ is not a valid set cover] ≤ n · 1
4n

≤ 1
4
.

Clearly, E[C′] ≤ OPTf ·c log n. Applying Markov’s Inequality (see Section
B.2) with t = OPTf · 4c log n, we get

Pr[cost(C′) ≥ OPTf · 4c log n] ≤ 1
4
.

The probability of the union of the two undesirable events is ≤ 1/2. Hence,

Pr[C′ is a valid set cover and has cost ≤ OPTf · 4c log n] ≥ 1
2
.

122 14 Rounding Applied to Set Cover

Observe that we can verify in polynomial time whether C′ satisfies both these
conditions. If not, we repeat the entire algorithm. The expected number of
repetitions needed at most 2.

14.3 Half-integrality of vertex cover

Consider the vertex cover problem with arbitrary weights. Let c : V → Q+

be the function assigning nonnegative weights to the vertices. The integer
program for this problem is:

minimize
∑
v∈V

c(v)xv (14.1)

subject to xu + xv ≥ 1, (u, v) ∈ E

xv ∈ {0, 1}, v ∈ V

The LP-relaxation of this integer program is:

minimize
∑
v∈V

c(v)xv (14.2)

subject to xu + xv ≥ 1, (u, v) ∈ E

xv ≥ 0, v ∈ V

Recall that an extreme point solution of a set of linear inequalities is a
feasible solution that cannot be expressed as convex combination of two other
feasible solutions. A half-integral solution to LP (14.2) is a feasible solution
in which each variable is 0, 1, or 1/2.

Lemma 14.4 Let x be a feasible solution to LP (14.2) that is not half-
integral. Then, x is the convex combination of two feasible solutions and is
therefore not an extreme point solution for the set of inequalities in LP (14.2).

Proof: Consider the set of vertices for which solution x does not assign
half-integral values. Partition this set as follows.

V+ =
{

v

∣∣∣∣ 1
2

< xv < 1
}

, V− =
{

v

∣∣∣∣ 0 < xv <
1
2

}
.

For ε > 0, define the following two solutions.

yv =

xv + ε, xv ∈ V+
xv − ε, xv ∈ V−

xv, otherwise
, zv =

xv − ε, xv ∈ V+
xv + ε, xv ∈ V−

xv, otherwise.

14.4 Exercises 123

By assumption, V+ ∪ V− �= ∅, and so x is distinct from y and z. Fur-
thermore, x is a convex combination of y and z, since x = 1

2 (y + z). We
will show, by choosing ε > 0 small enough, that y and z are both feasible
solutions for LP (14.2), thereby establishing the lemma.

Ensuring that all coordinates of y and z are nonnegative is easy. Next,
consider the edge constraints. Suppose xu + xv > 1. Clearly, by choosing ε
small enough, we can ensure that y and z do not violate the constraint for
such an edge. Finally, consider an edge such that xu + xv = 1. There are
essentially three possibilities for xu and xv. xu = xv = 1

2 ; xu = 0, xv = 1;
and u ∈ V+, v ∈ V−. In all three cases, for any choice of ε,

xu + xv = yu + yv = zu + zv = 1.

The lemma follows. ✷

This leads to:

Theorem 14.5 Any extreme point solution for the set of inequalities in
LP (14.2) is half-integral.

Theorem 14.5 directly leads to a factor 2 approximation algorithm for
weighted vertex cover: find an extreme point solution, and pick all vertices
that are set to half or one in this solution.

14.4 Exercises

14.1 Modify Algorithm 14.1 so that it picks all sets that are nonzero in the
fractional solution. Show that the algorithm also achieves a factor of f .
Hint: Use the primal complementary slackness conditions to prove this.

14.2 Consider the collection of sets, C, picked by the randomized rounding
algorithm. Show that with some constant probability, C covers at least half
the elements at a cost of at most O(OPT).

14.3 Give O(log n) factor randomized rounding algorithms for the set mul-
ticover and multiset multicover problems (see Section 13.2).

14.4 Give a (non-bipartite) tight example for the half-integrality-based al-
gorithm for weighted vertex cover.

14.5 (J. Cheriyan) Give a polynomial time algorithm for the following prob-
lem. Given a graph G with nonnegative vertex weights and a valid, though not
necessarily optimal, coloring of G, find a vertex cover of weight ≤ (2− 2

k)OPT,
where k is the number of colors used.

124 14 Rounding Applied to Set Cover

14.6 Give a counterexample to the following claim. A set cover instance in
which each element is in exactly f sets has a (1/f)-integral optimal fractional
solution (i.e., in which each set is picked an integral multiple of 1/f).

14.7 This exercise develops a combinatorial algorithm for finding an optimal
half integral vertex cover. Given undirected graph G = (V,E) and a non-
negative cost function c on vertices, obtain bipartite graph H(V ′, V ′′, E′) as
follows. Corresponding to each vertex v ∈ V , there is a vertex v′ ∈ V ′ and
v′′ ∈ V ′′ each of cost c(v)/2. Corresponding to each edge (u, v) ∈ E, there
are two edges (u′, v′′), (u′′, v′) ∈ E′. Show that a vertex cover in H can be
mapped to a half-integral vertex cover in G preserving total cost and vice
versa. Use the fact that an optimal vertex cover in a bipartite graph can be
found in polynomial time to obtain an optimal half-integral vertex cover in
G.

14.8 Consider LP (12.8), introduced in Exercise 12.7, for a non-bipartite
graph G = (V,E).

1. Show that it is not an exact relaxation for the maximum matching prob-
lem in G.

2. Show that this LP always has a half-integral optimal solution.

14.9 In an attempt to improve the running time of the algorithm obtained in
Exercise 9.7 for bin packing, consider going to the LP-relaxation of the integer
programming and using LP-rounding. What guarantee can you establish for
bin packing through this method?

14.5 Notes

Algorithm 14.1 is due to Hochbaum [125]. For a more sophisticated random-
ized rounding algorithm for set cover, see Srinivasan [244]. Theorem 14.5 is
due to Nemhauser and Trotter [213].

15 Set Cover via the Primal–Dual Schema

As noted in Section 12.3, the primal–dual schema is the method of choice
for designing approximation algorithms since it yields combinatorial algo-
rithms with good approximation factors and good running times. We will
first present the central ideas behind this schema and then use it to design a
simple f factor algorithm for set cover, where f is the frequency of the most
frequent element.

The primal–dual schema has its origins in the design of exact algorithms.
In that setting, this schema yielded the most efficient algorithms for some of
the cornerstone problems in P, including matching, network flow, and short-
est paths. These problems have the property that their LP-relaxations have
integral optimal solutions. By Theorem 12.3 we know that optimal solutions
to linear programs are characterized by fact that they satisfy all the comple-
mentary slackness conditions. In fact, the primal–dual schema for exact al-
gorithms is driven by these conditions. Starting with initial feasible solutions
to the primal and dual programs, it iteratively starts satisfying complemen-
tary slackness conditions. When they are all satisfied, both solutions must
be optimal. During the iterations, the primal is always modified integrally,
so that eventually we get an integral optimal solution.

Consider an LP-relaxation for an NP-hard problem. In general, the re-
laxation will not have an optimal solution that is integral. Does this rule out
a complementary slackness condition driven approach? Interestingly enough,
the answer is ‘no’. It turns out that the algorithm can be driven by a suit-
able relaxation of these conditions! This is the most commonly used way of
designing primal–dual based approximation algorithms – but not the only
way.

15.1 Overview of the schema

Let us consider the following primal program, written in standard form.

minimize
n∑
j=1

cjxj

126 15 Set Cover via the Primal–Dual Schema

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are specified in the input. The dual program is:

maximize
m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m

Most known approximation algorithms using the primal–dual schema run
by ensuring one set of conditions and suitably relaxing the other. In the fol-
lowing description we capture both situations by relaxing both conditions.
Eventually, if primal conditions are ensured, we set α = 1, and if dual condi-
tions are ensured, we set β = 1.

Primal complementary slackness conditions
Let α ≥ 1.
For each 1 ≤ j ≤ n: either xj = 0 or cj/α ≤∑m

i=1 aijyi ≤ cj .

Dual complementary slackness conditions
Let β ≥ 1.
For each 1 ≤ i ≤ m: either yi = 0 or bi ≤

∑n
j=1 aijxj ≤ β · bi,

Proposition 15.1 If x and y are primal and dual feasible solutions satisfy-
ing the conditions stated above then

n∑
j=1

cjxj ≤ α · β ·
m∑
i=1

biyi.

Proof:

n∑
j=1

cjxj ≤ α

n∑
j=1

(
m∑
i=1

aijyi

)
xj = α

m∑
i=1

 n∑
j=1

aijxj

 yi

≤ αβ

m∑
i=1

biyi . (15.1)

The first and second inequalities follow from the primal and dual conditions,
respectively. The equality follows by simply changing the order of summation.
✷

15.2 Primal–dual schema applied to set cover 127

The algorithm starts with a primal infeasible solution and a dual feasible
solution; these are usually the trivial solutions x = 0 and y = 0. It iteratively
improves the feasibility of the primal solution, and the optimality of the dual
solution, ensuring that in the end a primal feasible solution is obtained and
all conditions stated above, with a suitable choice of α and β, are satisfied.
The primal solution is always extended integrally, thus ensuring that the final
solution is integral. The improvements to the primal and the dual go hand-
in-hand: the current primal solution is used to determine the improvement
to the dual, and vice versa. Finally, the cost of the dual solution is used as a
lower bound on OPT, and by Proposition 15.1, the approximation guarantee
of the algorithm is αβ.

15.2 Primal–dual schema applied to set cover

Let us obtain a factor f algorithm for the set cover problem using the primal–
dual schema. For this algorithm, we will choose α = 1 and β = f . We will work
with the primal and dual pair of LP’s given in (13.2) and (13.3), respectively.
The complementary slackness conditions are:

Primal conditions

∀S ∈ S : xS �= 0 ⇒
∑
e: e∈S

ye = c(S).

Set S will be said to be tight if
∑

e: e∈S ye = c(S). Since we will increment
the primal variables integrally, we can state the conditions as: Pick only tight
sets in the cover.
Clearly, in order to maintain dual feasibility, we are not allowed to overpack
any set.

Dual conditions

∀e : ye �= 0 ⇒
∑

S: e∈S
xS ≤ f

Since we will find a 0/1 solution for x, these conditions are equivalent to:
Each element having a nonzero dual value can be covered at most f times.
Since each element is in at most f sets, this condition is trivially satisfied for
all elements.

The two sets of conditions naturally suggest the following algorithm:

128 15 Set Cover via the Primal–Dual Schema

Algorithm 15.2 (Set cover – factor f)

1. Initialization: x ← 0; y ← 0
2. Until all elements are covered, do:

Pick an uncovered element, say e, and raise ye until some set goes
tight.

Pick all tight sets in the cover and update x.
Declare all the elements occurring in these sets as “covered”.

3. Output the set cover x.

Theorem 15.3 Algorithm 15.2 achieves an approximation factor of f .

Proof: Clearly there will be no uncovered elements and no overpacked sets
at the end of the algorithm. Thus, the primal and dual solutions will both be
feasible. Since they satisfy the relaxed complementary slackness conditions
with α = f , by Proposition 15.1 the approximation factor is f . ✷

Example 15.4 A tight example for this algorithm is provided by the fol-
lowing set system:

n-1e

n+1

n

1 2

1 1 1

e

e e

e

1+ε

. . .

Here, S consists of n − 1 sets of cost 1, {e1, en}, . . . , {en−1, en}, and one set
of cost 1 + ε, {e1, . . . , en+1}, for a small ε > 0. Since en appears in all n sets,
this set system has f = n.

Suppose the algorithm raises yen in the first iteration. When yen is raised
to 1, all sets {ei, en}, i = 1, . . . , n − 1 go tight. They are all picked in the
cover, thus covering the elements e1, . . . , en. In the second iteration, yen+1 is
raised to ε and the set {e1, . . . , en+1} goes tight. The resulting set cover has
a cost of n + ε, whereas the optimum cover has cost 1 + ε. ✷

15.4 Notes 129

15.3 Exercises

15.1 How is the algorithm given in Exercise 2.11 for the weighted vertex
cover problem related to Algorithm 15.2 for the case f = 2?

15.2 Remove the scaffolding of linear programming from Algorithm 15.2 to
obtain a purely combinatorial factor f algorithm for set cover.
Hint: See the algorithm in Exercise 2.11.

15.3 Let k be a fixed constant, and consider instances of set cover whose
maximum frequency, f , is bounded by k. Algorithm 15.2 shows that the
integrality gap of LP (13.2) is upper bounded by k for these instances. Provide
examples to show that this bound is essentially tight.
Hint: Consider a regular hypergraph, G, on n vertices which has a hyperedge
corresponding to each choice of k of the n vertices. Construct the set system
as follows. It has an element corresponding to each hyperedge and a set
corresponding to each vertex, with incidence defining inclusion.

15.4 The following LP-relaxation is exact for the maximum weight matching
problem (see definition in Exercise 12.8) in bipartite graphs but not in gen-
eral graphs. Give a primal–dual algorithm, relaxing complementary slackness
conditions appropriately, to show that the integrality gap of this LP is ≥ 1/2.
What is the best upper bound you can place on the integrality gap?

maximize
∑
e

wexe (15.2)

subject to
∑

e: e incident at v
xe ≤ 1, v ∈ V

xe ≥ 0, e ∈ E

15.5 (Chudak, Goemans, Hochbaum, and Williamson [46]) Interpret the
layering-based algorithms obtained for set cover and feedback vertex set prob-
lems in Chapters 2 and 6 as primal–dual schema based algorithms. How are
the complementary slackness conditions being relaxed?

15.4 Notes

Kuhn [179] gave the first primal–dual algorithm – for the weighted bipartite
matching problem – however, he used the name “Hungarian Method” to
describe his algorithm. Dantzig, Ford, and Fulkerson [60] used this method

130 15 Set Cover via the Primal–Dual Schema

for giving another means of solving linear programs and called it the primal–
dual method. Although the schema was not very successful for solving linear
programs, it soon found widespread use in combinatorial optimization.

Algorithm 15.2 is due to Bar-Yehuda and Even [20]. Although it was
not originally stated as a primal–dual algorithm, in retrospect, this was the
first use of the schema in approximation algorithms. The works of Agrawal,
Klein, and Ravi [1] and Goemans and Williamson [105] revived the use of
this schema in the latter setting, and introduced the powerful idea of growing
duals in a synchronized manner (see Chapter 22). The mechanism of relax-
ing complementary slackness conditions was first formalized in Williamson,
Goemans, Mihail, and Vazirani [258]. For further historical information, see
Goemans and Williamson [107].

16 Maximum Satisfiability

The maximum satisfiability problem has been a classical problem in approx-
imation algorithms. More recently, its study has led to crucial insights in
the area of hardness of approximation (see Chapter 29). In this chapter, we
will use LP-rounding, with randomization, to obtain a 3/4 factor approxi-
mation algorithm. We will derandomize this algorithm using the method of
conditional expectation.

Problem 16.1 (Maximum satisfiability (MAX-SAT)) Given a con-
junctive normal form formula f on Boolean variables x1, . . . , xn, and non-
negative weights, wc, for each clause c of f , find a truth assignment to the
Boolean variables that maximizes the total weight of satisfied clauses. Let C
represent the set of clauses of f , i.e., f =

∧
c∈C c. Each clause is a disjunction

of literals; each literal being either a Boolean variable or its negation. Let
size(c) denote the size of clause c, i.e., the number of literals in it. We will
assume that the sizes of clauses in f are arbitrary.

For any positive integer k, we will denote by MAX-kSAT the restriction
of MAX-SAT to instances in which each clause is of size at most k. MAX-
SAT is NP-hard; in fact, even MAX-2SAT is NP-hard (in contrast, 2SAT
is in P). We will first present two approximation algorithms for MAX-SAT,
having guarantees of 1/2 and 1−1/e, respectively. The first performs better if
the clause sizes are large, and the seconds performs better if they are small.
We will then show how an appropriate combination of the two algorithms
achieves the promised approximation guarantee.

In the interest of minimizing notation, let us introduce common terminol-
ogy for all three algorithms. Random variable W will denote the total weight
of satisfied clauses. For each clause c, random variable Wc denotes the weight
contributed by clause c to W . Thus, W =

∑
c∈C Wc and

E[Wc] = wc ·Pr[c is satisfied].

(Strictly speaking, this is abuse of notation, since the randomization used by
the three algorithms is different.)

132 16 Maximum Satisfiability

16.1 Dealing with large clauses

The first algorithm is straightforward. Set each Boolean variable to be True
independently with probability 1/2 and output the resulting truth assign-
ment, say τ . For k ≥ 1, define αk = 1− 2−k.

Lemma 16.2 If size(c) = k, then E[Wc] = αkwc.

Proof: Clause c is not satisfied by τ iff all its literals are set to False. The
probability of this event is 2−k. ✷

For k ≥ 1, αk ≥ 1/2. By linearity of expectation,

E[W] =
∑
c∈C

E[Wc] ≥ 1
2

∑
c∈C

wc ≥ 1
2
OPT,

where we have used a trivial upper bound on OPT – the total weight of
clauses in C.

Instead of converting this into a high probability statement, with a cor-
responding loss in guarantee, we show how to derandomize this procedure.
The resulting algorithm deterministically computes a truth assignment such
that the weight of satisfied clauses is ≥ E[W] ≥ OPT/2.

Observe that αk increases with k and the guarantee of this algorithm is
3/4 if each clause has two or more literals. (The next algorithm is designed
to deal with unit clauses more effectively.)

16.2 Derandomizing via the method of conditional
expectation

We will critically use the self-reducibility of SAT (see Section A.5). Consider
the self-reducibility tree T for formula f . Each internal node at level i corre-
sponds to a setting for Boolean variables x1, . . . , xi, and each leaf represents
a complete truth assignment to the n variables. Let us label each node of
T with its conditional expectation as follows. Let a1, . . . , ai be a truth as-
signment to x1, . . . , xi. The node corresponding to this assignment will be
labeled with E[W |x1 = a1, . . . , xi = ai]. If i = n, this is a leaf node and its
conditional expectation is simply the total weight of clauses satisfied by its
truth assignment.

Lemma 16.3 The conditional expectation of any node in T can be computed
in polynomial time.

Proof: Consider a node x1 = a1, . . . , xi = ai. Let φ be the Boolean formula,
on variables xi+1, . . . , xn, obtained for this node via self-reducibility. Clearly,

16.2 Derandomizing via the method of conditional expectation 133

the expected weight of satisfied clauses of φ under a random truth assignment
to the variables xi+1, . . . , xn can be computed in polynomial time. Adding to
this the total weight of clauses of f already satisfied by the partial assignment
x1 = a1, . . . , xi = ai gives the answer. ✷

Theorem 16.4 We can compute, in polynomial time, a path from the root
to a leaf such that the conditional expectation of each node on this path is
≥ E[W].

Proof: The conditional expectation of a node is the average of the condi-
tional expectations of its two children, i.e.,

E[W |x1 = a1, ..., xi = ai] =E[W |x1 = a1, ..., xi = ai, xi+1 = True]/2 +

E[W |x1 = a1, ..., xi = ai, xi+1 = False]/2.

The reason, of course, is that xi+1 is equally likely to be set to True or False.
As a result, the child with the larger value has a conditional expectation at
least as large as that of the parent. This establishes the existence of the desired
path. As a consequence of Lemma 16.3, it can be computed in polynomial
time. ✷

The deterministic algorithm follows as a corollary of Theorem 16.4. We
simply output the truth assignment on the leaf node of the path computed.
The total weight of clauses satisfied by it is ≥ E[W].

Let us show that the technique outlined above can, in principle, be used to
derandomize more complex randomized algorithms. Suppose the algorithm
does not set the Boolean variables independently of each other (for instance,
see Remark 16.6). Now,

E[W |x1 = a1, ..., xi = ai] =
E[W |x1 = a1, ..., xi = ai, xi+1 = True] ·Pr[xi+1 = True|x1 = a1, ..., xi = ai]+
E[W |x1 = a1, ..., xi = ai, xi+1 = False] ·Pr[xi+1 = False|x1 = a1, ..., xi = ai].

The sum of the two conditional probabilities is again 1, since the two
events are exhaustive. So, the conditional expectation of the parent is still
a convex combination of the conditional expectations of the two children. If
we can determine, in polynomial time, which of the two children has a larger
value, we can again derandomize the algorithm. However, computing the con-
ditional expectations may not be easy. Observe how critically independence
was used in the proof of Lemma 16.3. It was because of independence that we
could assume a random truth assignment on Boolean variables xi+1, . . . , xn
and thereby compute the expected weight of satisfied clauses of φ.

In general, a randomized algorithm may pick from a larger set of choices
and not necessarily with equal probability. But once again a convex combina-
tion of the conditional expectations of these choices, given by the probabilities

134 16 Maximum Satisfiability

of picking them, equals the conditional expectation of the parent. Hence there
must be a choice that has at least as large a conditional expectation as the
parent.

16.3 Dealing with small clauses via LP-rounding

Following is an integer program for MAX-SAT. For each clause c ∈ C, let S+
c

(S−
c) denote the set of Boolean variables occurring nonnegated (negated) in

c. The truth assignment is encoded by y. Picking yi = 1 (yi = 0) denotes
setting xi to True (False). The constraint for clause c ensures that zc can be
set to 1 only if at least one of the literals occurring in c is set to True, i.e., if
clause c is satisfied by the picked truth assignment.

maximize
∑
c∈C

wczc (16.1)

subject to ∀c ∈ C :
∑
i∈S+

c

yi +
∑
i∈S−

c

(1− yi) ≥ zc

∀c ∈ C : zc ∈ {0, 1}
∀i : yi ∈ {0, 1}

The LP-relaxation is:

maximize
∑
c∈C

wczc (16.2)

subject to ∀c ∈ C :
∑
i∈S+

c

yi +
∑
i∈S−

c

(1− yi) ≥ zc

∀c ∈ C : 1 ≥ zc ≥ 0

∀i : 1 ≥ yi ≥ 0

The algorithm is again straightforward. Solve LP (16.2). Let (y∗,z∗) de-
note the optimal solution. Independently set xi to True with probability y∗

i ,
for 1 ≤ i ≤ n. Output the resulting truth assignment, say τ .

We will use the random variables W and Wc defined in Section 16.1. For
k ≥ 1, define

βk = 1−
(

1− 1
k

)k
.

Lemma 16.5 If size(c) = k, then

E[Wc] ≥ βkwcz
∗
c .

16.3 Dealing with small clauses via LP-rounding 135

Proof: We may assume w.l.o.g. that all literals in c appear nonnegated
(if xi appears negated, we can replace xi with xi throughout f and modify
LP (16.2) accordingly without affecting z∗

c or Wc). Further, by renaming
variables, we may assume c = (x1 ∨ . . . ∨ xk).

Clause c is satisfied if x1, . . . , xk are not all set to False. The probability
of this event is

1−
k∏
i=1

(1− yi)≥ 1−
(∑k

i=1(1− yi)
k

)k
= 1−

(
1−

∑k
i=1 yi
k

)k

≥ 1−
(

1− z∗
c

k

)k
,

where the first inequality follows from the arithmetic-geometric mean in-
equality which states that for nonnegative numbers a1, . . . , ak,

a1 + . . . + ak
k

≥ k
√

a1 × . . .× ak.

The second inequality uses the constraint in LP (16.2) that y1 + . . .+yk ≥ zc.

0 1 z

g(z)

Define function g by:

g(z) = 1−
(
1− z

k

)k
.

This is a concave function with g(0) = 0 and g(1) = βk. Therefore, for
z ∈ [0, 1], g(z) ≥ βkz. Hence, Pr[c is satisfied] ≥ βkz

∗
c . The lemma follows. ✷

Notice that βk is a decreasing function of k. Thus, if all clauses are of size
at most k,

E[W] =
∑
c∈C

E[Wc] ≥ βk
∑
c∈C

wcz
∗
c = βkOPTf ≥ βkOPT,

136 16 Maximum Satisfiability

where OPTf is the optimal solution to LP (16.2). Clearly, OPTf ≥ OPT.
This algorithm can also be derandomized using the method of conditional
expectation (Exercise 16.3). Hence, for MAX-SAT instances with clause sizes
at most k, it is a βk factor approximation algorithm. Since

∀k ∈ Z+ :
(

1− 1
k

)k
>

1
e
,

this is a 1 − 1/e factor algorithm for MAX-SAT.

16.4 A 3/4 factor algorithm

We will combine the two algorithms as follows. Let b be the flip of a fair coin.
If b = 0, run the first randomized algorithm, and if b = 1, run the second
randomized algorithm.

Remark 16.6 Notice that we are effectively setting xi to True with proba-
bility 1

4 + 1
2y∗
i ; however, the xi’s are not set independently!

Let z∗ be the optimal solution of LP (16.2) on the given instance.

Lemma 16.7 E[Wc] ≥ 3
4
wcz

∗
c .

Proof: Let size(c) = k. By Lemma 16.2,

E[Wc | b = 0] = αkwc ≥ αkwcz
∗
c ,

where we have used the fact that z∗
c ≤ 1. By Lemma 16.5,

E[Wc | b = 1] ≥ βkwcz
∗
c .

Combining we get

E[Wc] =
1
2
(E[Wc | b = 0] +E[Wc | b = 1]) ≥ wcz

∗
c

(αk + βk)
2

.

Now, α1+β1 = α2+β2 = 3/2, and for k ≥ 3, αk+βk ≥ 7/8+(1−1/e) ≥ 3/2.
The lemma follows. ✷

By linearity of expectation,

E[W] =
∑
c∈C

E[Wc] ≥ 3
4

∑
c∈C

wcz
∗
c =

3
4
OPTf ≥ 3

4
OPT, (16.3)

where OPTf is the optimal solution to LP (16.2). Finally, consider the fol-
lowing deterministic algorithm.

16.5 Exercises 137

Algorithm 16.8 (MAX-SAT – factor 3/4)

1. Use the derandomized factor 1/2 algorithm to get a truth assignment,
τ1.

2. Use the derandomized factor 1− 1/e algorithm to get a truth
assignment, τ2.

3. Output the better of the two assignments.

Theorem 16.9 Algorithm 16.8 is a deterministic factor 3/4 approximation
algorithm for MAX-SAT.

Proof: One of the two conditional expectations, E[W | b = 0] and E[W | b =
1], is at least as large as E[W]. Hence, the total weight of clauses satisfied by
the better of τ1 and τ2 is at least as large as E[W]. ✷

By (16.3), E[W] ≥ 3
4OPTf . The weight of the integral solution produced

by Algorithm 16.8 is at least E[W]. Therefore, the integrality gap of LP (16.2)
is ≥ 3/4. Below we show that this is tight.

Example 16.10 Consider the SAT formula f = (x1∨x2)∧ (x1∨x2)∧ (x1∨
x2) ∧ (x1 ∨ x2), where each clause is of unit weight. It is easy to see that
setting yi = 1/2 and zc = 1 for all i and c is an optimal solution to LP (16.2)
for any instance having size 2 clauses. Therefore OPTf = 4. On the other
hand OPT = 3, and thus for this instance LP (16.2) has a integrality gap of
4/3. ✷

Example 16.11 Let us provide a tight example to Algorithm 16.8. Let
f = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), and let the weights of these three clauses
be 1, 1, and 2 + ε, respectively. By the remark made in Example 16.10, on
this instance the factor 1− 1/e algorithm will set each variable to True with
probability 1/2 and so will be the same as the factor 1/2 algorithm. During
derandomization, suppose variable x is set first. The conditional expectations
are E[W | x = True] = 3 + ε/2 and E[W | x = False] = 3 + ε. Thus, x will
be set to False. But this leads to a total weight of 3 + ε, whereas by setting
x to True we can get a weight of 4 + ε. Clearly, we can get an infinite family
of such examples by replicating these 3 clauses with new variables. ✷

16.5 Exercises

16.1 The algorithm of Section 16.1 achieves an approximation guarantee
of αk if all clauses in the given instance have size at least k. Give a tight
example of factor αk for this algorithm.

138 16 Maximum Satisfiability

16.2 Show that the following is a factor 1/2 algorithm for MAX-SAT. Let
τ be an arbitrary truth assignment and τ ′ be its complement, i.e., a variable
is True in τ iff it is False in τ ′. Compute the weight of clauses satisfied by τ
and τ ′, then output the better assignment.

16.3 Use the method of conditional expectation to derandomize the 1− 1/e
factor algorithm for MAX-SAT.

16.4 Observe that the randomization used in the 3/4 factor algorithm does
not set Boolean variables independently of each other. As remarked in Sec-
tion 16.2, the algorithm can still, in principle, be derandomized using the
method of conditional expectation. Devise a way of doing so. Observe that
the algorithm obtained is different from Algorithm 16.8.

16.5 (Goemans and Williamson [104]) Instead of using the solution to LP
(16.2), y∗

i , as probability of setting xi to True, consider the more general
scheme of using g(y∗

i), for a suitable function g. Can this lead to an improve-
ment over the factor 1− 1/e algorithm?

16.6 Consider the following randomized algorithm for the maximum cut
problem, defined in Exercise 2.1. After the initialization step of Algorithm
2.13, each of the remaining vertices is equally likely to go in sets A or B.
Show that the expected size of the cut found is at least OPT/2. Show that the
derandomization of this algorithm via the method of conditional expectation
is precisely Algorithm 2.13.

16.7 Consider the following generalization of the maximum cut problem.

Problem 16.12 (Linear equations over GF[2]) Given m equations over
n GF[2] variables, find an assignment for the variables that maximizes the
number of satisfied equations.

1. Show that if m ≤ n, this problem is polynomial time solvable.
2. In general, the problem is NP-hard. Give a factor 1/2 randomized algo-

rithm for it, and derandomize using the method of conditional expecta-
tion.

16.8 Consider the obvious randomized algorithm for the MAX k-CUT prob-
lem, Problem 2.14 in Exercise 2.3, which assigns each vertex randomly to one
of the sets S1, . . . , Sk. Show that the expected number of edges running be-
tween these sets is at least OPT/2. Show that the derandomization of this
algorithm, via the method of conditional expectation, gives the greedy algo-
rithm sought in Exercise 2.3.

16.9 Repeat Exercise 16.8 for the maximum directed cut problem, Problem
2.15 in Exercise 2.4, i.e., give a factor 1/4 randomized algorithm, and show
that its derandomization gives a greedy algorithm.

16.6 Notes 139

16.6 Notes

The factor 1/2 algorithm, which was also the first approximation algorithm
for MAX-SAT, is due to Johnson [150]. The first factor 3/4 algorithm was due
to Yannakakis [261]. The (simpler) algorithm given here is due to Goemans
and Williamson [104]. The method of conditional expectation is implicit in
Erdös and Selfridge [74]. Its use for obtaining polynomial time algorithms
was pointed out by Spencer [243] (see Raghavan [225] and Alon and Spencer
[6] for enhancements to this technique).

17 Scheduling on Unrelated Parallel Machines

LP-rounding has yielded approximation algorithms for a large number of
NP-hard problems in scheduling theory (see Section 17.6). As a illustrative
example, we present a factor 2 algorithm for the problem of scheduling on un-
related parallel machines. We will apply the technique of parametric pruning,
introduced in Chapter 5, together with LP-rounding, to obtain the algorithm.

Problem 17.1 (Scheduling on unrelated parallel machines) Given a
set J of jobs, a set M of machines, and for each j ∈ J and i ∈ M , pij ∈ Z+,
the time taken to process job j on machine i, the problem is to schedule the
jobs on the machines so as to minimize the makespan, i.e., the maximum
processing time of any machine. We will denote the number of jobs by n and
the number of machines by m.

The reason for the name “unrelated” is that we have not assumed any
relation between the processing times of a job on the different machines. If
each job j has the same running time, say pj , on each of the machines, then
the machines are said to be identical. This problem was studied in Chapter 10
under the name minimum makespan scheduling, and we had derived a PTAS
for it. A generalization of minimum makespan, that also admits a PTAS, is
that of uniform parallel machines (see Exercise 17.5). In this case there is a
speed si associated with each machine i, and the processing time for job j
on machine i is pj/si.

17.1 Parametric pruning in an LP setting

An obvious integer program for this problem is the following. In this program
xij is an indicator variable denoting whether job j is scheduled on machine
i. The objective is to minimize t, the makespan. The first set of constraints
ensures that each job is scheduled on one of the machines, and the second
set ensures that each machine has a processing time of at most t.

minimize t (17.1)

subject to
∑
i∈M

xij = 1, j ∈ J

17.2 Properties of extreme point solutions 141∑
j∈J

xijpij ≤ t, i ∈ M

xij ∈ {0, 1}, i ∈ M, j ∈ J

We show below that this integer program has unbounded integrality gap.

Example 17.2 Suppose we have only one job, which has a processing time
of m on each of the m machines. Clearly, the minimum makespan is m.
However, the optimal solution to the linear relaxation is to schedule the job
to the extent of 1/m on each machine, thereby leading to an objective function
value of 1, and giving an integrality gap of m. ✷

This example is exploiting an “unfair” advantage that we have given to the
linear relaxation. The integer program automatically sets xij to 0 if pij > t.
On the other hand, the linear relaxation is allowed to set these variables to
nonzero values, and thereby obtain a cheaper solution. The situation could
be rectified if we could add the following constraint to the linear relaxation:

∀i ∈ M j ∈ J : if pij > t then xij = 0.

However, this is not a linear constraint.
We will use the technique of parametric pruning to get around this diffi-

culty. The parameter will be T ∈ Z+, which is our guess for a lower bound
on the optimal makespan. The parameter will enable us to prune away all
job–machine pairs such that pij > T . Define ST = {(i, j) | pij ≤ T}. We
will define a family of linear programs, LP(T), one for each value of param-
eter T ∈ Z+. LP(T) uses the variables xij for (i, j) ∈ ST only, and asks if
there is a feasible, fractional schedule of makespan ≤ T using the restricted
possibilities.

∑
i:(i,j)∈ST

xij = 1, j ∈ J

∑
j:(i,j)∈ST

xijpij ≤ T, i ∈ M

xij ≥ 0, (i, j) ∈ ST

17.2 Properties of extreme point solutions

Via an appropriate binary search, we will find the smallest value of T such
that LP(T) has a feasible solution. Let T ∗ be this value. Clearly, T ∗ is a
lower bound on OPT. The algorithm will round an extreme point solution to

142 17 Scheduling on Unrelated Parallel Machines

LP(T ∗) to find a schedule having makespan ≤ 2T ∗. Extreme point solutions
to LP(T) have several useful properties.

Lemma 17.3 Any extreme point solution to LP(T) has at most n + m
nonzero variables.

Proof: Let r = |ST | represent the number of variables on which LP(T) is
defined. Recall that a feasible solution to LP(T) is an extreme point solution
iff it corresponds to setting r linearly independent constraints of LP(T) to
equality. Of these r linearly independent constraints, at least r − (n + m)
must be chosen from the third set of constraints (of the form xij ≥ 0). The
corresponding variables are set to 0. So, any extreme point solution has at
most n + m nonzero variables. ✷

Let x be an extreme point solution to LP(T). We will say that job j is
integrally set in x if it is entirely assigned to one machine. Otherwise, we will
say that job j is fractionally set.

Corollary 17.4 Any extreme point solution to LP(T) must set at least n−m
jobs integrally.

Proof: Let x be an extreme point solution to LP(T), and let α and β be
the number of jobs that are integrally and fractionally set by x, respectively.
Each job of the latter kind is assigned to at least 2 machines and therefore
results in at least 2 nonzero entries in x. Hence we get

α + β = n and α + 2β ≤ n + m.

Therefore, β ≤ m and α ≥ n−m. ✷

The LP-rounding algorithm is based on several interesting combinatorial
properties of extreme point solutions to LP(T). Some of these are established
in Section 17.4. Corresponding to an extreme point solution x to LP(T),
define G = (J,M,E) to be the bipartite graph on vertex set J ∪M such that
(j, i) ∈ E iff xij �= 0. Let F ⊂ J be the set of jobs that are fractionally set
in x, and let H be the subgraph of G induced on vertex set F ∪M . Clearly,
(i, j) is an edge in H iff 0 < xij < 1. A matching in H will be called a perfect
matching if it matches every job j ∈ F . The rounding procedure uses the fact
that graph H has a perfect matching (see Lemma 17.7).

17.3 The algorithm

The algorithm starts by computing the range in which it finds the right value
of T . For this, it constructs the greedy schedule, in which each job is assigned
to the machine on which it has the smallest processing time. Let α be the
makespan of this schedule. Then the range is [α/m,α].

17.4 Additional properties of extreme point solutions 143

Algorithm 17.5 (Scheduling on unrelated parallel machines)

1. By a binary search in the interval [α/m,α], find the smallest value of
T ∈ Z+ for which LP(T) has a feasible solution. Let this value be T ∗.

2. Find an extreme point solution, say x, to LP(T ∗).
3. Assign all integrally set jobs to machines as in x.
4. Construct graph H and find a perfect matching M in it (e.g., using the

procedure of Lemma 17.7).
5. Assign fractionally set jobs to machines according to matching M.

17.4 Additional properties of extreme point solutions

We will say that a connected graph on vertex set V is a pseudo-tree if it
contains at most |V | edges. Since the graph is connected, it must have at
least |V | − 1 edges. So, it is either a tree or a tree plus a single edge. In the
latter case it has a unique cycle. Let us say that a graph is a pseudo-forest if
each of its connected components is a pseudo-tree. Recall that in Section 17.2
we defined two graphs, G and H, corresponding to an extreme point solution
x to LP(T).

Lemma 17.6 Graph G is a pseudo-forest.

Proof: We will show that the number of edges in each connected component
of G is bounded by the number of vertices in it. Hence, each connected
component is a pseudo-tree.

Consider a connected component Gc. Restrict LP(T) and x to the jobs
and machines of Gc only, to obtain LPc(T) and xc. Let xc represent the
rest of x. The important observation is that xc must be an extreme point
solution to LPc(T). Suppose that this is not the case. Then, xc is a convex
combination of two feasible solutions to LPc(T). Each of these, together with
xc, form a feasible solution to LP(T). Therefore, x is a convex combination
of two feasible solutions to LP(T), leading to a contradiction.

Now, applying Lemma 17.3, we get that Gc is a pseudo-tree. ✷

Lemma 17.7 Graph H has a perfect matching.

Proof: Each job that is integrally set in x has exactly one edge incident at it
in G. Remove these jobs, together with their incident edges, from G. Clearly,
the remaining graph is H. Since an equal number of edges and vertices were
removed, H is also a pseudo-forest.

144 17 Scheduling on Unrelated Parallel Machines

J

M

M

M

M

J J

M

J

M

J

M

M

J

M

J

M M

M

In H, each job has a degree of at least 2. So, all leaves in H must be
machines. Keep matching a leaf with the job it is incident to, and remove
them both from the graph. (At each stage all leaves must be machines.) In the
end we will be left with even cycles (since we started with a bipartite graph).
Match off alternate edges of each cycle. This gives a perfect matching in H.
✷

Theorem 17.8 Algorithm 17.5 achieves an approximation guarantee of fac-
tor 2 for the problem of scheduling on unrelated parallel machines.

Proof: Clearly, T ∗ ≤ OPT, since LP(OPT) has a feasible solution. The
extreme point solution, x, to LP(T ∗) has a fractional makespan of ≤ T ∗.
Therefore, the restriction of x to integrally set jobs has a (integral) makespan
of ≤ T ∗. Each edge (i, j) of H satisfies pij ≤ T ∗. The perfect matching found
in H schedules at most one extra job on each machine. Hence, the total
makespan is ≤ 2T ∗ ≤ 2 · OPT. The algorithm clearly runs in polynomial
time. ✷

Example 17.9 Let us provide a family of tight examples. The mth instance
consists of m2−m+1 jobs that need to be scheduled on m machines. The first
job has a processing time of m on all machines, and all the remaining jobs
have unit processing time on each machine. The optimal schedule assigns
the first job to one machine, and m of the remaining jobs to each of the
remaining m − 1 machines. Its makespan is m. It is easy to see that LP(T)
has no feasible solutions for T < m.

Now suppose the following extreme point solution to LP(m) is picked. It
assigns 1/m of the first job and m− 1 other jobs to each of the m machines.
Rounding will produce a schedule having a makespan of 2m− 1. ✷

17.5 Exercises

17.1 Give an alternative proof of Lemma 17.7 by using Hall’s Theorem.
(This theorem states that a bipartite graph G = (U, V,E) has a matching

17.6 Notes 145

that matches all vertices of U iff for every set U ′ ⊆ U , the neighborhood
of U ′ is at least as large as U ′. The neighborhood of U ′ is {v ∈ V | ∃u ∈
U ′ with (u, v) ∈ E}.)
Hint: For any set F ′ ⊂ F , let M ′ be its neighborhood. Show that the graph
induced on F ′ ∪M ′ must have at most |F ′|+ |M ′| edges. On the other hand,
since each vertex in F has a degree of at least 2, this graph must have at
least 2|F ′| edges.

17.2 Prove that the solution given to LP(m) in Example 17.9 is an extreme
point solution.

17.3 Does Algorithm 17.5 achieve a better factor than 2 for the special case
that the machines are identical?

17.4 Prove the following strengthening of Lemma 17.6. There is an extreme
point solution to LP(T) such that its corresponding bipartite graph, G, is a
forest.

17.5 (Hochbaum and Shmoys [129]) Give a PTAS for the problem of min-
imizing makespan on uniform parallel machines. In this problem there is a
speed si associated with each machine i, and the processing time for job j
on machine i is pj/si.

17.6 Notes

The result of this chapter is due to Lenstra, Shmoys, and Tardos [184]. For
other LP-rounding based scheduling algorithms, see the survey by Hall [120].

18 Multicut and
Integer Multicommodity Flow in Trees

The theory of cuts in graphs occupies a central place not only in the study of
exact algorithms, but also approximation algorithms. We will present some
key results in the next four chapters. This will also give us the opportunity to
develop further the two fundamental algorithm design techniques introduced
in Chapters 14 and 15.

In Chapter 15 we used the primal–dual schema to derive a factor 2 algo-
rithm for the weighted vertex cover problem. This algorithm was particularly
easy to obtain because the relaxed dual complementary slackness conditions
were automatically satisfied in any integral solution. In this chapter, we will
use the primal–dual schema to obtain an algorithm for a generalization of this
problem (see Exercise 18.1). This time, enforcing relaxed dual complementary
slackness conditions will be a nontrivial part of the algorithm. Furthermore,
we will introduce the procedure of reverse delete, which will be used in several
other primal–dual algorithms.

18.1 The problems and their LP-relaxations

The following is an important generalization of the minimum s–t cut problem.
In fact, it also generalizes the multiway cut problem (Problem 4.1).

Problem18.1 (Minimum multicut) Let G=(V,E) be an undirected graph
with nonnegative capacity ce for each edge e ∈ E. Let {(s1, t1), . . . , (sk, tk)}
be a specified set of pairs of vertices, where each pair is distinct, but vertices
in different pairs are not required to be distinct. A multicut is a set of edges
whose removal separates each of the pairs. The problem is to find a minimum
capacity multicut in G.

The minimum s–t cut problem is the special case of multicut for k = 1.
Problem 18.1 generalizes multiway cut because separating terminals s1, . . . , sl
is equivalent to separating all pairs (si, sj), for 1 ≤ i < j ≤ l. This observation
implies that the minimum multicut problem is NP-hard even for k = 3, since
the multiway cut problem is NP-hard for the case of 3 terminals.

In Chapter 20 we will obtain an O(log k) factor approximation algorithm
for the minimum multicut problem. In this chapter, we will obtain a factor
2 algorithm for the special case when G is restricted to be a tree. Since G is

18.1 The problems and their LP-relaxations 147

a tree, there is a unique path between si and ti, and the multicut must pick
an edge on this path to disconnect si from ti. Although the problem looks
deceptively simple, Exercise 18.1 should convince the reader that this is not
so. The minimum multicut problem is NP-hard even if restricted to trees of
height 1 and unit capacity edges.

Since we want to apply LP-duality theory to design the algorithm, let us
first give an integer programming formulation for the problem and obtain its
LP-relaxation. Introduce a 0/1 variable de for each edge e ∈ E, which will be
set to 1 iff e is picked in the multicut. Let pi denote the unique path between
si and ti in the tree.

minimize
∑
e∈E

cede

subject to
∑
e∈pi

de ≥ 1, i ∈ {1, . . . , k}

de ∈ {0, 1}, e ∈ E

The LP-relaxation is obtained by replacing the constraint de ∈ {0, 1} by
de ≥ 0. As in the derivation of LP (13.2), there is no need to add the constraint
de ≤ 1 explicitly.

minimize
∑
e∈E

cede (18.1)

subject to
∑
e∈pi

de ≥ 1, i ∈ {1, . . . , k}

de ≥ 0, e ∈ E

We can now think of de as specifying the fractional extent to which edge e is
picked. A solution to this linear program is a fractional multicut: on each path
pi, the sum of fractions of edges picked is at least 1. In general, minimum
fractional multicut may be strictly cheaper than minimum integral multicut.
This is illustrated in Example 18.2.

We will interpret the dual program as specifying a multicommodity flow
in G, with a separate commodity corresponding to each vertex pair (si, ti).
Dual variable fi will denote the amount of this commodity routed along the
unique path from si to ti.

maximize
k∑
i=1

fi (18.2)

subject to
∑

i: e∈pi

fi ≤ ce, e ∈ E

fi ≥ 0, i ∈ {1, . . . , k}

148 18 Multicut and Integer Multicommodity Flow in Trees

The commodities are routed concurrently. The object is to maximize the sum
of the commodities routed, subject to the constraint that the sum of flows
routed through an edge is bounded by the capacity of the edge. Notice that
the sum of flows through an edge (u, v) includes flow going in either direction,
u to v and v to u.

By the weak duality theorem, a feasible multicommodity flow gives a lower
bound on the minimum fractional multicut and hence also on the minimum
integral multicut. By the LP-duality theorem, minimum fractional multicut
equals maximum multicommodity flow.

Example 18.2 Consider the following graph with unit capacity edges and
3 vertex pairs:

1/2

1/2

1/2

t ,s

t ,s s ,t 2 331

21

The arrows show how to send 3/2 units of flow by sending 1/2 unit of
each commodity. Picking each edge to the extent of 1/2 gives a multicut of
capacity 3/2 as well. These must be optimal solutions to the primal and dual
programs. On the other hand, any integral multicut must pick at least two
of the three edges in order to disconnect all three pairs. Hence, minimum
integral multicut has capacity 2. ✷

Finally, let us state one more problem.

Problem 18.3 (Integer multicommodity flow) Graph G and the source–
sink pairs are specified as in the minimum multicut problem; however, the
edge capacities are all integral. A separate commodity is defined for each
(si, ti) pair. The object is to maximize the sum of the commodities routed,
subject to edge capacity constraints and subject to routing each commodity
integrally.

Let us consider this problem when G is restricted to be a tree. If in (18.2),
the variables are constrained to be nonnegative integers, we would get an inte-
ger programming formulation for this problem. Clearly, the objective function
value of this integer program is bounded by that of the linear program (18.2).

18.2 Primal–dual schema based algorithm 149

Furthermore, the best fractional flow may be strictly larger. For instance, in
Example 18.2, maximum integral multicommodity flow is 1, since sending
1 unit of any of the three commodities will saturate two of the edges. This
problem is NP-hard, even for trees of height 3 (though the capacity has to
be arbitrary).

18.2 Primal–dual schema based algorithm

We will use the primal–dual schema to obtain an algorithm that simultane-
ously finds a multicut and an integer multicommodity flow that are within a
factor of 2 of each other, provided the given graph is a tree. Hence, we get
approximation algorithms for both problems, of factor 2 and 1/2, respectively.

Let us define the multicut LP to be the primal program. An edge e is
saturated if the total flow through it equals its capacity. We will ensure pri-
mal complementary slackness conditions, i.e., α = 1, and relax the dual
conditions with β = 2, where α and β are the parameters used in the general
description of the primal–dual schema given in Chapter 15.

Primal conditions: For each e ∈ E, de �= 0 ⇒∑
i: e∈pi

fi = ce.
Equivalently, any edge picked in the multicut must be saturated.

Relaxed dual conditions: For each i ∈ {1, . . . , k}, fi �= 0 ⇒∑
e∈pi

de ≤ 2.
Equivalently, at most two edges can be picked from a path carrying nonzero
flow. (Clearly, we must pick at least one edge from each (si, ti) path simply
to ensure the feasibility of the multicut.)

Let us root the tree G at an arbitrary vertex. Define the depth of vertex
v to be the length of the path from v to the root; the depth of the root is 0.
For two vertices u, v ∈ V , let lca(u, v) denote the lowest common ancestor of
u and v, i.e., the minimum depth vertex on the path from u to v. Let e1 and
e2 be two edges on a path from a vertex to the root. If e1 occurs before e2
on this path, then e1 is said to be deeper than e2.

The algorithm starts with an empty multicut and flow, and iteratively
improves the feasibility of the primal solution and the optimality of the dual
solution. In an iteration, it picks the deepest unprocessed vertex, say v, and
greedily routes integral flow between pairs that have v as their lowest com-
mon ancestor. When no more flow can be routed between these pairs, all
edges that were saturated in this iteration are added to the list D in arbi-
trary order. When all the vertices have been processed, D will be a multicut;
however, it may have redundant edges. To remove them, a reverse delete step
is performed: edges are considered in the reverse of the order in which they
were added to D, and if the deletion of edge e from D still gives a valid
multicut, e is discarded from D.

150 18 Multicut and Integer Multicommodity Flow in Trees

Algorithm 18.4 (Multicut and integer multicommodity flow in
trees)

1. Initialization: f ← 0; D ← ∅.
2. Flow routing: For each vertex v, in nonincreasing order of depth, do:

For each pair (si, ti) such that lca(si, ti) = v, greedily route integral
flow from si to ti.

Add to D all edges that were saturated in the current iteration in
arbitrary order.

3. Let e1, e2, . . . , el be the ordered list of edges in D.
4. Reverse delete: For j = l downto 1 do:

If D − {ej} is a multicut in G, then D ← D − {ej}.
5. Output the flow and multicut D.

Lemma 18.5 Let (si, ti) be a pair with nonzero flow, and let lca(si, ti) = v.
At most one edge is picked in the multicut from each of the two paths, si to
v and ti to v.

Proof: The argument is the same for each path. Suppose two edges e and
e′ are picked from the si–v path, with e being the deeper edge. Clearly, e′

must be in D all through reverse delete. Consider the moment during reverse
delete when edge e is being tested. Since e is not discarded, there must be
a pair, say (sj , tj), such that e is the only edge of D on the sj–tj path. Let
u be the lowest common ancestor of sj and tj . Since e′ does not lie on the
sj–tj path, u must be deeper than e′, and hence deeper than v. After u has
been processed, D must contain an edge from the sj–tj path, say e′′.�

�

����

�
��

�
��

�
��

❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧❧

❅
❅

❅
❅
❅❅
�
��

si ti

v

e′

e

sj tj

u

Since nonzero flow has been routed from si to ti, e must be added during
or after the iteration in which v is processed. Since v is an ancestor of u, e is
added after e′′. So e′′ must be in D when e is being tested. This contradicts
the fact that at this moment e is the only edge of D on the sj–tj path. ✷

18.2 Primal–dual schema based algorithm 151

Theorem 18.6 Algorithm 18.4 achieves approximation guarantees of factor
2 for the minimum multicut problem and factor 1/2 for the maximum integer
multicommodity flow problem on trees.

Proof: The flow found at the end of Step 2 is maximal, and since at this
point D contains all the saturated edges, D is a multicut. Since the reverse
delete step only discards redundant edges, D is a multicut after this step
as well. Thus, feasible solutions have been found for both the flow and the
multicut.

Since each edge in the multicut is saturated, the primal conditions are
satisfied. By Lemma 18.5, at most two edges have been picked in the multicut
from each path carrying nonzero flow. Therefore, the relaxed dual conditions
are also satisfied. Hence, by Proposition 15.1, the capacity of the multicut
found is within twice the flow. Since a feasible flow is a lower bound on the
optimal multicut, and a feasible multicut is an upper bound on the optimal
integer multicommodity flow, the claim follows. ✷

Finally, we obtain the following approximate min–max relation from The-
orem 18.6:

Corollary 18.7 On trees with integer edge capacities,

max
int. flow F

|F | ≤ min
multicut C

c(C) ≤ 2 · max
int. flow F

|F |,

where |F | represents the value of flow function F and c(C) represents the
capacity of multicut C.

In Chapter 20 we will present an O(log k) factor algorithm for the mini-
mum multicut problem in general graphs; once again, the lower bound used
is an optimal fractional multicut. On the other hand, no nontrivial approx-
imation algorithms are known for the integer multicommodity flow problem
in graphs more general than trees. As shown in Example 18.8, even for planar
graphs, the integrality gap of an LP analogous to (18.2) is lower bounded by
n/2, where n is the number of source–sink pairs specified.

Example 18.8 Consider the following planar graph with n source–sink pairs.
Every edge is of unit capacity. Any pair of paths between the ith and jth
source–sink pairs intersect in at least one unit capacity edge. The magnified
part shows how this is arranged at each intersection. Thus, sending one unit
of any commodity blocks all other commodities. On the other hand, half a
unit of each commodity can be routed simultaneously.

152 18 Multicut and Integer Multicommodity Flow in Trees

�
�❅❅

�

�

�

�

� � � � �

�

✐ ✫✪
✬✩

.........
.........

.........
.......

.....
.....
.....
.....
.....
.....
.s1

s3

t1 t3 tn−1 tnt2

s2

sn−1

sn

✷

18.3 Exercises

18.1 (Garg, Vazirani, and Yannakakis [98]) Give approximation factor pre-
serving reductions between the following pairs of problems:

(a) cardinality vertex cover and minimum multicut in trees of height 1 and
unit capacity edges,

(b) vertex cover with arbitrary weights and minimum multicut in trees of
height 1 and arbitrary edge capacities.

Hint: Given a vertex cover instance G, construct a height 1 tree that has a
leaf corresponding to each vertex of G and a source–sink pair corresponding
to each edge of G.

18.2 The following is a well-studied polynomial time solvable generalization
of the maximum matching problem. Given an undirected graph G = (V,E)
and a function b : V → Z+, a b-matching is a set of edges, E′ ⊆ E, with
associated multiplicities, m : E′ → Z+, such that each vertex v ∈ V has
at most b(v) edges incident at it, counting multiplicities. The size of this b-
matching is the sum of multiplicities of edges in E′. The maximum b-matching
problem is that of finding a b-matching of maximum size. Show that the
following pairs of problems are polynomial time equivalent:

(a) maximum integer multicommodity flow problem on trees of height 1 and
unit capacity edges, and the maximum matching problem,

(b) maximum integer multicommodity flow problem on trees of height 1 and
arbitrary capacity edges, and the maximum b-matching problem.

18.3 Exercises 153

18.3 (Garg, Vazirani, and Yannakakis [98]) Give a polynomial time algorithm
for computing a maximum integer multicommodity flow on unit capacity trees
of arbitrary height.
Hint: Apply dynamic programming, and use a subroutine for the maximum
matching problem.

18.4 If Step 2 of Algorithm 18.4 is modified to include only one saturated
edge after each iteration, show that the resulting set D may not even be a
multicut.

18.5 If Step 4 in Algorithm 18.4 is removed, or is changed to a forward
delete, show that its approximation factor is unbounded.

18.6 Modify step 4 in Algorithm 18.4 to: sort edges in D by decreasing
capacity and remove redundant edges in this order. What factor can you
prove for the modified algorithm?

18.7 Give tight examples for Algorithm 18.4 for both multicut and integer
multicommodity flow.

18.8 Prove that if e and e′ are both in D in Step 3 of Algorithm 18.4, and
e is deeper than e′, then e is added before or in the same iteration as e′.

18.9 Find the best integral and fractional multicut and the best multicom-
modity flow in the following graph. All capacities are 1, and the specified
pairs are (s1, t1), . . . , (s5, t5). Notice that the optimal fractional multicut is
not half integral. In contrast, the LP-relaxation of the multiway cut problem
always has a half-integral optimal solution (see Chapter 19).

t2

s4

s
2

3s

1t

t55s
s
1

t34t

154 18 Multicut and Integer Multicommodity Flow in Trees

18.4 Notes

Algorithm 18.4 is due to Garg, Vazirani, and Yannakakis [98]. For recent re-
sults on the integer multicommodity flow problem, see Guruswami, Khanna,
Rajaraman, Sheperd, and Yannakakis [118].

19 Multiway Cut

A simple combinatorial algorithm achieving an approximation factor of 2 −
2/k for the multiway cut problem, Problem 4.1, was presented in Chapter 4.
In this chapter we will use LP-rounding to improve the factor to 3/2.

In Chapter 14 we mentioned the remarkable property of half-integrality,
possessed by LP-relaxations of certain NP-hard problems. The multiway cut
problem and its generalization, the node multiway cut problem, possess this
property. We will present a proof of this fact in Section 19.3. This is the only
avenue known for obtaining a constant factor approximation algorithm for
the latter problem.

19.1 An interesting LP-relaxation

The usual LP-relaxation for multiway cut has an integrality gap of 2 − 2/k
(see Exercise 19.2). The key to an improved approximation guarantee is a
clever LP-relaxation.

Let ∆k denote the k−1 dimensional simplex. This is the k−1 dimensional
convex polytope in Rk defined by {x ∈ Rk | x ≥ 0 and

∑
i xi = 1}, where

xi is the ith coordinate of point x. The simplex ∆3 is shown below.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

(1,0,0)

(0,1,0)

(0,0,1)

The relaxation will map each vertex of G to a point in ∆k. Each of the k
terminals will be mapped to a distinct vertex of this simplex, i.e., to a unit
vector ei ∈ Rk. Let xv ∈ ∆k denote the point to which vertex v is mapped.
The length of an edge (u, v) ∈ E will be defined to be half the �1 distance
between xu and xv. The entire relaxation is:

156 19 Multiway Cut

minimize
∑

(u,v)∈E
c(u, v)d(u, v) (19.1)

subject to d(u, v) =
1
2

k∑
i=1

|xiu − xiv|, (u, v) ∈ E

xv ∈ ∆k, v ∈ V

xsi = ei, si ∈ S

In Lemma 19.1 we show that this relaxation is really a linear program. An
integral solution to this relaxation maps each vertex of G to a vertex of the
simplex, respectively. Each edge (u, v) has length either 0 or 1, depending on
whether u and v are mapped to the same or different vertices of the simplex.
Edges of length 1 form a multiway cut. The cost of this cut is the objective
function value of this integral solution. Thus, an optimal integral solution
corresponds to an optimal multiway cut.

Lemma 19.1 Relaxation (19.1) can be expressed as a linear program.

Proof: For each edge (u, v), replace the first constraint with:

xiuv ≥ xiu − xiv, 1 ≤ i ≤ k

xiuv ≥ xiv − xiu, 1 ≤ i ≤ k

d(u, v) =
1
2

k∑
i=1

xiuv

Since the objective function is being minimized, an optimal solution must
satisfy xiuv = |xiu − xiv|. The rest of the constraints are clearly linear. ✷

Example 19.2 In the example given below, the optimal fractional multiway
cut is cheaper than than the optimal integral cut. The mapping of vertices
to ∆3 in the optimal fractional solution is shown below; it achieves a cost of
7.5. On the other hand, the optimal integral solution costs 8.

� �

�� �

�

✁
✁
✁✁❆

❆
❆❆✑

✑
✑

✑✑ ◗
◗

◗
◗◗

❇
❇
❇
❇
❇✂
✂
✂
✂
✂

s1

s2 s3

1

1 1
2

2

2

22

2

u v

w
� �

�

� �

� ❙
❙

❙
❙

❙
❙

❙
❙❙�

�
�

�
�

�
�

��

✪
✪

✪
✪❡

❡
❡

❡

s1

s2 s3w

u v

(1, 0, 0)

(0, 0, 1)(0, 1, 0)

(.5, .5, 0) (.5, 0, .5)

(0, .5, .5) ✷

19.2 Randomized rounding algorithm 157

The following property will greatly simplify matters:

Lemma 19.3 Let x be a feasible solution to relaxation (19.1). We may as-
sume w.l.o.g. that for each edge (u, v) ∈ E, xu and xv differ in at most two
coordinates.

Proof: We will divide edges by adding new vertices in such a way that this
property holds and the cost of the solution remains unchanged.

Suppose that (u, v) ∈ E and that xu and xv differ in more than two
coordinates. Replace this edge by two new edges (u,w) and (w, v), where w
is a new vertex. Each of the new edges is of the same cost as c(u, v), thereby
ensuring that the cost of the integral optimal solution is unchanged. We show
below how to enforce d(u, v) = d(u,w) + d(w, v), thereby ensuring that the
cost of the fractional solution remains unchanged.

Consider the coordinates in which xu and xv differ. Let i be the coordinate
in which the difference is minimum. Without loss of generality, assume xiu <
xiv. Let α = xiv − xiu. There must be a coordinate j such that xju ≥ xjv + α.
We will define point xw as follows. The ith and jth coordinates of xw are
xiw = xiu and xjw = xjv + α. The remaining coordinates of xw are the same as
those of xv. Clearly, xw ∈ ∆k and d(u, v) = d(u,w) + d(w, v).

Notice that u and w differ in two coordinates and w and v differ in fewer
coordinates than u and v. Therefore, each edge of E requires at most k − 2
such subdivisions to enforce the required property. ✷

19.2 Randomized rounding algorithm

Let x be an optimal solution to relaxation (19.1) satisfying the property
stated in Lemma 19.3, and let OPTf denote its cost. Let Ei denote the
subset of edges whose endpoints differ in coordinate i, i.e., Ei = {(u, v) ∈
E | xiu �= xiv}. Clearly, each edge e with d(e) > 0 will lie in two of these sets.
Let Wi =

∑
e∈Ei

c(e)d(e). Renumber the terminals so that Wk is the largest
of W1, . . . ,Wk. For ρ ∈ (0, 1), define

B(si, ρ) = {v ∈ V | xiv ≥ ρ}.

Algorithm 19.4 operates as follows. It picks ρ at random in (0, 1) and
σ at random from the two permutations (1, 2, . . . , k − 1, k) and (k − 1, k −
2, . . . , 1, k). It uses ρ and σ to construct a partition of V into k sets, V1, . . . , Vk,
ensuring that si ∈ Vi. Edges running between these sets will form the multi-
way cut.

If σ is the first (second) permutation, then these sets are constructed in the
order V1, V2, . . . , Vk (Vk−1, Vk−2, . . . , V1, Vk). If ρ > 1/2, the sets B(si, ρ) are
pairwise disjoint. Observe that in this case the partition is not affected by σ,

158 19 Multiway Cut

because Vi is simply B(si, ρ) for 1 ≤ i ≤ k−1, and Vk = V −(V1∪· · ·∪Vk−1).
If ρ ≤ 1/2, the sets B(si, ρ) overlap and σ plays a role, as illustrated in the
figure below for k = 3.

�

�

� �

�

� �

�

�

✔
✔
✔
✔
✔
✔
✔✔ ❚

❚
❚
❚
❚
❚
❚❚ ✔

✔
✔

✔
✔

✔
✔✔ ❚

❚
❚

❚
❚

❚
❚❚ ✔

✔
✔

✔
✔

✔
✔✔ ❚

❚
❚

❚
❚

❚
❚❚

❚
❚
❚

❚
❚

❚
❚
❚
❚
❚❚

s1

s2 s3

s1

s2 s3

s1

s2 s3

ρ ≥ 1/2 ρ < 1/2, σ = (1, 2, 3) ρ < 1/2, σ = (2, 1, 3)

V1

V2
V3

V1

V2 V3

V1

V2

V3

Algorithm 19.4 (Multiway cut)

1. Compute an optimal solution, x, to relaxation (19.1).
2. Renumber the terminals so that Wk is largest among W1, . . . ,Wk.
3. Pick uniformly at random ρ ∈ (0, 1) and

σ ∈ {(1, 2, . . . , k − 1, k), (k − 1, k − 2, . . . , 1, k)}.
4. For i = 1 to k − 1: Vσ(i) ← B(si, ρ)−⋃

j<i Vσ(j).
5. Vk ← V −⋃

i<k Vi.
6. Let C be the set of edges that run between sets in the partition

V1, . . . , Vk. Output C.

We will show that the expected cost of the multiway cut produced by the
algorithm, E[c(C)], is at most (1.5− 1/k) ·OPTf . The following lemma will
be critical.

Lemma 19.5 If e ∈ E − Ek, Pr[e ∈ C] ≤ 1.5 d(e),
and if e ∈ Ek, Pr[e ∈ C] ≤ d(e).

Proof: Suppose e ∈ E−Ek. Let e = (u, v), and let i and j be the coordinates
in which xu and xv differ. There are two cases: the intervals [xiu, x

i
v] and

[xjv, x
j
u] either overlap or they are disjoint. These two cases are shown below.

Note that in either case the two intervals have the same length since xiv−xiu =
xju − xjv = d(e). Intervals α and β are defined in the figure below for the two
cases.

19.2 Randomized rounding algorithm 159

✛ ✲ ✛ ✲

xiu xiv xjv xju

α β

0 1

✛ ✲✛ ✲

xiu xjv xiv xju

α β

0 1

Observe that the vertices u and v can end up in one of three sets, Vi, Vj ,
or Vk. Furthermore, if ρ ∈ [0, 1] − (α ∪ β), then both vertices will end up in
the same set, and edge e will not be in the cut. Clearly, Pr[ρ ∈ (α ∪ β)] =
|α|+ |β| ≤ 2d(e).

The critical observation that leads to the desired bound is that in the
event ρ ∈ α and σ(j) < σ(i), u and v will both be put in the set Vj , and
thus e will not be in the cut. Clearly, the probability of this event is |α|/2.
Therefore

Pr[e ∈ C] = |β|+ |α|/2 ≤ 1.5 d(e).

Next, suppose that e ∈ Ek, and that its endpoints differ in coordinates i
and k. In this case σ(i) < σ(k), and u and v will end up in different sets only
if ρ falls between xiu and xiv. The probability of this is d(e). ✷

Lemma 19.6 The multiway cut, C, output by Algorithm 19.4 satisfies

E[c(C)] ≤ (1.5− 1/k)OPTf .

Proof: Clearly, C forms a multiway cut. Now, OPTf =
∑

e c(e)d(e). Since
each edge with nonzero length is in two of the sets Ei,

∑k
i=1 Wi = 2 ·OPTf .

Since k was chosen so that Wk is the largest of these sets, Wk ≥ (2/k)·OPTf .
Therefore

E[c(C)] =
∑
e∈E

c(e)Pr[e ∈ C] =
∑

e∈E−Ek

c(e)Pr[e ∈ C] +
∑
e∈Ek

c(e)Pr[e ∈ C]

≤ 1.5
k−1∑
i=1

Wi + Wk = 1.5
k∑
i=1

Wi − 0.5Wk

≤ (1.5− 1/k) ·OPTf

where the first inequality follows from Lemma 19.5. ✷

160 19 Multiway Cut

Lemma 19.6 places an upper bound of 1.5− 1/k on the integrality gap of
relaxation 19.1 (see the notes in Section 19.5 for references to a slightly better
result). The worst lower bound know on the integrality gap is 8/(7 + 1

k−1);
Example 19.2 places a lower bound of 16/15.

The bound on the expected weight of the multiway cut established in
Lemma 19.6 can be converted into a high probability statement using stan-
dard techniques (see Exercises 1.10 and 19.4). Hence we get

Theorem 19.7 There is a 3/2 factor randomized approximation algorithm
for the multiway cut problem.

19.3 Half-integrality of node multiway cut

The following is a generalization of the multiway cut problem, in the sense
that there is an approximation factor preserving reduction from the multiway
cut problem to it (see Exercise 19.13).

Problem 19.8 (Node multiway cut) Given a connected, undirected graph
G = (V,E) with an assignment of costs to vertices, c : V → R+, and a set of
terminals S = {s1, s2, . . . , sk} ⊆ V that form an independent set in G, a node
multiway cut is a subset of V − S whose removal disconnects the terminals
from each other. The node multiway cut problem asks for the minimum cost
such subset.

We will show that the relaxation to the following integer program always
has a half-integral optimal solution. A factor 2−2/k approximation algorithm
will follow from this fact (see Exercise 19.11). In this program we have intro-
duced a 0/1 variable dv for each vertex v ∈ V − S, which indicates whether
vertex v has been picked. Let P denote the set of all paths running between
distinct terminals. There is a constraint for each path p in P – it ensures that
at least one vertex is picked from each path.

minimize
∑

v∈V−S
cvdv

subject to
∑
v∈p

dv ≥ 1, p ∈ P

dv ∈ {0, 1}, v ∈ V − S

The LP-relaxation is given below. As before, we will interpret dv’s as
distance labels. With respect to an assignment to these distance labels, let us
define the length of a path to be the sum of distance labels of nonterminals
on this path. The distance between a pair of vertices will be the length of
the shortest path between them. A solution, d, is feasible only if the distance
between every pair of terminals is at least 1.

19.3 Half-integrality of node multiway cut 161

minimize
∑

v∈V−S
cvdv (19.2)

subject to
∑
v∈p

dv ≥ 1, p ∈ P

dv ≥ 0, v ∈ V − S

As in Chapter 18, the dual will be interpreted as seeking a maximum
multicommodity flow. The commodities flow between distinct terminals, and
the constraint is that the total amount of flow through a vertex be bounded
by its cost.

maximize
∑
p∈P

fp (19.3)

subject to
∑
p:v∈p

fp ≤ ce, v ∈ V − S

fp ≥ 0, p ∈ P

Let d be an optimal solution to LP (19.2). We will show how to obtain,
efficiently, a half-integral optimal solution from d . For the purposes of proof,
let f be an optimal solution to the dual LP. Complementary slackness con-
ditions give:

Primal conditions: For each v ∈ V −S, if dv > 0 then v must be saturated.

Dual conditions: For each path p, if fp > 0 then the length of p is exactly
1.

Consider graph G with distance labels on vertices v ∈ V − S specified
by d. For each terminal si, define its region Si to be the set of vertices
reachable from si by paths of length zero (we will assume that si ∈ Si).
Define the boundary, Bi, of Si to be all vertices that are adjacent to Si, i.e.,
Bi = {v ∈ Si | for some u ∈ Si, (u, v) ∈ E}. The feasibility of d ensures that
the k regions are disjoint and the boundaries do not contain any terminals.

Claim 19.9 Suppose v ∈ Bi ∩Bj for i �= j. Then dv = 1.

Proof: Clearly there is a path from si to sj on which v is the only vertex
having a positive distance label. The claim follows from the feasibility of d.
✷

Let M =
⋃k
i=1 Bi be the set of boundary vertices. Partition this into two

sets: M int being boundary vertices that occur in two or more boundary sets,
and Mdisj being the rest; each vertex in Mdisj is in a unique boundary set.
By Claim 19.9, each vertex in M int has distance label of 1.

162 19 Multiway Cut

Lemma 19.10 Let p be a path between two distinct terminals such that fp >
0. Then, from the vertices in M , p uses either exactly one vertex of M int or
exactly two vertices of Mdisj.

Proof: By the dual complementary slackness condition, the length of p must
be exactly 1. Thus, if p uses a vertex of M int, then it cannot have any other
vertices of M on it.

Suppose p uses three or more vertices of Mdisj. Assume that p runs from
si to sj and that u and w are the first and last vertices of Mdisj on p,
respectively. Let v be any intermediate vertex of Mdisj on p. Since v ∈ Mdisj,
v must be in a unique boundary, say Bk; k = i or k = j are possible.

s

s
u

v

w

si

k

j

Let q be a path connecting v to sk via vertices in Sk; such a path must
exist since v ∈ Bk. Now consider the following two paths: the first consists of
the part of the path p from si to v followed by q, and the second consists of
the reverse of q followed by the part of p from v to sj . At least one of these
is a valid path running between distinct terminals (even if k = i or k = j).
Moreover, since it is missing at least one of the positive distance label vertices
of p, it must have length strictly less than 1. This contradicts the feasibility
of d. The lemma follows. ✷

Let h be a solution to LP (19.2) that assigns distance labels of 1 to each
vertex in M int, 1/2 to each vertex in Mdisj, and 0 to all remaining vertices.

Lemma 19.11 h is an optimal solution to LP (19.2).

Proof: Any valid path, p, from terminal si to sj must use vertices of both
boundary sets Bi and Bj . Suppose it uses v ∈ Bi∩Bj . By definition v ∈ M int,
and so hv = 1. Otherwise, it uses two vertices of Mdisj. In either case the
length of p is at least 1, thus showing that h is a feasible solution.

Next we will show that the objective function value of h is the same as
that of flow f , thereby showing that h is optimal. Partition paths carrying
nonzero flow in f into two sets: P1 consists of paths that use one vertex of
M int and P2 consists of paths that use two vertices of Mdisj. By Lemma 19.10
these are the only two possibilities. By the primal complementary slackness
conditions and the optimality of d, each vertex in M is saturated by f .

19.4 Exercises 163

Therefore, the total flow carried by paths in P1 is
∑

v∈M int cv and by paths
in P2 is 1

2

∑
v∈Mdisj cv. Hence the total flow is

∑
v∈M int

cv +
1
2

∑
v∈Mdisj

cv =
∑

v∈V−S
hvcv.

This proves the lemma. ✷

Clearly h can be obtained from an optimal solution, d, to LP (19.2) in
polynomial time. This gives:

Theorem 19.12 LP (19.2) always has a half-integral solution. Moreover,
any optimal solution can be converted into such a solution in polynomial
time.

19.4 Exercises

In Chapter 4 we presented a 2− 2/k factor algorithm for the minimum mul-
tiway cut problem by comparing the solution found to the integral optimal
solution. In the next two exercises we develop an algorithm with the same
guarantee using LP-duality.

19.1 Given terminals s1, . . . , sk, consider the multicommodity flow problem
in which each pair of terminals can form a source–sink pair. Thus there are(
k
2

)
commodities. Give an LP for maximizing this multicommodity flow and

obtain the dual LP. The dual seeks a distance label assignment for edges
satisfying the triangle inequality and ensures that the distance between any
two terminals is at least 1. An optimal solution to the dual can be viewed as
a fractional multiway cut.

19.2 Consider the following algorithm for finding a multiway cut. Solve the
dual LP to obtain an optimal fractional multiway cut. This gives a distance
label assignment, say d. Pick ρ at random in the interval [0, 1

2]. An edge
(u, v) is picked iff for some terminal s, d(u, s) ≤ ρ ≤ d(v, s). Prove that
the expected cost of the cut picked is at most twice the optimal fractional
multiway cut. Derandomize this algorithm, and give a modification to make
it a factor 2− 2/k algorithm.
Hint: Show that for each edge (u, v), the probability that it is picked is
bounded by 2 · d(u, v).

19.3 In an attempt to improve the factor of the previous algorithm, suppose
we choose ρ at random in the interval [0, 1]. What goes wrong? How is this
rectified in Algorithm 19.4?

164 19 Multiway Cut

19.4 Derive Theorem 19.7 from Lemma 19.6.
Hint: Lemma 19.6 implies that Pr[c(C) ≤ 1.5 · OPTf] ≥ 2/k ≥ 2/n. Run
Algorithm 19.4 polynomially many times and output the best cut.

19.5 How does the approximation guarantee of the algorithm change if σ is
picked to be a random permutation from Sk?

19.6 (Y. Rabani) For the case k = 3, replace the randomized rounding
procedure of Algorithm 19.4 with the following. Pick ρ1 and ρ2 independently
and uniformly from (0, 1). Pick one of the three dimensions at random, say i.
Merge with si all nonterminals v satisfying xiv ≥ ρ1. Arbitrarily pick one of
the remaining two dimensions, say j, and denote the third dimension by k.
Merge with sj all remaining nonterminals v satisfying xjv+xiv/2 ≥ ρ2. Finally,
merge with sk all remaining nonterminals. Show that this modified algorithm
achieves an approximation guarantee of 7/6 for the 3-way cut problem.

19.7 We present another relaxation for the multiway cut problem for which
the worst integrality gap known is no worse than that for LP (19.1) (see
also Chapter 30). Given an undirected graph G = (V,E) with costs on edges,
obtain the directed graph H by replacing each edge (u, v) of G by two directed
edges (u → v) and (v → u), each having the same cost as (u, v). Assign
a 0/1 indicator variable de to each edge e in H. Suppose the terminals are
numbered s1, . . . , sk in some order. Let P be the collection of all simple paths
from a lower-numbered terminal to a higher-numbered terminal. Consider
the following bidirected integer programming formulation for the multiway
cut problem.

minimize
∑
e∈H

c(e)de (19.4)

subject to
∑
e∈p

de ≥ 1, p ∈ P

de ∈ {0, 1}, e ∈ H

1. Show that an optimal solution to IP (19.4) yields an optimal solution to
the multiway cut problem.

2. Obtain the LP-relaxation and dual program. Give a good physical inter-
pretation of the dual.

3. Show that the graph given in Example 19.2 has an integrality gap of
16/15 for this relaxation as well (by showing a primal and dual solution
of cost 7.5).

4. Show that the cost of the optimal solution to the integer program and
the relaxation is independent of the ordering imposed on the terminals.

19.8 Consider Algorithm 4.3 for the multiway cut problem. Show that the
analogous algorithm for the node multiway cut problem, based on isolating

19.4 Exercises 165

cuts, does not achieve a constant factor. What is the best factor you can
prove for this algorithm?

19.9 The multiway cut problem also possesses the half-integrality property.
Give an LP for the multiway cut problem similar to LP (19.2), and prove
this fact.

19.10 Show that the lower bound on OPT given by LP (19.2) can be smaller
by a factor of 2− 2/k by giving a graph in which the optimal node multiway
cut is 2 − 2/k times bigger than the maximum flow.

19.11 Theorem 19.12 leads directly to a factor 2 approximation algorithm
for the node multiway cut problem, by rounding up the halves in a half-
integral solution. Obtain a factor 2 − 2/k algorithm, and give a family of
tight examples for this algorithm.
Hint: Not all vertices of Mdisj are required for obtaining a multiway cut.
For the tight example, consider the following graph.

s1

k+ε

...

2

2
2

2

s2

s3

sk

19.12 Consider the following problem.

Problem 19.13 (Directed multiway cut) Given a directed graph G =
(V,E) with an assignment of capacities to edges, c : E → R+, and a set of
terminals S = {s1, s2, . . . , sk} ⊆ V , a directed multiway cut is a set of edges
whose removal ensures that the remaining graph has no path from si to sj for
each pair of distinct terminals si and sj . The directed multiway cut problem
asks for the minimum cost such set.

Obtain an LP-relaxation for this problem similar to LP (19.2). The dual
can be interpreted as a directed multicommodity flow LP. Find the optimal
fractional directed multiway cut and flow in the following example:

166 19 Multiway Cut

21s s

Notice that unlike LP (19.2), this relaxation does not always have an
optimal half-integral solution.

19.13 Let us define the following two problems:

Problem 19.14 (Subset feedback edge set) Given a connected, undi-
rected graph G = (V,E) with an assignment of weights to edges, w : E → R+,
and a set of special vertices S = {s1, s2, . . . , sk} ⊆ V , a subset feedback edge
set is a set of edges whose removal ensures that the remaining graph has no
cycle containing a special vertex. The subset feedback edge set problem asks
for the minimum weight such set.

Problem 19.15 (Subset feedback vertex set) Given a connected,
undirected graph G = (V,E) with an assignment of weights to vertices,
w : V → R+, and a set of special vertices S = {s1, s2, . . . , sk} ⊆ V , a
subset feedback vertex set is a subset of V − S whose removal ensures that
the remaining graph has no cycle containing a special vertex. The subset
feedback vertex set problem asks for the minimum weight such set.

These and previously introduced problems are related by approximation
factor preserving reductions given in the following figure (each arrow rep-
resents such a reduction). Give these reductions. For a definition of such
reductions, see Section A.3.1.

Vertex Cover Multiway Cut

Multicut in Trees Node Multiway Cut Subset Feedback Edge Set

Feedback Vertex Set

Directed Multiway Cut

Subset Feedback Vertex Set

✟✟✟✟✙

❄

❍❍❍❍❥
✟✟✟✟✙

❍❍❍❍❥

❄
�

�
�

�
�

�
�

��✠
◗
◗◗%

19.5 Notes 167

The current best factors known for multiway cut and subset feedback
vertex set are 1.34 and 8, respectively. For the rest of the problems, the
current best factor is 2.

19.5 Notes

Algorithm 19.4 is due to Calinescu, Karloff, and Rabani [36]. The current
best guarantee known for the multiway cut problem is 1.3438, due to Karger,
Klein, Stein, Thorup, and Young [157]. This is also the best upper bound
known on the integrality gap of the relaxation used. Freund and Karloff
[87] give a family of instances achieving a lower bound of 8/(7 + 1

k−1) on
the integrality gap; Example 19.2 is from their paper. Theorem 19.12 is due
to Garg, Vazirani, and Yannakakis [96]. For currently best approximation
algorithms known for directed multiway cut, subset feedback edge set, and
subset feedback vertex set, see Naor and Zosin [210], Even, Naor, Schieber,
and Zosin [76], and Even, Naor, and Zosin [77], respectively.

20 Multicut in General Graphs

The importance of min–max relations to combinatorial optimization was
mentioned in Chapter 1. Perhaps the most useful of these is the celebrated
max-flow min-cut theorem. Indeed, much of flow theory, and the theory of
cuts in graphs, has been built around this theorem. It is not surprising, there-
fore, that a concerted effort was made to obtain generalizations of this theo-
rem to the case of multiple commodities.

There are two such generalizations. In the first one, the objective is to
maximize the sum of the commodities routed, subject to flow conservation
and capacity constraints. In the second generalization, a demand dem(i) is
specified for each commodity i, and the objective is to maximize f , called
throughput, such that for each i, f · dem(i) amount of commodity i can
be routed simultaneously. We will call these sum multicommodity flow and
demands multicommodity flow problems, respectively. Clearly, for the case
of a single commodity, both problems are the same as the maximum flow
problem.

Each of these generalizations is associated with a fundamental NP-hard
cut problem, the first with the minimum multicut problem, Problem 18.1,
and the second with the sparsest cut problem, Problem 21.2. In each case
an approximation algorithm for the cut problem gives, as a corollary, an
approximate max-flow min-cut theorem. In this chapter we will study the
first generalization; the second is presented in Chapter 21. We will obtain an
O(log k) factor approximation algorithm for the minimum multicut problem,
where k is the number of commodities. A factor 2 algorithm for the special
case of trees was presented in Chapter 18.

20.1 Sum multicommodity flow

Problem 20.1 (Sum multicommodity flow) Let G = (V,E) be an
undirected graph with nonnegative capacity ce for each edge e ∈ E. Let
{(s1, t1), . . . , (sk, tk)} be a specified set of pairs of vertices where each pair
is distinct, but vertices in different pairs are not required to be distinct. A
separate commodity is defined for each (si, ti) pair. For convenience, we will
think of si as the source and ti as the sink of this commodity. The objective

20.1 Sum multicommodity flow 169

is to maximize the sum of the commodities routed. Each commodity must
satisfy flow conservation at each vertex other than its own source and sink.
Also, the sum of flows routed through an edge, in both directions combined,
should not exceed the capacity of this edge.

Let us first give a linear programming formulation for this problem. For
each commodity i, let Pi denote the set of all paths from si to ti in G, and
let P =

⋃k
i=1 Pi. The LP will have a variable fp for each p ∈ P , which will

denote the flow along path p. The endpoints of this path uniquely specify
the commodity that flows on this path. The objective is to maximize the
sum of flows routed on these paths, subject to edge capacity constraints.
Notice that flow conservation constraints are automatically satisfied in this
formulation. The program has exponentially many variables; however, that
is not a concern since we will use it primarily to obtain a clean formulation
of the dual program.

maximize
∑
p∈P

fp (20.1)

subject to
∑
p:e∈p

fp ≤ ce, e ∈ E

fp ≥ 0, p ∈ P

Let us obtain the dual of this program. For this, let de be the dual variable
associated with edge e. We will interpret these variables as distance labels of
edges.

minimize
∑
e∈E

cede (20.2)

∑
e∈p

de ≥ 1, p ∈ P

de ≥ 0, e ∈ E

The dual program tries to find a distance label assignment to edges so
that on each path p ∈ P , the distance labels of edges add up to at least 1.
Equivalently, a distance label assignment is feasible iff for each commodity i,
the shortest path from si to ti has length at least 1.

Notice that the programs (18.2) and (18.1) are special cases of the two
programs presented above for the restriction that G is a tree.

The following remarks made in Chapter 18 hold for the two programs pre-
sented above as well: an optimal integral solution to LP (20.2) is a minimum
multicut, and an optimal fractional solution can be viewed as a minimum
fractional multicut. By the LP-duality theorem, minimum fractional multi-
cut equals maximum multicommodity flow and, as shown in Example 18.2,
it may be strictly smaller than minimum integral multicut.

170 20 Multicut in General Graphs

This naturally raises the question whether the ratio of minimum multicut
and maximum multicommodity flow is bounded. Equivalently, is the integral-
ity gap of LP (20.2) bounded? In the next section we present an algorithm for
finding a multicut within an O(log k) factor of the maximum flow, thereby
showing that the gap is bounded by O(log k).

20.2 LP-rounding-based algorithm

First notice that the dual program (20.2) can be solved in polynomial time
using the ellipsoid algorithm, since there is a simple way of obtaining a sepa-
ration oracle for it: simply compute the length of a minimum si–ti path, for
each commodity i, w.r.t. the current distance labels. If all these lengths are
≥ 1, we have a feasible solution. Otherwise, the shortest such path provides
a violated inequality. Alternatively, the LP obtained in Exercise 20.1 can be
solved in polynomial time. Let de be the distance label computed for each
edge e, and let F =

∑
e∈E cede.

Our goal is to pick a set of edges of small capacity, compared to F , that
is a multicut. Let D be the set of edges with positive distance labels, i.e.,
D = {e | de > 0}. Clearly, D is a multicut; however, its capacity may be
very large compared to F (Exercises 20.3 and 20.4). How do we pick a small
capacity subset of D that is still a multicut? Since the optimal fractional
multicut is the most cost-effective way of disconnecting all source–sink pairs,
edges with large distance labels are more important than those with small
distance labels for this purpose. The algorithm described below indirectly
gives preference to edges with large distance labels.

The algorithm will work on graph G = (V,E) with edge lengths given by
de. The weight of edge e is defined to be cede. Let dist(u, v) denote the length
of the shortest path from u to v in this graph. For a set of vertices S ⊂ V ,
δ(S) denotes the set of edges in the cut (S, S), c(S) denotes the capacity
of this cut, i.e., the total capacity of edges in δ(S), and wt(S) denotes the
weight of set S, which is roughly the sum of weights of all edges having both
endpoints in S (a more precise definition is given below).

The algorithm will find disjoint sets of vertices, S1, . . . , Sl, l ≤ k, in G,
called regions, such that:

• No region contains any source–sink pair, and for each i, either si or ti is
in one of the regions.

• For each region Si, c(Si) ≤ εwt(Si), where ε is a parameter that will be
defined below.

By the first condition, the union of the cuts of these regions, i.e., M =
δ(S1) ∪ δ(S2) ∪ . . . ∪ δ(Sl), is a multicut, and by the second condition, its
capacity c(M) ≤ εF . (When we give the precise definition of wt(S), this
inequality will need to be modified slightly.)

20.2 LP-rounding-based algorithm 171

20.2.1 Growing a region: the continuous process

The sets S1, . . . , Sl are found through a region growing process. Let us first
present a continuous process to clarify the issues. For the sake of time effi-
ciency, the algorithm itself will use a discrete process (see Section 20.2.2).

Each region is found by growing a set starting from one vertex, which is
the source or sink of a pair. This will be called the root of the region. Suppose
the root is s1. The process consists of growing a ball around the root. For
each radius r, define S(r) to be the set of vertices at a distance ≤ r from s1,
i.e., S(r) = {v | dist(s1, v) ≤ r}. S(0) = {s1}, and as r increases continuously
from 0, at discrete points, S(r) grows by adding vertices in increasing order
of their distance from s1.

Lemma 20.2 If the region growing process is terminated before the radius
becomes 1/2, then the set S that is found contains no source–sink pair.

Proof: The distance between any pair of vertices in S(r) is ≤ 2r. Since for
each commodity i, dist(si, ti) ≥ 1, the lemma follows. ✷

For technical reasons that will become clear in Lemma 20.3 (see also
Exercises 20.5 and 20.6), we will assign a weight to the root, wt(s1) = F/k.
The weight of S(r) is the sum of wt(s1) and the sum of the weights of edges,
or parts of edges, in the ball of radius r around s1. Let us state this formally.
For edges e having at least one endpoint in S(r), let qe denote the fraction
of edge e that is in S(r). If both endpoints of e are in S(r), then qe = 1.
Otherwise, suppose e = (u, v) with u ∈ S(r) and v �∈ S(r). For such edges,

qe =
r − dist(s1, u)

dist(s1, v)− dist(s1, u)
.

Define the weight of region S(r),

wt(S(r)) = wt(s1) +
∑

cedeqe,

where the sum is over all edges having at least one endpoint in S(r).
We want to fix ε so that we can guarantee that we will encounter the

condition c(S(r)) ≤ εwt(S(r)) for r < 1/2. The important observation is
that at each point the rate at which the weight of the region is growing is at
least c(S(r)). Until this condition is encountered,

d wt(S(r)) ≥ c(S(r)) dr > εwt(S(r)) dr.

Exercise 20.5 will help the reader gain some understanding of such a process.

Lemma 20.3 Picking ε = 2 ln(k + 1) suffices to ensure that the condition
c(S(r)) ≤ εwt(S(r)) will be encountered before the radius becomes 1/2.

172 20 Multicut in General Graphs

Proof: The proof is by contradiction. Suppose that throughout the region
growing process, starting with r = 0 and ending at r = 1/2, c(S(r)) >
εwt(S(r)). At any point the incremental change in the weight of the region
is

d wt(S(r)) =
∑
e

cede dqe.

Clearly, only edges having one endpoint in S(r) will contribute to the sum.
Consider such an edge e = (u, v) such that u ∈ S(r) and v �∈ S(r). Then,

cede dqe = ce
de

dist(s1, v)− dist(s1, u)
dr.

Since dist(s1, v) ≤ dist(s1, u) + de, we get de ≥ dist(s1, v) − dist(s1, u), and
hence cede dqe ≥ ce dr. This gives

d wt(S(r)) ≥ c(S(r)) dr > εwt(S(r)) dr.

As long as the terminating condition is not encountered, the weight of the
region increases exponentially with the radius. The initial weight of the region
is F/k and the final weight is at most F + F/k. Integrating we get

∫ F+ F
k

F
k

1
wt(S(r))

d wt(S(r)) >

∫ 1
2

0
ε dr.

Therefore, ln(k + 1) > 1
2ε. However, this contradicts the assumption that

ε = 2 ln(k + 1), thus proving the lemma. ✷

20.2.2 The discrete process

The discrete process starts with S = {s1} and adds vertices to S in increasing
order of their distance from s1. Essentially, it involves executing a shortest
path computation from the root. Clearly, the sets of vertices found by both
processes are the same.

The weight of region S is redefined for the discrete process as follows:

wt(S) = wt(s1) +
∑
e

cede,

where the sum is over all edges that have at least one endpoint in S, and
wt(s1) = F/k. The discrete process stops at the first point when c(S) ≤
εwt(S), where ε is again 2 ln(k + 1). Notice that for the same set S, wt(S)
in the discrete process is at least as large as that in the continuous process.

20.2 LP-rounding-based algorithm 173

Therefore, the discrete process cannot terminate with a larger set than that
found by the continuous process. Hence, the set S found contains no source–
sink pair.

20.2.3 Finding successive regions

The first region is found in graph G, starting with any one of the sources
as the root. Successive regions are found iteratively. Let G1 = G and S1
be the region found in G1. Consider a general point in the algorithm when
regions S1, . . . , Si−1 have already been found. Now, Gi is defined to be the
graph obtained by removing vertices S1 ∪ . . . ∪ Si−1, together with all edges
incident at them from G.

If Gi does not contain a source–sink pair, we are done. Otherwise, we pick
the source of such a pair, say sj , as the root, define its weight to be F/k,
and grow a region in Gi. All definitions, such as distance and weight, are
w.r.t. graph Gi. We will denote these with a subscript of Gi. Also, for a set
of vertices S in Gi, cGi(S) will denote the total capacity of edges incident at
S in Gi, i.e., the total capacity of edges in δGi

(S). As before, the value of ε is
2 ln(k+1), and the terminating condition is cGi(Si) ≤ εwtGi(Si). Notice that
in each iteration the root is the only vertex that is defined to have nonzero
weight.

t2

s4 1t

3

2G

t

(S)3

2

δ

δ (S)2

1G
δ (S)1

G

S 2S

3S

s2

1 t4

3s
1s

In this manner, we will find regions S1, . . . , Sl, l ≤ k, and will output the
set M = δG1(S1) ∪ . . . ∪ δGl

(Sl). Since edges of each cut are removed from
the graph for successive iterations, the sets in this union are disjoint, and
c(M) =

∑
i cGi(Si).

The algorithm is summarized below. Notice that while a region is growing,
edges with large distance labels will remain in its cut for a longer time, and

174 20 Multicut in General Graphs

thus are more likely to be included in the multicut found. (Of course, the
precise time that an edge remains in the cut is given by the difference between
the distances from the root to the two endpoints of the edge.) As promised,
the algorithm indirectly gives preference to edges with large distance labels.

Algorithm 20.4 (Minimum multicut)

1. Find an optimal solution to the LP (20.2), thus obtaining distance labels
for edges of G.

2. ε ← 2 ln (k + 1) , H ← G, M ← ∅;
3. While ∃ a source–sink pair in H do:

Pick such a source, say sj ;
Grow a region S with root sj until cH(S) ≤ εwtH(S);
M ← M ∪ δH(S);
H ← H with vertices of S removed;

4. Output M .

Lemma 20.5 The set M found is a multicut.

Proof: We need to prove that no region contains a source–sink pair. In each
iteration i, the sum of weights of edges of the graph and the weight defined
on the current root is bounded by F +F/k. By the proof of Lemma 20.3, the
continuous region growing process is guaranteed to encounter the terminating
condition before the radius of the region becomes 1/2. Therefore, the distance
between a pair of vertices in the region, Si, found by the discrete process is
also bounded by 1. Notice that we had defined these distances w.r.t. graph
Gi. Since Gi is a subgraph of G, the distance between a pair of vertices in G
cannot be larger than that in Gi. Hence, Si contains no source–sink pair. ✷

Lemma 20.6 c(M) ≤ 2εF = 4 ln(k + 1)F .

Proof: In each iteration i, by the terminating condition we have cGi(Si) ≤
εwtGi

(Si). Since all edges contributing to wtGi
(Si) will be removed from the

graph after this iteration, each edge of G contributes to the weight of at most
one region. The total weight of all edges of G is F . Since each iteration helps
disconnect at least one source–sink pair, the number of iterations is bounded
by k. Therefore, the total weight attributed to source vertices is at most F .
Summing gives:

c(M) =
∑
i

cGi(Si) ≤ ε

(∑
i

wtGi(Si)

)
≤ ε

(
k
F

k
+
∑
e

cede

)
= 2εF.

✷

20.3 A tight example 175

Theorem 20.7 Algorithm 20.4 achieves an approximation guarantee of
O(log k) for the minimum multicut problem.

Proof: The proof follows from Lemmas 20.5 and 20.6, and from the fact
that the value of the fractional multicut, F , is a lower bound on the minimum
multicut. ✷

Exercise 20.6 justifies the choice of wt(s1) = F/k.

Corollary 20.8 In an undirected graph with k source–sink pairs,

max
m/c flow F

|F | ≤ min
multicut C

|C| ≤ O(log k)

(
max

m/c flow F
|F |

)
,

where |F | represents the value of multicommodity flow F , and |C| represents
the capacity of multicut C.

20.3 A tight example

Example 20.9 We will construct an infinite family of graphs for which the
integrality gap for LP (20.2) is Ω(log k), thereby showing that our analy-
sis of Algorithm 20.4 and the approximate max-flow min-multicut theorem
presented in Corollary 20.8 are tight within constant factors.

The construction uses expander graphs. An expander is a graph G =
(V,E) in which every vertex has the same degree, say d, and for any nonempty
subset S ⊂ V ,

|E(S, S)| > min(|S|, |S|),

where E(S, S) denotes the set of edges in the cut (S, S), i.e., edges that
have one endpoint in S and the other in S. Standard probabilistic arguments
show that almost every constant degree graph, with d ≥ 3, is an expander
(see Section 20.6). Let H be such a graph containing k vertices.

Source–sink pairs are designated in H as follows. Consider a breadth first
search tree rooted at some vertex v. The number of vertices within distance
α−1 of vertex v is at most 1+d+d2+. . .+dα−1 < dα. Picking α = �logd k/2�
ensures that at least k/2 vertices are at a distance ≥ α from v. Let us say
that a pair of vertices are a source–sink pair if the distance between them is
at least α. Therefore, we have chosen Θ(k2) pairs of vertices as source–sink
pairs.

Each edge in H is of unit capacity. Thus, the total capacity of edges of
H is O(k). Since the distance between each source–sink pair is Ω(log k), any
flow path carrying a unit of flow uses up Ω(log k) units of capacity. Therefore,

176 20 Multicut in General Graphs

the value of maximum multicommodity flow in H is bounded by O(k/log k).
Next we will prove that a minimum multicut in H, say M , has capacity
Ω(k), thereby proving the claimed integrality gap. Consider the connected
components obtained by removing M from H.

Claim 20.10 Each connected component has at most k/2 vertices.

Proof: Suppose a connected component has strictly more than k/2 vertices.
Pick an arbitrary vertex v in this component. By the argument given above,
the number of vertices that are within distance α− 1 of v in the entire graph
H is < dα ≤ k/2. Thus, there is a vertex u in the component such that the
distance between u and v is at least α, i.e., u and v form a source–sink pair.
Thus removal of M has failed to disconnect a source–sink pair, leading to a
contradiction. ✷

By Claim 20.10, and the fact that H is an expander, each component
S has |δ(S)| ≥ |S|. Since each vertex of H is in one of the components,∑

S |δ(S)| ≥ k, where the sum is over all connected components. Since an
edge contributes to the cuts of at most two components, the number of edges
crossing components is Ω(k). This gives the desired lower bound on the min-
imum multicut.

Next, let us ensure that the number of source–sink pairs defined in the
graph is not related to the number of vertices in it. Notice that replacing
an edge of H by a path of unit capacity edges does not change the value of
maximum flow or minimum multicut. Using this operation we can construct
from H a graph G having n vertices, for arbitrary n ≥ k. The integrality gap
of LP (20.2) for G is Ω(log k).

✷

20.4 Some applications of multicut

We will obtain an O(log n) factor approximation algorithm for the following
problem by reducing to the minimum multicut problem. See Exercise 20.7
for further applications.

Problem 20.11 (2CNF≡ clause deletion) A 2CNF≡ formula consists
of a set of clauses of the form (u ≡ v), where u and v are literals. Let F be
such a formula, and wt be a function assigning nonnegative rational weights
to its clauses. The problem is to delete a minimum weight set of clauses of F
so that the remaining formula is satisfiable.

Given a 2CNF≡ formula F on n Boolean variables, let us define graph
G(F) with edge capacities as follows: The graph has 2n vertices, one corre-
sponding to each literal. Corresponding to each clause (p ≡ q) we include the
two edges (p, q) and (p, q), each having capacity equal to the weight of the
clause (p ≡ q).

20.5 Exercises 177

Notice that the two clauses (p ≡ q) and (p ≡ q) are equivalent. We may
assume w.l.o.g. that F does not contain two such equivalent clauses, since we
can merge their weights and drop one of these clauses. With this assumption
each clause corresponds to two distinct edges in G(F).

Lemma 20.12 Formula F is satisfiable iff no connected component of G(F)
contains a variable and its negation.

Proof: If (p, q) is an edge in G(F) then the literals p and q must take the
same truth value in every satisfying truth assignment. Thus, all literals of
a connected component of G(F) are forced to take the same truth value.
Therefore, if F is satisfiable, no connected component in G(F) contains a
variable and its negation.

Conversely, notice that if literals p and q occur in the same connected
component, then so do their negations. If no connected component contains
a variable and its negation, the components can be paired so that in each
pair, one component contains a set of literals and the other contains the
complementary literals. For each pair, set the literals of one component to
true and the other to false to obtain a satisfying truth assignment. ✷

For each variable and its negation, designate the corresponding vertices
in G(F) to be a source–sink pair, thus defining n source–sink pairs. Let M
be a minimum multicut in G(F) and C be a minimum weight set of clauses
whose deletion makes F satisfiable. In general, M may have only one of the
two edges corresponding to a clause.

Lemma 20.13 wt(C) ≤ c(M) ≤ 2 · wt(C).

Proof: Delete clauses corresponding to edges of M from F to get formula F ′.
The weight of clauses deleted is at most c(M). Since G(F ′) does not contain
any edges of M , it does not have any component containing a variable and its
negation. By Lemma 20.12, F ′ is satisfiable, thus proving the first inequality.

Next, delete from G(F) the two edges corresponding to each clause in C.
This will disconnect all source–sink pairs. Since the capacity of edges deleted
is 2wt(C), this proves the second inequality. ✷

Since we can approximate minimum multicut to within an O(log n) factor,
we get:

Theorem 20.14 There is an O(log n) factor approximation algorithm for
Problem 20.11.

20.5 Exercises

20.1 By defining for each edge e and commodity i a flow variable fe,i, give
an LP that is equivalent to LP (20.1) and has polynomially many variables.

178 20 Multicut in General Graphs

Obtain the dual of this program and show that it is equivalent to LP (20.2);
however, unlike LP (20.2), it has only polynomially many constraints.

20.2 Let d be an optimal solution to LP (20.2). Show that d must satisfy
the triangle inequality.

20.3 Intuitively, our goal in picking a multicut is picking edges that are
bottlenecks for multicommodity flow. In this sense, D is a very good starting
point: prove that D is precisely the set of edges that are saturated in every
maximum multicommodity flow.
Hint: Use complementary slackness conditions.

20.4 Give an example to show that picking all of D gives an Ω(n) factor for
multicut.

20.5 Consider the following growth process. W (t) denotes the weight at time
t. Assume that the initial weight is W (0) = W0, and that at each point the
rate of growth is proportional to the current weight, i.e.,

dW (t) = εW (t)dt.

Give the function W (t). Next, assume that W0 = F/k and that W (1/2) =
F + F/k. What is ε?
Hint: W (t) = W0e

εt and ε = 2 ln(k + 1).

20.6 This exercise justifies the choice of wt(s1), which was fixed to be
F/k. Suppose we fix it at W0. Clearly, ε is inversely related to W0 (see
Lemma 20.3). However, the approximation factor of the algorithm is given
by ε(F +kW0) (see Lemma 20.6). For what value of W0 is the approximation
factor minimized?

20.7 Consider the following problem, which has applications in VLSI design.

Problem 20.15 (Graph bipartization by edge deletion) Given an
edge weighted undirected graph G = (V,E), remove a minimum weight set
of edges to leave a bipartite graph.

Obtain an O(log n) factor approximation algorithm for this problem by
reducing it to Problem 20.11.

20.8 (Even, Naor, Schieber, and Rao [75]) This exercise develops an
O(log2 n) factor algorithm for the following problem.

Problem 20.16 (Minimum length linear arrangement) Given an
undirected graph G = (V,E), find a numbering of its vertices from 1 to
n, h : V → {1, . . . , n}, so as to minimize

20.6 Notes 179∑
(u,v)∈E

|h(u)− h(v)|.

1. Show that the following is an LP-relaxation of this problem. This LP
has a variable de for each edge e ∈ E, which we will interpret as a
distance label. For any distance label assignment d to the edges of G,
define distd(u, v) to be the length of the shortest path from u to v in G.
Give a polynomial time separation oracle for this LP, thereby showing
that it can be solved in polynomial time.

minimize
∑
e∈E

de (20.3)

∑
u∈S

distd(u, v) ≥ 1
4
(|S|2 − 1), S ⊆ V, v ∈ S

de ≥ 0, e ∈ E

2. Let d be an optimal solution to LP (20.3). Show that for any S ⊆ V, v ∈ S
there is a vertex u ∈ S such that distd(u, v) ≥ (|S|+ 1)/4.

3. For S ⊆ V , define wt(S) to be the sum of distance labels of all edges
having both endpoints in S. Also, define c(S, S) to be the number of edges
in the cut (S, S). Give a region growing process similar to that described
in Section 20.2.1 that finds a cut (S, S) in G with wt(S) ≤ wt(S) such
that c(S, S) is O(wt(S)(log n)/n).

4. Show that a divide-and-conquer algorithm that recursively finds a num-
bering for vertices in S from 1 to |S|, and a numbering for vertices in S
from |S|+ 1 to n achieves an approximation guarantee of O(log2 n).
Hint: Assuming each edge in the cut (S, S) is of length n − 1, write a
suitable recurrence for the cost incurred by the algorithm.

20.6 Notes

Theorem 20.7 and its corollary are due to Garg, Vazirani, and Yannakakis
[97]. Problem 20.11 was introduced in Klein, Rao, Agrawal, and Ravi [173].
For showing existence of expanders via a probabilistic argument, see Pinsker
[220].

21 Sparsest Cut

In this chapter we will obtain an approximation algorithm for the sparsest cut
problem using an interesting LP-rounding procedure that employs results on
low distortion embeddings of metrics in �1 spaces. As mentioned in Chapter
20, we will get as a corollary an approximate max-flow min-cut theorem for
the demands version of multicommodity flow. Approximation algorithms for
several other important problems will also follow.

21.1 Demands multicommodity flow

Problem 21.1 (Demands multicommodity flow) Let G = (V,E) be
an undirected graph with a nonnegative capacity ce for each edge e ∈ E.
Let {(s1, t1), . . . , (sk, tk)} be a specified set of pairs of vertices, where each
pair is distinct, but vertices in different pairs are not required to be distinct.
A separate commodity is defined for each (si, ti) pair; for convenience, we
will think of si as the source and ti as the sink of this commodity. For each
commodity i, a nonnegative demand, dem(i), is also specified. The objective
is to maximize f , called throughput, such that for each commodity i, f ·
dem(i) units of this commodity can be routed simultaneously, subject to flow
conservation and capacity constraints, i.e., each commodity must satisfy flow
conservation at each vertex other than its own source and sink, and the sum
of flows routed through an edge, in both directions combined, should not
exceed the capacity of this edge. We will denote the optimal throughput by
f∗.

Consider a cut (S, S) in G. Let c(S) denote the capacity of edges in this
cut and dem(S) denote the total demand separated by this cut, i.e.,

dem(S) =
∑

i: |{si,ti}∩S|=1

dem(i).

Clearly, the ratio of these quantities places an upper bound on the through-
put, i.e., f∗ ≤ c(S)

dem(S)
. This motivates:

Problem 21.2 (Sparsest cut) Let G = (V,E) be an undirected graph
with capacities, source–sink pairs, and demands defined as in Problem 21.1.

21.2 Linear programming formulation 181

The sparsity of cut (S, S) is given by c(S)
dem(S)

. The problem is to find a cut
of minimum sparsity. We will denote the sparsity of this cut by α∗.

Among all cuts, α∗ puts the most stringent upper bound on f∗. Is this
upper bound tight? Example 21.3 shows that it is not. However, minimum
sparsity cannot be arbitrarily larger than maximum throughput; we will show
that their ratio is bounded by O(log k).

Example 21.3 Consider the bipartite graph K3,2 with all edges of unit
capacity and a unit demand between each pair of nonadjacent vertices – a
total of four commodities.

1

1

1

1

1/2

1/2

1/2
1/2

1/2

1/2

It is easy to check that a sparsest cut of K3,2 has sparsity 1. This graph
can be viewed as the union of two stars K3,1 (the centers of the stars are
the vertices on the right side of the bipartition), and, as in Example 18.2,
we get the unique way of routing one unit of each of the three commodities
having source and sink on the left side of the bipartition. However, this sat-
urates all edges, making it impossible to route the fourth commodity. Hence,
throughput is strictly smaller than 1. ✷

21.2 Linear programming formulation

We start by giving a linear programming formulation of the problem of max-
imizing throughput, f . Let Pi = {qij} denote the set of all paths between si
and ti. Introduce variable f ij to denote the flow of commodity i sent along
path qij . The first set of constraints ensures that the demand of each commod-
ity is met (with factor f), and the second set are edge capacity constraints.

maximize f (21.1)

subject to
∑
j

f ij ≥ f · dem(i), i = 1, . . . , k

∑
e∈qi

j

f ij ≤ ce, e ∈ E

f ≥ 0

f ij ≥ 0

182 21 Sparsest Cut

Define the graph H with vertex set VH = {si, ti|1 ≤ i ≤ k} and edge set
EH = {(si, ti)|1 ≤ i ≤ k} to be the demand graph. For each edge e = (si, ti)
of H, let dem(e) = dem(i). We will show that the dual to LP (21.1) yields a
metric (V,d) satisfying:

Theorem 21.4 Let f∗ denote the optimal throughput. Then,

f∗ = min
metricd

∑
e∈G cede∑

e∈H dem(e)de
.

Let li and de be dual variables associated with the first and second set of
inequalities of LP (21.1). We will interpret de’s as distance label assignments
to the edges of G. The first set of inequalities ensures that for each commodity
i, li is upper bounded by the length of any path from si to ti w.r.t. the distance
label assignment.

minimize
∑
e∈E

cede (21.2)

subject to
∑
e∈qi

j

de ≥ li, qij ∈ Pi, i = 1, . . . , k

k∑
i=1

li dem(i) ≥ 1

de ≥ 0, e ∈ E

li ≥ 0, i = 1, . . . , k

Example 21.5 For the instance given in Example 21.3, the optimal through-
put is f∗ = 3/4; this corresponds to routing the four commodities as follows:

3/8

3/8

3/8
3/8

1/4 1/4
1/4

3/8

3/8

The optimal dual solution is: de = 1/8 for each edge e and li = 1/4 for
each commodity i. It would be instructive for the reader to verify feasibility
and optimality of these solutions. ✷

21.3 Metrics, cut packings, and �1-embeddability 183

Claim 21.6 There is an optimal distance label assignment d for the dual
program (21.2) that is a metric on V . Furthermore, for each commodity i, li =
d(si,ti), and the second inequality holds with equality, i.e.,

∑
i d(si,ti)dem(i) =

1.

Proof: If for some three points u, v, and w, duw > duv + dvw, then decrease
duw to duv + dvw. Since this does not decrease the shortest path between
any si–ti pair, the solution still remains feasible. Moreover, the objective
function value cannot increase by this process. Continuing in this manner,
we will obtain a metric on V .

Now, the length of a shortest path from si to ti is given by the distance la-
bel d(si,ti). Setting li = d(si,ti) does not change the feasibility or the objective
function value of the solution. Finally, if the second inequality holds strictly,
then we can scale down all distance labels without violating feasibility, thus
contradicting the optimality of d. ✷

By Claim 21.6, the dual program yields a metric (V,d) that minimizes∑
e∈G cede∑

e∈H dem(e)de
.

By the LP-duality theorem, this equals the optimal throughput. This proves
Theorem 21.4.

21.3 Metrics, cut packings, and �1-embeddability

In Section 21.3.1, we will define the notion of a cut packing for a metric and
will show that the question of finding a good approximation to the sparsest
cut for graph G reduces to that of finding a “good” cut packing for the metric
obtained in Theorem 21.4. The latter question is reduced, in Section 21.3.2,
to the question of finding a “good” �1-embedding for the metric. Eventually,
Section 21.4 deals with finding the embedding itself.

21.3.1 Cut packings for metrics

Let us think of a metric (V,d) as defining the lengths of edges of the complete
graph on V . Let En denote the set of all edges in the complete graph on n
vertices. Let y be a function assigning nonnegative values to subsets of V ,
i.e., y : 2V → R+. We will denote the value of y on set S by yS . As before,
let us say that edge e feels yS if e is in the cut (S, S). The amount of cut
that edge e feels is

∑
S:e∈δ(S) y(S). Function y is called a cut packing for

metric (V, d) if no edge feels more cut than its length, i.e., for each edge
e ∈ En,

∑
S:e∈δ(S) y(S) ≤ de. If this inequality holds with equality for each

edge e ∈ En, then y is said to be an exact cut packing. The reason for the

184 21 Sparsest Cut

name “cut packing” is that equivalently, we can think of y as assigning value
y(S) + y(S) to each cut (S, S).

As shown below, in general, there may not be an exact cut packing for
metric (V,d). Let us relax this notion by allowing edges to be underpacked up
to a specified extent. For β ≥ 1, y is said to be a β-approximate cut packing
if the amount of cut felt by any edge is at least 1/β fraction of its length, i.e.,
for each edge e ∈ En, de/β ≤∑

S:e∈δ(S) y(S) ≤ de. Clearly, the smaller β is,
the better the cut packing. The following theorem shows the importance of
finding a good cut packing for (V,d).

Theorem 21.7 Let (V,d) be the metric obtained in Theorem 21.4, and let
y be a β-approximate cut packing for (V,d). Among cuts with y(S) �= 0, let
(S′, S′) be the sparsest. Then, the sparsity of this cut is at most β · f∗.

Proof: Let y be a β-approximate cut packing for metric (V,d). Then,

f∗ =
∑

e∈G cede∑
e∈H dem(e)de

≥
∑

e∈G ce
∑

S:e∈δ(S) y(S)∑
e∈H dem(e)

∑
S:e∈δ(S) βy(S)

=
∑

S y(S)c(S)
β
∑

S y(S)dem(S)

≥ 1
β
·
(

c(S′)
dem(S′)

)
.

The first inequality follows using both the upper bound and the lower
bound on the amount of cut felt by an edge; the former in the numerator and
the latter in the denominator. The equality after that follows by changing the
order of summation. The last inequality follows from the well known result
stated below. ✷

Proposition 21.8 For any nonnegative reals a1, . . . , an and positive reals
b1, . . . , bn and α1, . . . , αn,∑

i αiai∑
i αibi

≥ min
i

ai
bi

.

Moreover, this inequality holds with equality iff the n values ai/bi are all
equal.

Corollary 21.9 If there is an exact cut packing for metric (V,d), then every
cut (S, S) with yS �= 0 has sparsity f∗ and thus is a sparsest cut in G.

Proof: By Theorem 21.7, the minimum sparsity cut with yS �= 0 has sparsity
at most f∗ (since β = 1). Since the sparsity of any cut upper bounds f∗, the
sparsity of this cut equals f∗, and this is a sparsest cut in G. But then all

21.3 Metrics, cut packings, and �1-embeddability 185

inequalities in the proof of Theorem 21.7 must hold with equality. Now, by
the second statement in Proposition 21.8, we get that every cut (S, S) with
yS �= 0 has sparsity f∗. ✷

The sparsest cut in the instance specified in Example 21.3 has sparsity
strictly larger than f∗. By Corollary 21.9, the optimal metric for this instance
does not have an exact cut packing. However, it turns out that every metric
has an O(log n)-approximate cut packing – we will show this using the notion
of �1-embeddability of metrics.

21.3.2 �1-embeddability of metrics

A norm on the vector space Rm is a function ‖ · ‖ : Rm → R+, such that for
any x,y ∈ Rm, and λ ∈ R:

• ‖x‖ = 0 iff x = 0,
• ‖λx‖ = |λ| · ‖x‖,
• ‖x + y‖ ≤ ‖x‖+ ‖y‖.
For p ≥ 1, the �p-norm is defined by

‖x‖p =

 ∑

1≤k≤m
|xk|p

1
p

.

The associated �p-metric, denoted by d2p , is defined by

d2p(x,y) = ‖x− y‖p

for all x,y ∈ Rm. In this section, we will only consider the �1-norm.
Let σ be a mapping, σ : V → Rm for some m. Let us say that ‖σ(u) −

σ(v)‖1 is the �1 length of edge (u, v) under σ. We will say that σ is an isometric
�1-embedding for metric (V,d) if it preserves the �1 lengths of all edges, i.e.,

∀u, v ∈ V, d(u, v) = ‖σ(u)− σ(v)‖1.

As shown below, in general, the metric computed by solving the dual
program may not be isometrically �1-embeddable. Thus, we will relax this
notion – we will ensure that the mapping does not stretch any edge, but we
will allow it to shrink edges up to a specified factor. For β ≥ 1, we will say
that σ is a β-distortion �1-embedding for metric (V, d) if

∀u, v ∈ V :
1
β

d(u, v) ≤ ‖σ(u)− σ(v)‖1 ≤ d(u, v).

186 21 Sparsest Cut

Next, we show that the question of finding an approximate cut packing for
a metric is intimately related to that of finding a low distortion �1 embedding
for it.

Lemma 21.10 Let σ : V → Rm be a mapping. There is a cut packing
y : 2V → R+ such that each edge feels as much cut under y as its �1 length
under σ. Moreover, the number of nonzero yS’s is at most m(n− 1).

Proof: First consider the case when m = 1. Let the n vertices of V be
mapped to u1 ≤ u2 ≤ · · · ≤ un. Assume w.l.o.g. that the vertices are also
numbered in this order. For each i, 1 ≤ i ≤ n − 1, let y{v1,...,vi} = ui+1 − ui.
Clearly, this cut packing satisfies the required condition.

For arbitrary m, we observe that since the �1-norm is additive, we can
define a cut packing for each dimension independently, and the sum of these
packings satisfies the required condition. ✷

Lemma 21.11 Let y : 2V → R+ be a cut packing with m nonzero yS’s.
There is a mapping σ : V → Rm such that for each edge, its �1 length under
σ is the same as the amount of cut it feels under y.

Proof: We will have a dimension corresponding to each set S ⊆ V such that
yS �= 0. For vertices in S, this coordinate will be 0, and for vertices in S, this
coordinate will be yS . Thus, this dimension contributes exactly as much to
the �1 length of an edge as the amount of cut felt by this edge due to yS .
Hence this mapping satisfies the required condition. ✷

Lemmas 21.10 and 21.11 give:

Theorem 21.12 There exists a β-distortion �1-embedding for metric (V,d)
iff there exists a β-approximate cut packing for it. Moreover, the number of
nonzero cuts and the dimension of the �1-embedding are polynomially related.

Corollary 21.13 Metric (V,d) is isometrically �1-embeddable iff there exists
an exact cut packing for it.

We have already shown that the metric obtained for the instance in Ex-
ample 21.3 does not have an exact cut packing. Therefore, it is not iso-
metrically �1-embeddable. However, we will show that any metric has an
O(log n)-distortion �1-embedding; this fact lies at the heart of the approxi-
mation algorithm for the sparsest cut problem.

21.4 Low distortion �1-embeddings for metrics

First consider the following one-dimensional embedding for metric (V,d): pick
a set S ⊆ V , and define the coordinate of vertex v to be σ(v) = mins∈S d(s, v),

21.4 Low distortion �1-embeddings for metrics 187

i.e., the length of the shortest edge from v to S. This mapping does not stretch
any edge:

Lemma 21.14 For the one-dimensional embedding given above,

∀u, v ∈ V, |σ(u)− σ(v)| ≤ d(u, v).

Proof: Let s1 and s2 be the closest vertices of S to u and v, respectively.
Assume w.l.o.g. that d(s1, u) ≤ d(s2, v). Then, |σ(u) − σ(v)| = d(s2, v) −
d(s1, u) ≤ d(s1, v) − d(s1, u) ≤ d(u, v). The last inequality follows by the
triangle inequality. ✷

More generally, consider the following m-dimensional embedding: Pick
m subsets of V , S1, . . . , Sm, and define the ith coordinate of vertex v to be
σi(v) = mins∈Si d(s, v)/m; notice the scaling factor of m used. The additivity
of �1 metric, together with Lemma 21.14, imply that this mapping also does
not stretch any edge.

21.4.1 Ensuring that a single edge is not overshrunk

The remaining task is to choose the sets in such a way that no edge shrinks by
a factor of more than O(log n). It is natural to use randomization for picking
the sets. Let us first ensure that a single edge (u, v) is not overshrunk. For
this purpose, define the expected contribution of set Si to the �1 length of
edge (u, v) to be E[|σi(u)− σi(v)|].

For simplicity, assume that n is a power of 2; let n = 2l. For 2 ≤ i ≤
l + 1, set Si is formed by picking each vertex of V with probability 1/2i.
The embedding w.r.t. these sets works for the single edge (u, v) with high
probability. The proof of this fact involves cleverly taking into consideration
the expected contribution of each set. For different metrics, different sets
have a large contribution. In order to develop intuition for the proof, we first
illustrate this through a series of examples.

Example 21.15 In the following three metrics, d(u, v) = 1, and the n
vertices are placed as shown in the figure below.

� � �u v

� � �u v

� �
n/2 n/2

1 n− 2 1

u v

√
n

√
nn− 2

√
n

188 21 Sparsest Cut

For each metric, the expected contribution of one of the sets is Ω(d(u, v)/l).
For the first metric, this set is Sl, since it will be a singleton with constant
probability. For the second metric, this set is S2, since it will contain exactly
one of u and v with constant probability. For the third metric, this set is
S�l/2�, since with constant probability, it will contain exactly one vertex of
the 2

√
n vertices bunched up with u and v. ✷

In the next lemma, we encapsulate the basic mechanism for establishing
a lower bound on the expected contribution of a set Si. For any vertex x
and nonnegative real r, let B(x, r) denote the ball of radius r around x, i.e.,
B(x, r) = {s ∈ V |d(x, s) ≤ r}.
Lemma 21.16 If for some choice of r1 ≥ r2 ≥ 0, and constant c,

Pr[(Si ∩B(u, r1) = ∅) and (Si ∩B(v, r2) �= ∅)] ≥ c,

then the expected contribution of Si is ≥ c(r1 − r2)/l.

Proof: Under the event described, d(u, Si) ≥ r1 and d(v, Si) ≤ r2. If so,
σi(u) ≥ r1/l and σi(v) ≤ r2/l. Therefore, |σi(u) − σi(v)| ≥ (r1 − r2)/l, and
the lemma follows. ✷

The remaining task is to define suitable radii r1 and r2 for each set Si
such that the probabilistic statement of Lemma 21.16 holds. We will need
the following simple probabilistic fact:

Lemma 21.17 For 1 ≤ t ≤ l − 1, let A and B be disjoint subsets of V ,
such that |A| < 2t and |B| ≥ 2t−1. Form set S by picking each vertex of V
independently with probability p = 1/(2t+1). Then,

Pr[(S ∩A = ∅) and (S ∩B �= ∅)] ≥ (1/2)(1− e−1/4).

Proof:

Pr[S ∩A = ∅] = (1− p)|A| ≥ (1− p|A|) ≥ 1
2
,

where the first inequality follows by taking the first two terms of the binomial
expansion.

Pr[S ∩B = ∅] = (1− p)|B| ≤ e−p|B| ≤ e−1/4,

where we have used the inequality 1− x ≤ e−x. Therefore,

Pr[S ∩B �= ∅] = 1− (1− p)|B| ≥ 1− e−1/4.

21.4 Low distortion �1-embeddings for metrics 189

Finally, observe that since A and B are disjoint, the two events [S ∩ A = ∅]
and [S ∩B �= ∅] are independent. The lemma follows. ✷

For convenience, let c = (1/2)(1− e−1/4).
For 0 ≤ t ≤ l, define ρt = min{ρ ≥ 0 : |B(u, ρ)| ≥ 2t and |B(v, ρ)| ≥

2t}, i.e., ρt is the smallest radius such that the ball around u and the ball
around v each has at least 2t vertices. Clearly, ρ0 = 0 and ρl ≥ d(u, v). Let
t̂ = max{t : ρt < d(u, v)/2}; clearly, t̂ ≤ l − 1. Finally, for any vertex x and
nonnegative real r, let B◦(x, r) denote the open ball of radius r around x,
i.e., B◦(x, r) = {s ∈ V |d(x, s) < r}.
Lemma 21.18 For 1 ≤ t ≤ t̂, the expected contribution of St+1 is at most
c · ρt−ρt−1

l , and for t = t̂ + 1, the expected contribution of St+1 is at most
c
l ·
(
d(u,v)

2 − ρt−1

)
.

Proof: First consider t such that 1 ≤ t ≤ t̂. By the definition of ρt, for
at least one of the two vertices u and v, the open ball of radius ρt contains
fewer than 2t vertices. Assume w.l.o.g. that this happens for vertex u, i.e.,
|B◦(u, ρt)| < 2t. Again, by definition, |B(v, ρt−1)| ≥ 2t−1. Since ρt−1 < ρt <
d(u, v)/2, the two sets B◦(u, ρt) and B(v, ρt−1) are disjoint. Thus, by Lemma
21.17, the probability that St+1 is disjoint from the first set and intersects
the second is least c. Now, the first claim follows from Lemma 21.16.

Next, let t = t̂ + 1. By the definition of t̂, for at least one of the
two vertices u and v, the open ball of radius d(u, v)/2 contains fewer
than 2t vertices. As before, w.l.o.g. assume this happens for vertex u, i.e.,
|B◦(u, d(u, v)/2)| < 2t. Clearly, |B(v, ρt−1)| ≥ 2t−1. Since ρt−1 < d(u, v)/2,
the two sets B◦(u, d(u, v)/2) and B(v, ρt−1) are disjoint. The rest of the rea-
soning is the same as before. ✷

Lemma 21.19 The expected contribution of all sets S2, . . . , Sl+1 is at most
c
2 · d(u,v)l .

Proof: By Lemma 21.18, the expected contribution of all sets S2, . . . , Sl+1
is at least the following telescoping sum:

c

l
·
(

(ρ1 − ρ0) + (ρ2 − ρ1) + . . . +
(

d(u, v)
2

− ρt̂

))
=

c

2
· d(u, v)

l
.

✷

Lemma 21.20 Pr
[
contribution of all sets is ≥ c d(u,v)

4l

]
≥ c/2

2− c/2
.

Proof: Denote the probability in question by p. Clearly, the total contribu-
tion of all sets S2, . . . , Sl+1 to the �1 length of edge (u, v) is at most d(u, v)/2l.
This fact and Lemma 21.19 give:

190 21 Sparsest Cut

p · d(u, v)
l

+ (1− p) · c d(u, v)
4l

≥ d(u, v)
l

.

Therefore, p ≥ c/2
2−c/2 . ✷

21.4.2 Ensuring that no edge is overshrunk

The above embedding does not overshrink edge (u, v) with constant proba-
bility. In order to ensure that no edge is overshrunk, we will first enhance this
probability. The key idea is to repeat the entire process several times indepen-
dently and use Chernoff bounds to bound the error probability. We will use
the following statement of the Chernoff bound: Let X1, . . . , Xn be indepen-
dent Bernoulli trials with Pr[Xi = 1] = p, 0 < p < 1, and let X =

∑n
i=1 Xi;

clearly, E[X] = n p. Then, for 0 < δ ≤ 1,

Pr[X < (1− δ)n p] < exp(−δ2n p/2).

Pick sets S2, . . . , Sl+1 using probabilities specified above, independently
N = O(log n) times each. Call the sets so obtained Sji , 2 ≤ i ≤ l + 1, 1 ≤
j ≤ N . Consider the N · l = O(log2 n) dimensional embedding of metric
(V,d) w.r.t. these N · l sets. We will prove that this is an O(log n)-distortion
�1-embedding for metric (V, d).

Lemma 21.21 For N = O(log n), this embedding satisfies:

Pr[‖σ(u)− σ(v)‖1] ≥ p c d(u, v)
4l

] ≥ 1− 1
2n2 ,

where p = c/(2− c).

Proof: We will think of the process of picking sets S2, . . . , Sl+1 once as
a single Bernoulli trial; thus, we have N such trials. A trial succeeds if the
contribution of all its sets is ≥ (c d(u, v))/2l. By Lemma 21.20, the probability
of success is at least p. Using the Chernoff bound with δ = 1/2, the probability
that at most N p/2 of these trials succeed is at most exp(N p/8). Clearly, this
is bounded by 1/2n2 for N = O(log n). If at least N p/2 trials succeed, the
�1 length of edge (u, v) will be at least p c d(u, v)/4l = d(u, v)/O(log n). The
lemma follows. ✷

Adding the error probabilities for all n(n− 1)/2 edges, we get:

Theorem 21.22 The N l = O(log2 n) dimensional embedding given above
is an O(log n)-distortion �1-embedding for metric (V, d), with probability at
least 1/2.

21.5 LP-rounding-based algorithm 191

21.5 LP-rounding-based algorithm

The reader can verify that Claim 21.6 and Theorems 21.7, 21.12, and 21.22
lead to an O(log n) factor approximation algorithm for the sparsest cut prob-
lem. In this section, we will improve the approximation guarantee to O(log k)
where k is the number of source–sink pairs specified.

For this purpose, notice that Theorem 21.7 holds even for the following
less stringent approximate cut packing: no edge is allowed to be overpacked,
and the edges of the demand graph are not under-packed by more than a β
factor (the rest of the edges are allowed to be under-packed to any extent).
In turn, such a cut packing can be obtained from an �1-embedding that does
not overshrink edges of the demand graph only. Since these are only O(k2)
in number, where k is the number of source–sink pairs, we can ensure that
these edges are not shrunk by a factor of more than O(log k), thus enabling
an improvement in the approximation guarantee.

Let V ′ ⊆ V be the set of vertices that are sources or sinks, |V ′| ≤ 2k. For
simplicity, assume |V ′| is a power of 2; let |V ′| = 2l. The sets S2, . . . , Sl+1
will be picked from V ′, and it is easy to verify from the proof of Lemma 21.21
that N = O(log k) will suffice to ensure that none of the O(k2) edges of the
demand graph is shrunk by more than a factor of O(log k). The complete
algorithm is:

Algorithm 21.23 (Sparsest cut)

1. Solve the dual LP (21.2) to obtain metric (V,d).
2. Pick sets Sji , 2 ≤ i ≤ l + 1, 1 ≤ j ≤ N , where set Sji is formed by

picking each vertex of V ′ independently with probability 1/2i.
3. Obtain an �1-embedding of (V,d) in O(log2 k)-dimensional space w.r.t.

these sets.
4. Obtain an approximate cut packing for (V,d) from the �1-embedding.
5. Output the sparsest cut used by the cut packing.

Theorem 21.24 Algorithm 21.23 achieves an approximation guarantee of
O(log k) for the sparsest cut problem.

Corollary 21.25 For a demands multicommodity flow instance with k source–
sink pairs,

1
O(log k)

(
min
S ⊂ V

c(S)
dem(S)

)
≤ max

throughput f
f ≤ min

S ⊂ V

c(S)
dem(S)

.

192 21 Sparsest Cut

21.6 Applications

We present below a number of applications of the sparsest cut problem.

21.6.1 Edge expansion

Expander graphs have numerous applications; for instance, see Example 20.9.
We will obtain an O(log n) factor algorithm for the problem of determining
the edge expansion of a graph:

Problem 21.26 (Edge expansion) Given an undirected graph G = (V,E),
the edge expansion of a set S ⊂ V with |S| ≤ n/2, is defined to be |δ(S)|,
i.e., the number of edges in the cut (S, S). The problem is to find a minimum
expansion set.

Consider the special case of demands multicommodity flow in which we
have n(n − 1)/2 distinct commodities, one for each pair of vertices. This
is called the uniform multicommodity flow problem. For this problem, the
sparsity of any cut (S, S) is given by

c(S)
|S| · |S| .

Let (S, S), with |S| ≤ |S|, be the cut found by Algorithm 21.23 when run
on G with uniform demands. Notice that |S| is known within a factor of 2,
since n/2 ≤ |S| ≤ n. Thus, S has expansion within an O(log n) factor of the
minimum expansion set in G. Clearly, the generalization of this problem to
arbitrary edge costs also has an O(log n) factor approximation algorithm.

21.6.2 Conductance

The conductance of a Markov chain characterizes its mixing rate, i.e., the
number of steps needed to ensure that the probability distribution over states
is sufficiently close to its stationary distribution. Let P be the transition ma-
trix of a discrete-time Markov chain on a finite state space X, and let π
denote the stationary probability distribution of this chain. We will assume
that the chain is aperiodic, connected, and that it satisfies the detailed bal-
ance condition, i.e.,

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ X.

Define undirected graph G = (X,E) on vertex set X such that (x, y) ∈ E
iff π(x)P (x, y) �= 0. The edge weights are defined to be w(x, y) = π(x)P (x, y).
The conductance of this chain is given by

Φ = min
S⊂X,0<π(S)≤1/2

w(S, S)
π(S)

,

21.6 Applications 193

where w(S, S) is the sum of weights of all edges in the cut (S, S). For any set
S, the numerator of the quotient defined above is the probability that the
chain in equilibrium escapes from set S to S in one step. Thus the quotient
gives the conditional probability of escape, given that the chain is initially
in S and Φ measures the ability of the chain to not get trapped in any small
region of the state space.

Theorem 21.24 leads to an O(log n) factor approximation algorithm for
computing conductance. First, observe that it suffices to approximate the
following symmetrized variant of Φ:

Φ′ = min
S⊂X,0<π(S)≤1

w(S, S)
π(S)π(S)

, (21.3)

since Φ and Φ′ are within a factor of 2 of each other (notice that if 0 < π(S) ≤
1/2, then 1/2 ≤ π(S) < 1).

Next, let us show that computing Φ′ is really a special case of the sparsest
cut problem. Consider graph G = (X,E) with edge weights as defined above.
For each pair of vertices x, y ∈ X, define a distinct commodity with a demand
of π(x)π(y). It is easy to see that the sparsity of a cut (S, S) for this instance
is simply the quotient defined in (21.3). Hence, the sparsity of the sparsest
cut is Φ′.

21.6.3 Balanced cut

The following problem finds applications in partitioning problems, such as
circuit partitioning in VLSI design. Furthermore, it can be used to perform
the “divide” step of the divide-and-conquer algorithms for certain problems;
for instance, see the algorithm for Problem 21.29 below.

Problem 21.27 (Minimum b-balanced cut) Given an undirected graph
G = (V,E) with nonnegative edge costs and a rational b, 0 < b ≤ 1/2, find a
minimum capacity cut (S, S) such that b · n ≤ |S| < (1− b) · n.

A b-balanced cut for b = 1/2 is called a bisection cut, and the problem of
finding a minimum capacity such cut is called the minimum bisection problem.
We will use Theorem 21.24 to obtain a pseudo-approximation algorithm for
Problem 21.27 – we will find a (1/3)-balanced cut whose capacity is within
an O(log n) factor of the capacity of a minimum bisection cut (see the notes
in Section 21.8 for a true approximation algorithm).

For V ′ ⊂ V , let GV ′ denote the subgraph of G induced by V ′. The
algorithm is: Initialize U ← ∅ and V ′ ← V . Until |U | ≥ n/3, find a minimum
expansion set in GV ′ , say W , then set U ← U ∪W and V ′ ← V ′−W . Finally,
let S ← U , and output the cut (S, V − S).

Claim 21.28 The cut output by the algorithm is a (1/3)-balanced cut whose
capacity is within an O(log n) factor of the capacity of a minimum bisection
cut in G.

194 21 Sparsest Cut

Proof: At the end of the penultimate iteration, |U | < n/3. Thus, at the
beginning of the last iteration, |V ′| ≥ 2n/3. At most half of these vertices are
added to U in the last iteration. Therefore, |V − S| ≥ n/3 and n/3 ≤ |S| <
n/3. Hence, (S, V − S) is a (1/3)-balanced cut.

Let (T, T) be a minimum bisection cut in G. Since at the beginning of
each iteration, |V ′| ≥ 2n/3, each of the sets T ∩ V ′ and T ∩ V ′ has at
least n/6 vertices. Thus, the expansion of a minimum expansion set in GV ′

in each iteration is at most c(T)
(n/6) . Since the algorithm finds a set having

expansion within a factor of O(log n) of optimal in any iteration, the set U
found satisfies:

c(U)
|U | ≤ O(log n) · c(T)

n/6
.

Since the final set S has at most 2n/3 vertices, summing up we get

c(S) ≤ O(log n) · c(T)(2n/3)
n/6

,

thereby giving c(S) ≤ O(log n) · c(T). ✷

21.6.4 Minimum cut linear arrangement

Problem 21.29 (Minimum cut linear arrangement) Given an undi-
rected graph G = (V,E) with nonnegative edge costs, for a numbering of its
vertices from 1 to n, define Si to be the set of vertices numbered at most i,
for 1 ≤ i ≤ n− 1; this defines n− 1 cuts. The problem is to find a numbering
that minimizes the capacity of the largest of these n−1 cuts, i.e., it minimizes
max{c(Si)| 1 ≤ i ≤ (n− 1)}.

Using the pseudo-approximation algorithm obtained above for the (1/3)-
balanced cut problem, we will obtain a true O(log2 n) factor approximation
algorithm for this problem. A key observation is that in any arrangement,
Sn/2 is a bisection cut, and thus the capacity of a minimum bisection cut
in G, say β, is a lower bound on the optimal arrangement. The reason we
get a true approximation algorithm is that the (1/3)-balanced cut algorithm
compares the cut found to β.

The algorithm is recursive: find a (1/3)-balanced cut in GV , say (S, S),
and recursively find a numbering of S in GS using numbers from 1 to |S|
and a numbering of S in GS using numbers from |S| + 1 to n. Of course,
the recursion ends when the set is a singleton, in which case the prescribed
number is assigned to this vertex.

Claim 21.30 The algorithm given above achieves an O(log2 n) factor for the
minimum cut linear arrangement problem.

21.7 Exercises 195

Proof: The following binary tree T (not necessarily complete) encodes the
outcomes of the recursive calls made by the algorithm: Each recursive call
corresponds to a node of the tree. Suppose recursive call α ends with two
further calls, α1 and α2, where the first call assigns smaller numbers and the
second assigns larger numbers. Then, α1 will be made the left child of α in
T and α2 will be made the right child of α. If recursive call α was made with
a singleton, then α will be a leaf of the tree.

To each nonleaf, we will assign the set of edges in the cut found during
this call, and to each leaf we will assign its singleton vertex. Thus, the left to
right ordering of leaves gives the numbering assigned by the algorithm to the
vertices. Furthermore, the edge sets associated with nonleaf nodes define a
partitioning of all edges of G. The cost of edges associated with any nonleaf
is O(log n)β by Claim 21.28. Since each recursive call finds a (1/3)-balanced
cut, the depth of recursion, and hence the depth of T , is O(log n).

Following is a crucial observation: Consider any edge (u, v) in G. Let α be
the lowest common ancestor of leaves corresponding to u and v in T . Then,
(u, v) belongs to the set of edges associated with node α.

With respect to the numbering found by the algorithm, consider a cut
(Si, Si), 1 ≤ i ≤ n − 1. Any edge in this cut connects vertices numbered j
and k with j ≤ i and k ≥ i + 1. Thus, such an edge must be associated with
a node that is a common ancestor of the leaves numbered i and i + 1. Since
the depth of T is O(log n), there are O(log n) such common ancestors. Since
the cost of edges associated with any node in T is O(log n)β, the cost of cut
(Si, Si) is bounded by O(log2 n)β. The claim follows since we have already
argued that β is a lower bound on the optimal arrangement. ✷

21.7 Exercises

21.1 For each of the three metrics given in Example 21.15, one of the sets
S2, . . . , Sl+1 has an expected contribution of Ω(d(u, v)/l). Give a metric for
which each set has an expected contribution of Θ(d(u, v)/l2).

21.2 Show that n points embedded in �1 space can be an isometric embedding
in (a higher dimensional) �22 space.
Hint: Since �1 and �22 are both additive across dimensions, first show that
it is sufficient to consider n points in one dimension. Sort these points, and
renumber, say x1, . . . , xn. Now embed these in (Rn−1, �22) as follows. Let
αi = xi+1 − xi. Map point xi to (

√
α1, . . . ,

√
αi−1, 0, . . . , 0).

21.3 Why can’t the pseudo-approximation algorithm given at the beginning
of Section 21.6.3 be converted to a true approximation algorithm, i.e., so
that in the end, we compare the (1/3)-balanced cut found to the optimal
(1/3)-balanced cut?

196 21 Sparsest Cut

Hint: Construct graphs for which the capacity of a minimum bisection cut
is arbitrarily higher than that of a (1/3)-balanced cut.

21.4 Show that the above algorithm extends to finding a b-balanced cut
that is within an O(log n) factor of the best b′-balanced cut for b ≤ 1/3 and
b < b′. Where in the argument is the restriction b ≤ 1/3 used?

21.5 Give an approximation factor preserving reduction from the problem
of finding a minimum b-balanced cut, for b < 1/2, to the minimum bisection
problem.

21.6 (Linial, London and Rabinovich [190]) Extend Theorem 21.22 to show
that for any p ≥ 1, there is an O(log n) distortion �p-embedding for metric
(V,d) in O(log2 n)-dimensional space.
Hint: Map point v to d(v,Si)

Q1/p , for i = 1, . . . , Q, where Q is the dimension
of the embedding. Use the fact that |d(u, Si) − d(v, Si)| ≤ d(u, v) and the
monotonicity of �p-norm.

21.7 (Feige [79]) Consider the following algorithm for:

Problem 21.31 (Bandwidth minimization) Given an undirected graph
G = (V,E), number the vertices with distinct integers from 1 to n so that
the spread of the longest edge is minimized, where the spread of edge (u, v)
is the absolute value of the difference of the numbers assigned to u and v.

Algorithm 21.32 (Bandwidth minimization)

1. Define metric (V,d), where duv is the length of the shortest path from u
to v in G.

2. Obtain an O(log n)-distortion �2-embedding of (V,d).
3. Pick a line � from a spherically symmetric distribution, and project the n

points onto �.
4. Number the vertices from 1 to n according to their ordering on �.
5. Output the numbering.

Remark 21.33 Lemma 26.7 gives an algorithm for picking �.

1. Show that the expected number of pairs of vertices that are within a
distance of 1 of each other on � is bounded by

O(log n
∑
u,v

1
duv

).

21.8 Notes 197

2. Show that

∑
u,v

1
duv

= O(n log n ·OPT).

Hint: Use the fact that in G, the number of vertices within a distance
of k of a vertex v is bounded by 2k ·OPT.

3. Show that with high probability, the spread of the numbering output is
at most O(

√
nOPT log n), i.e., this is an O(

√
n log n) factor algorithm.

Hint: If the spread of the output numbering is s, then the number of
pairs of vertices that are within a distance of 1 of each other on � is at
least s2.

21.8 Notes

The seminal work of Leighton and Rao [182] gave the first approximate max-
flow min-cut theorem, for the case of uniform multicommodity flow. They
also gave a factor O(log n) approximation algorithm for the associated special
case of sparsest cut and a pseudo-approximation algorithm for the b-balanced
cut problem. The general version of demands multicommodity flow was first
considered by Klein, Agarwal, Ravi, and Rao [173]. Theorem 21.22 is due to
Linial, London, and Rabinovich [190], based on a result of Bourgain [32] who
showed the existence of such an embedding and gave an exponential time
algorithm for finding it. The application of this theorem to the sparsest cut
problem, Theorem 21.24, was independently given by Aumann and Rabani
[16], and Linial, London, and Rabinovich [190].

An O(log2 n) factor algorithm for the minimum bisection problem, and
hence for the minimum b-balanced cut problem (see Exercise 21.5), was given
by Feige and Krauthgamer [83]. The application of sparsest cut to computing
conductance is due to Sinclair [241], and the application of balanced cuts to
the minimum cut linear arrangement problem is due to Bhatt and Leighton
[26]. See Exercise 26.9 for a semidefinite program for finding an optimal
distortion �22-embedding of n points.

22 Steiner Forest

We will obtain a factor 2 approximation algorithm for the Steiner forest
problem by enhancing the primal–dual schema with the idea of growing duals
in a synchronized manner. The Steiner forest problem generalizes the metric
Steiner tree problem, for which a factor 2 algorithm was presented in Chapter
3. Recall, however, that we had postponed giving the lower bounding method
behind that algorithm; we will clarify this as well.

As in the Steiner tree problem (Theorem 3.2), the main case of the
Steiner forest problem is also the metric case (see Exercise 22.2). However, the
primal–dual algorithm remains the same for both cases, so we don’t impose
this restriction.

Problem 22.1 (Steiner forest) Given an undirected graph G = (V,E),
a cost function on edges c : E → Q+, and a collection of disjoint subsets of
V , S1, . . . Sk, find a minimum cost subgraph in which each pair of vertices
belonging to the same set Si is connected.

Let us restate the problem; this will also help generalize it later. Define a
connectivity requirement function r that maps unordered pairs of vertices to
{0, 1} as follows:

r(u, v) =
{

1 if u and v belong to the same set Si
0 otherwise

Now, the problem is to find a minimum cost subgraph F that contains a u–v
path for each pair (u, v) with r(u, v) = 1. In general, the solution will be a
forest.

22.1 LP-relaxation and dual

In order to give an integer programming formulation for this problem, let
us define a function on all cuts in G, f : 2V → {0, 1}, which specifies the
minimum number of edges that must cross each cut in any feasible solution.

f(S) =
{

1 if ∃ u ∈ S and v ∈ S such that r(u, v) = 1
0 otherwise

22.2 Primal–dual schema with synchronization 199

Let us also introduce a 0/1 variable xe for each edge e ∈ E; xe will be set to
1 iff e is picked in the subgraph. The integer program is:

minimize
∑
e∈E

cexe (22.1)

subject to
∑

e: e∈δ(S)

xe ≥ f(S), S ⊆ V

xe ∈ {0, 1}, e ∈ E

where δ(S) denotes the set of edges crossing the cut (S, S).
Following is the LP-relaxation of (22.1); once again, we have dropped the

redundant conditions xe ≤ 1.

minimize
∑
e∈E

cexe (22.2)

subject to
∑

e: e∈δ(S)

xe ≥ f(S), S ⊆ V

xe ≥ 0, e ∈ E

The dual program is:

maximize
∑
S⊆V

f(S) · yS (22.3)

subject to
∑

S: e∈δ(S)

yS ≤ ce, e ∈ E

yS ≥ 0, S ⊆ V

Notice that the primal and dual programs form a covering and packing
pair of LPs (see Section 13.1 for definitions).

22.2 Primal–dual schema with synchronization

We will introduce a new idea in the primal–dual schema for approximation
algorithms, setting it apart from the way this schema is used for designing
exact algorithms. The later algorithms work on demand – in each iteration,
we pick one unsatisfied complementary slackness condition, and satisfy it
by modifying the primal and dual solutions suitably. The new idea is that of
raising duals in a synchronized manner. The algorithm is not trying to rectify
a specific condition. Instead, it tries many possibilities simultaneously, one of
which leads to primal improvement.

200 22 Steiner Forest

Some figurative terminology will help describe the algorithm more easily.
Let us say that edge e feels dual yS if yS > 0 and e ∈ δ(S). Say that set S
has been raised in a dual solution if yS > 0. Clearly, raising S or S has the
same effect. Sometimes we will also say that we have raised the cut (S, S).
Further, there is no advantage in raising set S with f(S) = 0, since this does
not contribute to the dual objective function. Thus, we may assume that such
cuts are never raised. Say that edge e is tight if the total amount of dual it
feels equals its cost. The dual program is trying to maximize the sum of the
dual variables yS subject to the condition that no edge feels more dual than
its cost, i.e., no edge is overtight.

Next, let us state the primal and relaxed dual complementary slackness
conditions. The algorithm will pick edges integrally only. Define the degree
of set S to be the number of picked edges crossing the cut (S, S).

Primal conditions: For each e ∈ E, xe �= 0 ⇒∑
i: e∈δ(S) yS = ce.

Equivalently, every picked edge must be tight.

Relaxed dual conditions: The following relaxation of the dual condi-
tions would have led to a factor 2 algorithm: for each S ⊆ V, yS �= 0 ⇒∑

e: e∈δ(S) xe ≤ 2 · f(S), i.e., every raised cut has degree at most 2. However,
we do not know how to ensure this condition. Interestingly enough, we can
still obtain a factor 2 algorithm – by relaxing this condition further! Raised
sets will be allowed to have high degree; however, we will ensure that on aver-
age, raised duals have degree at most 2. The exact definition of “on average”
will be given later.

The algorithm starts with null primal and dual solutions. In the spirit
of the primal–dual schema, the current primal solution indicates which cuts
need to be raised, and in turn, the current dual solution indicates which edge
needs to be picked. Thus, the algorithm iteratively improves the feasibility of
the primal, and the optimality of the dual, until a feasible primal is obtained.

Let us describe what happens in an iteration. At any point, the picked
edges form a forest. Say that set S is unsatisfied if f(S) = 1, but there is
no picked edge crossing the cut (S, S). Set S is said to be active if it is a
minimal (w.r.t. inclusion) unsatisfied set in the current iteration. Clearly, if
the currently picked primal solution is infeasible, there must an unsatisfied
set and therefore an active set w.r.t. it.

Lemma 22.2 Set S is active iff it is a connected component in the currently
picked forest and f(S) = 1.

Proof: Let S be an active set. Now, S cannot contain part of a connected
component because otherwise there will already be a picked edge in the cut
(S, S). Thus, S is a union of connected components. Since f(S) = 1, there
is a vertex u ∈ S and v ∈ S such that r(u, v) = 1. Let S′ be the connected
component containing u. Clearly, S′ is also unsatisfied, and by the minimality
of S, S = S′. ✷

22.2 Primal–dual schema with synchronization 201

By the characterization of active sets given in Lemma 22.2, it is easy to
find all active sets in the current iteration. The dual variables of these sets
are raised in a synchronized manner, until some edge goes tight. Any one of
the newly tight edges is picked, and the current iteration terminates.

When a primal feasible solution is found, say F , the edge augmentation
step terminates. However, F may contain redundant edges, which need to be
pruned for achieving the desired approximation factor; this is illustrated in
Example 22.4. Formally, edge e ∈ F is said to be redundant if F −{e} is also
a feasible solution. All redundant edges can be dropped simultaneously from
F . Equivalently, only nonredundant edges are retained.

This algorithm is presented below. We leave its efficient implementation
as an exercise.

Algorithm 22.3 (Steiner forest)

1. (Initialization) F ← ∅; for each S ⊆ V , yS ← 0.
2. (Edge augmentation) while there exists an unsatisfied set do:

simultaneously raise yS for each active set S, until some edge e goes
tight;

F ← F ∪ {e}.
3. (Pruning) return F ′ = {e ∈ F | F − {e} is primal infeasible}

Example 22.4 Consider a star in which all edges have cost 1, except one
edge whose cost is 3.

� ✉

� �

��

✉
❚
❚
❚
❚
❚
❚

✔
✔

✔
✔
✔
✔

3

1

1
1

1
1

The only requirement is to connect the end vertices of the edge of cost 3. The
algorithm will add to F all edges of cost 1 before adding the edge of cost 3.
Clearly, at this point, F is not within twice the optimal. However, this will
be corrected in the pruning step when all edges of cost 1 will be removed. ✷

Let us run the algorithm on a nontrivial example to illustrate its finer
points.

Example 22.5 Consider the following graph. Costs of edges are marked, and
the only nonzero connectivity requirements are r(u, v) = 1 and r(s, t) = 1.
The thick edges indicate an optimal solution of cost 45.

202 22 Steiner Forest

9

20

19

ts

u v

16
a b

12 12

6 6

In the first iteration, the following four singleton sets are active: {s}, {t},
{u}, and {v}. When their dual variables are raised to 6 each, edges (u, a)
and (v, b) go tight. One of them, say (u, a) is picked, and the iteration ends.
In the second iteration, {u, a} replaces {u} as an active set. However, in
this iteration there is no need to raise duals, since there is already a tight
edge, (v, b). This edge is picked, and the iteration terminates. The primal and
dual solutions at this point are shown below, with picked edges marked thick:

v20u

6 6

19

t

b

9

a
16

s

12 12

66

6 6

In the third iteration, {v, b} replaces {v} as an active set. When the active
sets are raised by 2 each, edge (u, s) goes tight and is picked. In the fourth
iteration, the active sets are {u, s, a}, {v} and {t}. When they are raised by
1 each, edge (b, t) goes tight and is picked. The situation now is:

22.2 Primal–dual schema with synchronization 203

v

12

66

u 20

9

ba

s t

12

66

16

12

3

8 9

19

In the fifth iteration, the active sets are {a, s, u} and {b, v, t}. When they
are raised by 1 each, (u, v) goes tight, and we now have a primal feasible
solution:

v

22

66

u 20

ba

s t

12

66

16

12

3

8 9

19

1

9

In the pruning step, edge (u, a) is deleted, and we obtain the following
solution of cost 54:

204 22 Steiner Forest

20

9 19

6

16

12 12

6

s t

vu

a b

✷

22.3 Analysis

In Lemma 22.6 we will show that simultaneously deleting all redundant edges
still leaves us with a primal feasible solution, i.e., it is never the case that
two edges e and f are both redundant individually, but on deletion of e, f
becomes nonredundant.

Lemma 22.6 At the end of the algorithm, F ′ and y are primal and dual
feasible solutions, respectively.

Proof: At the end of Step 2, F satisfies all connectivity requirements. In each
iteration, dual variables of connected components only are raised. Therefore,
no edge running within the same component can go tight, and so F is acyclic,
i.e., it is a forest. Therefore, if r(u, v) = 1, there is a unique u–v path in F .
Thus, each edge on this path in nonredundant and is not deleted in Step 3.
Hence, F ′ is primal feasible.

When an edge goes tight, the current iteration ends and active sets are
redefined. Therefore, no edge is overtightened. Hence, y is dual feasible. ✷

Let degF ′(S) denote the number of edges of F ′ crossing the cut (S, S).
The characterization of degrees of satisfied components established in the
next lemma will be crucial in proving the approximation guarantee of the
algorithm.

Lemma 22.7 Consider any iteration of the algorithm, and let C be a com-
ponent w.r.t. the currently picked edges. If f(C) = 0 then degF ′(C) �= 1.

Proof: Suppose degF ′(C) = 1, and let e be the unique edge of F ′ crossing
the cut (C,C). Since e is nonredundant (every edge in F ′ is nonredundant),

22.3 Analysis 205

there is a pair of vertices, say u, v, such that r(u, v) = 1 and e lies on the
unique u–v path in F ′. Since this path crosses the cut (C,C) exactly once,
one of these vertices must lie in C and the other in C. Now, since r(u, v) = 1,
we get that f(C) = 1, thus leading to a contradiction. ✷

Lemma 22.8
∑
e∈F ′

ce ≤ 2
∑
S⊆V

yS

Proof: Since every picked edge is tight,

∑
e∈F ′

ce =
∑
e∈F ′

 ∑
S: e∈δ(S)

yS

 .

Changing the order of summation we get:

∑
e∈F ′

ce =
∑
S⊆V

 ∑
e∈δ(S)∩F ′

yS

 =

∑
S⊆V

degF ′(S) · yS .

Thus, we need to show that∑
S⊆V

degF ′(S) · yS ≤ 2
∑
S⊆V

yS . (22.4)

We will prove the following stronger claim. In each iteration, the increase
in the left-hand side of inequality (22.4) is bounded by the increase in the
right-hand side. Consider an iteration, and let ∆ be the extent to which active
sets were raised in this iteration. Then, we need to show:

∆×

 ∑
S active

degF ′(S)

 ≤ 2∆× (# of active sets).

Notice that the degree w.r.t. F ′ of any active set S is due to edges that will
be picked during or after the current iteration. Let us rewrite this inequality
as follows:∑

S active degF ′(S)
of active sets

≤ 2. (22.5)

Thus, we need to show that in this iteration, the average degree of active
sets w.r.t. F ′ is at most 2. The mechanics of the argument lies in the fact
that in a tree, or in general in a forest, the average degree of vertices is at
most 2.

206 22 Steiner Forest

Let H be a graph on vertex set V and edge set F ′. Consider the set of
connected components w.r.t. F at the beginning of the current iteration. In
H, shrink the set of vertices of each of these components to a single node
to obtain graph H ′ (we will call the vertices of H ′ nodes for clarity). Notice
that in going from H to H ′, all edges picked in F before the current iteration
have been shrunk. Clearly, the degree of a node in H ′ is equal to the degree
of the corresponding set in H. Let us say that a node of H ′ corresponding to
an active component is an active node; any other node will be called inactive.
Each active node of H ′ has nonzero degree (since there must be an edge
incident to it to satisfy its requirement), and H ′ is a forest. Now, remove all
isolated nodes from H ′. The remaining graph is a forest with average degree
at most 2. By Lemma 22.7 the degree of each inactive node in this graph is
at least 2, i.e., the forest has no inactive leaves. Hence, the average degree of
active nodes is at most 2. ✷

Observe that the proof given above is essentially a charging argument:
for each active node of degree greater than 2, there must be correspondingly
many active nodes of degree 1, i.e., leaves, in the forest. The exact manner in
which the dual conditions have been relaxed must also be clear now: in each
iteration, the duals being raised have average degree at most 2. Lemmas 22.6
and 22.8 give:

Theorem 22.9 Algorithm 22.3 achieves an approximation guarantee of fac-
tor 2 for the Steiner forest problem.

The tight example given for the metric Steiner tree problem, Example
3.4, is also a tight example for this algorithm. Algorithm 22.3 places an upper
bound of 2 on the integrality gap of LP-relaxation (22.2) for the Steiner forest
problem. Example 22.10 places a lower bound of (essentially) 2 on this LP,
even if restricted to the minimum spanning tree problem.

Let us run Algorithm 22.3 on an instance of the metric Steiner tree prob-
lem. If the edge costs satisfy the strict triangle inequality, i.e., for any three
vertices u, v, w, c(u, v) < c(u,w) + c(v, w), then it is easy to see that the
algorithm will find a minimum spanning tree on the required vertices, i.e., it
is essentially the algorithm for the metric Steiner tree problem presented in
Chapter 3. Even if the triangle inequality is not strictly satisfied, the cost of
the solution found is the same as the cost of an MST. Furthermore, if among
multiple tight edges, the algorithm always prefers picking edges running be-
tween required vertices, it will find an MST. This clarifies the lower bound
on which that algorithm was based.

The MST problem is a further special case: every pair of vertices need to
be connected. Observe that when run on such an instance, Algorithm 22.3
essentially executes Kruskal’s algorithm, i.e., in each iteration, it picks the
cheapest edge running between two connected components. Hence it finds an
optimal MST. However, as shown in Example 22.10, the dual found may be
as small as half the primal.

22.4 Exercises 207

Example 22.10 Consider a cycle on n vertices, with all edges of cost 1. The
cost of an optimal MST is n− 1. the dual found is n/2. Algorithm 22.3 finds
a dual of value n/2: 1/2 around each vertex. Indeed, this is an optimal dual
solution, since there is a fractional primal solution of the same value: pick
each edge to the extent of half. This places a lower bound of (essentially) 2 on
the integrality gap of LP (22.2), even if restricted to the minimum spanning
tree problem. ✷

22.4 Exercises

22.1 Show, using the max-flow min-cut theorem, that a subgraph of G has
all the required paths iff it does not violate any of the cut requirements in
IP (22.1). Use this fact to show that IP (22.1) is an integer programming
formulation for the Steiner forest problem.

22.2 Show that there is an approximation-factor-preserving reduction from
the Steiner forest problem to the metric Steiner forest problem.

Show that there is no loss of generality in requiring that the edge costs
satisfy the triangle inequality for the Steiner network problem.
Hint: The reasoning is the same as that for the Steiner tree problem.

22.3 How does the feasibility and approximation guarantee of the solution
found change if

1. the pruning step of Algorithm 22.3 is replaced with the reverse delete
step of Algorithm 18.4.

2. the reverse delete step of Algorithm 18.4 is replaced by the pruning step
of Algorithm 22.3.

22.4 Give an example for which some cut raised by Algorithm 22.3 has
degree at least 3 w.r.t. the primal solution found.

22.5 Run Algorithm 22.3 on an instance of the minimum spanning tree
problem. Pick an arbitrary vertex as the root, and throw away all raised
duals containing this vertex. Show that the cost of the tree found is twice the
sum of the remaining duals.
Hint: Show that in an iteration which starts with k connected components,
and lasts for time ∆, the total increase to the left-hand side of inequality
(22.4) is precisely 2(k − 1)∆.

22.6 Let us think of running Step 2 of Algorithm 22.3 continuously in time.
Thus, in unit time, a dual grows a unit amount. Consider an instance of the

208 22 Steiner Forest

Steiner forest problem, (G = (V,E), c, S1, . . . , Sk), and its modification in
which one of the vertices from V − (S1 ∪ . . . ∪ Sk) is added to one of the
sets. Run Algorithm 22.3 on both these instances. Call these runs R1 and
R2, respectively.

1. Show that if k = 1, i.e., the starting instance was a Steiner tree instance,
then the following holds. If at time t two vertices u, v ∈ S1 are connected
by a tight path in run R1, then they are connected by a tight path at
time t in run R2 as well.

2. Give a counterexample to the previous claim in case k > 1.

22.7 (Goemans and Williamson [105]) Algorithm 22.3 actually works for a
general class of problems that includes the Steiner forest problem as a special
case. A function f : 2V → {0, 1} is said to be proper if it satisfies the following
properties:

1. f(V) = 0;
2. f(S) = f(S);
3. If A and B are two disjoint subsets of V and f(A∪B) = 1, then f(A) = 1

or f(B) = 1.

Notice that function f defined for the Steiner forest problem is a proper func-
tion. Consider the integer program (22.1) with f restricted to be a proper
function. Show that Algorithm 22.3 is in fact a factor 2 approximation algo-
rithm for this class of integer programs.

22.8 (Goemans and Williamson [105]) Consider the following problem.

Problem 22.11 (Point-to-point connection) Given a graph G = (V,E),
a cost function on edges c : E → Q+ (not necessarily satisfying the triangle
inequality) and two disjoint sets of vertices, S and T , of equal cardinality,
find a minimum cost subgraph that has a path connecting each vertex in S
to a unique vertex in T .

1. Give a factor 2 approximation algorithm for this problem.
Hint: Show that this can be formulated as an integer program using
(22.1), with f being a proper function.

2. Relax the problem to requiring that each vertex in S be connected to
some vertex in T (not necessarily unique). Give a factor 2 approximation
algorithm for this problem as well.
Hint: Reduce to the Steiner tree problem.

22.9 (Goemans and Williamson [105]) Consider the following variant of the
metric Steiner tree problem.

Problem 22.12 (Prize-collecting Steiner tree) We are given a complete
undirected graph G = (V,E) and a special vertex r ∈ V . Function cost : E →

22.4 Exercises 209

Q+ satisfies the triangle inequality, and π : V → Q+ is the penalty function
for vertices. The problem is to find a tree containing r which minimizes the
sum of the costs of the edges in the tree and the penalties of vertices not in
the tree.

1. Consider the following integer program for this problem. It has a variable,
xe, for each edge e and a variable, ZT , for each set T of vertices not
containing r. ZT is set to 1 for the set T of vertices that are not included
in the optimal tree. Obtain the LP-relaxation and dual for this LP. The
dual will have a variable for each set S of vertices not containing r. Let’s
call this variable yS .

minimize
∑
e∈E

cexe +
∑

T⊆V ;r �∈T

(
ZT

∑
v∈T

πv

)
(22.6)

subject to
∑
e∈δ(S)

xe +
∑
T⊇S

ZT ≥ 1, S ⊆ V ; r �∈ S

xe ∈ {0, 1}, e ∈ E

ZT ∈ {0, 1}, T ⊆ V ; r �∈ T

2. The following primal–dual algorithm for this problem is along the lines
of Algorithm 22.3. Initialize as follows. Each vertex v �= r is a singleton
active set, with a charge of πv. Ordered list F is set to ∅. The dual
variables of all active sets are grown in a synchronized manner. As a
dual grows, its charge decreases by the same amount. If set S runs out
of charge, it is declared dead and all of its unmarked vertices are marked
with “S”. When an edge e goes tight, it is added to F . The rest of the
action depends on the following cases.
• If e connects active set S to r: Set S is deactivated and is declared
connected to r. All unmarked vertices of S are marked “r”.

• If e connects active set S to a set that is connected to r: Same action
as in previous case.

• If e connects sets S and S′ which are either both active or one is active
and one is dead: The active sets among S and S′ are deactivated. S∪S′

is declared active and is given the sum of the leftover charges of S and
S′.

When there are no more active sets, the algorithm performs a dynamic
reverse delete on F . This is an enhanced reverse delete procedure in which
requirements change dynamically. All vertices marked “r” are labeled
Required. We will say that F is feasible if there is a path from each
Required vertex to r using edges of F . Let e = (u, v) ∈ F . Then the
maximal dead set w.r.t. e, containing v is the maximal set S such that
v ∈ S, u /∈ S and S was declared dead by the algorithm. If there is no set

210 22 Steiner Forest

satisfying these conditions, then the maximal dead set w.r.t. e, containing
v is defined to be ∅.
Edges e ∈ F are considered in the reverse order in which they were
inserted in F . For each edge e, if F − e is feasible, then e is removed
from F . Otherwise, suppose e = (u, v), and let S be the maximal dead
set w.r.t. e, containing v. If S �= ∅, then declare all vertices marked “S”
Required. Repeat for the maximal dead set w.r.t. e containing u.

3. Show that at the beginning of the reverse delete step, F is feasible. Also,
show that F is never infeasible, even if the set of Required vertices grows.

4. Show that at the end, F is a tree containing r and satisfying
a) all vertices marked “r” are included in F , and
b) if a vertex marked “S” is included in F , then all vertices marked “T”,

where T ⊇ S, are also included in F .
5. The primal solution is constructed as follows. For each edge e in F , set

xe to 1, and set the remaining xe’s to 0. For each maximal dead set T ,
none of whose vertices are in F , set ZT to 1. For all the remaining sets,
set their Z variable to 0.
Prove that this is a factor 2 approximation algorithm for the prize-
collecting Steiner tree problem, by showing that the primal and dual
solutions produced satisfy

∑
e∈E

cexe + 2 ·
∑

T⊆V ;r �∈T

(
ZT

∑
v∈T

πv

)
≤ 2 ·

∑
S⊆V ;r �∈T

yS .

Hint: If ZT = 1, the sum of penalties of vertices in T equals the total dual
contained in T . Twice the rest of the duals pays for the cost of the tree.
Show the latter by proving, similar to Lemma 22.7, that at any point in the
algorithm, there is at most one inactive set of degree 1 (the one containing
r).

22.10 Consider the following generalization of the Steiner forest problem
to higher connectivity requirements: the specified connectivity requirement
function r maps pairs of vertices to {0, . . . , k}, where k is part of the input.
Assume that multiple copies of any edge can be used; each copy of edge e will
cost c(e). Using Algorithm 22.3 as a subroutine, give a factor 2 · (�log2 k�+1)
algorithm for the problem of finding a minimum cost graph satisfying all
connectivity requirements.

22.11 We give below the bidirected cut relaxation for the Steiner tree prob-
lem. This is believed to have a smaller integrality gap than the undirected
relaxation (22.2), though there is no proof of this fact yet. From graph G, ob-
tain directed graph H by replacing each edge (u, v) by the two edges (u → v)
and (v → u), each of the same cost as (u, v). Designate an arbitrary required
vertex, say r, as the root. Say that S ⊂ V is valid if it contains a required

22.4 Exercises 211

vertex and r ∈ S. Let xe be an indicator variable for each edge e ∈ H. The
integer program is:

minimize
∑
e∈E

cexe (22.7)

subject to
∑

e: e∈δ(S)

xe ≥ 1, valid set S

xe ∈ {0, 1}, e ∈ H

1. Show that the optimal solution to this integer program is an optimal
Steiner tree.

2. Obtain the LP-relaxation and dual for IP (22.7).
3. Show that the cost of the optimal solution to (22.7) and its relaxation is

independent of the root chosen.
4. Show that the integrality gap of the relaxation is bounded by 2.
5. (Rajagopalan and Vazirani [226]) Show that the integrality gap of this

relaxation for the following graph is 10/9. In this graph, the bold vertices
are required and the remaining vertices are Steiner.

� �

�

�

�
�
�
�
� ❙

❙
❙
❙
❙
�

�
�

�
�❙

❙
❙

❙
❙

❙
❙
❙
❙
❙

�
�
�
�
�

6. (M. Goemans) The following family of graphs puts a lower bound of
essentially 8/7 on the integrality gap of relaxation (22.7). This is currently
the worst example known.

� � �

� � �

�

✚
✚

✚
✚

✚
✚✚

ai ajcij

bi dij bj

a0

2 2

2 2

2 2

1 1

1

212 22 Steiner Forest

Graph Gn has n+1 required vertices a0, a1, . . . , an, and n2 Steiner vertices
b1, . . . , bn and cij and dij for 1 ≤ i < j ≤ n. The figure above gives edges
and costs. Verify that the optimal Steiner tree has cost 4n and the optimal
solution to relaxation (22.7) has cost 7n + 1/2.

7. Construct other graphs for which this relaxation has a gap (it is not
easy!).

8. (Edmonds [70]) Consider the special case that there are no Steiner ver-
tices, i.e., we want to find a minimum spanning tree in G. Give a primal–
dual algorithm that uses this relaxation to find a tree and a dual of the
same cost, thereby showing that this relaxation is exact, i.e., always has
an integral optimal solution, for the minimum spanning tree problem. (In
contrast, the undirected relaxation has an integrality gap of 2 even for
the minimum spanning tree problem.)

22.12 (Prömel and Steger [223]) This exercise develops an algorithm for
the Steiner tree problem using the weighted matroid parity problem and the
following structural fact. Let us say that a Steiner tree is 3-restricted if every
Steiner vertex used in this tree has exactly three neighbors, all of which are
required vertices. The cost of an optimal 3-restricted Steiner tree is within
5/3 of the cost of an optimal Steiner tree (Zelikovsky [262]). Show that an
optimal 3-restricted Steiner tree can be found in polynomial time, given an
oracle for the weighted matroid parity problem. The latter problem is neither
known to be in P nor is it known to be NP-hard. However, a randomized
polynomial time algorithm is known for the case of unary weights. Use this
fact, and scaling, to obtain a 5/3 + ε factor algorithm for the Steiner tree
problem for any ε > 0.

The weighted matroid parity problem is the following. Let (S, I) be a
matroid, where S is the ground set and I is the collection of independent
sets. Nonnegative weights are provided for elements of S. Further, a partition
of S into pairs (x1, x2), . . . , (x2n−1, x2n) is also provided. The problem is to
pick a maximum weight collection of pairs so that the picked elements form
an independent set.

22.5 Notes

This chapter is based on the work of Goemans and Williamson [105]. The
first factor 2 approximation algorithm for the Steiner forest problem was
given by Agrawal, Klein, and Ravi [1]. See also the survey by Goemans and
Williamson [107].

23 Steiner Network

The following generalization of the Steiner forest problem to higher connec-
tivity requirements has applications in network design and is also known as
the survivable network design problem. In this chapter, we will give a factor
2 approximation algorithm for this problem by enhancing the LP-rounding
technique to iterated rounding. A special case of this problem was considered
in Exercise 22.10.

Problem 23.1 (Steiner network) We are given an undirected graph
G = (V,E), a cost function on edges c : E → Q+ (not necessarily satisfying
the triangle inequality), a connectivity requirement function r mapping un-
ordered pairs of vertices to Z+, and a function u : E → Z+ ∪ {∞} stating
an upper bound on the number of copies of edge e we are allowed to use; if
ue = ∞, there is no upper bound for edge e. The problem is to find a mini-
mum cost multigraph on vertex set V that has r(u, v) edge disjoint paths for
each pair of vertices u, v ∈ V . Each copy of edge e used for constructing this
graph will cost c(e).

23.1 The LP-relaxation and half-integrality

In order to give an integer programming formulation for this problem, we
will first define a cut requirement function, f : 2V → Z+, as we did for the
metric Steiner forest problem. For every S ⊆ V , f(S) is defined to be the
largest connectivity requirement separated by the cut (S, S), i.e., f(S) =
max{r(u, v)|u ∈ S and v ∈ S}.

minimize
∑
e∈E

cexe (23.1)

subject to
∑

e: e∈δ(S)

xe ≥ f(S), S ⊆ V

xe ∈ Z+, e ∈ E and ue = ∞
xe ∈ {0, 1, . . . , ue}, e ∈ E and ue �= ∞

The LP-relaxation is:

214 23 Steiner Network

minimize
∑
e∈E

cexe (23.2)

subject to
∑

e: e∈δ(S)

xe ≥ f(S), S ⊆ V

xe ≥ 0, e ∈ E and ue = ∞
ue ≥ xe ≥ 0, e ∈ E and ue �= ∞

Since LP (23.2) has exponentially many constraints, we will need the
ellipsoid algorithm for finding an optimal solution. Exercise 23.1 develops a
polynomial-sized LP.

As shown in Chapters 14 and 19, certain NP-hard problems, such as ver-
tex cover and node multiway cut, admit LP-relaxations having the remarkable
property that they always have a half-integral optimal solution. Rounding up
all halves to 1 in such a solution leads to a factor 2 approximation algorithm.
Does relaxation (23.2) have this property? The following lemma shows that
the answer is “no”.

Lemma 23.2 Consider the Petersen graph (see Section 1.2) with a connec-
tivity requirement of 1 between each pair of vertices and with each edge of
unit cost. Relaxation (23.2) does not have a half-integral optimal solution for
this instance.

Proof: Consider the fractional solution xe = 1/3 for each edge e. Since
the Petersen graph is 3-edge connected (in fact, it is 3-vertex connected as
well), this is a feasible solution. The cost of this solution is 5. In any feasible
solution, the sum of edge variables incident at any vertex must be at least 1,
to allow connectivity to other vertices. Therefore, any feasible solution must
have cost at least 5 (since the Petersen graph has 10 vertices). Hence, the
solution given above is in fact optimal.

Any solution with xe = 1 for some edge e must have cost exceeding 5,
since additional edges are required to connect the endpoints of e to the rest of
the graph. Therefore, any half-integral solution of cost 5 would have to pick,
to the extent of one half each, the edges of a Hamiltonian cycle. Since the
Petersen graph has no Hamiltonian cycles, there is no half-integral optimal
solution. ✷

Let us say that an extreme point solution, also called a vertex solution or a
basic feasible solution, for an LP is a feasible solution that cannot be written
as the convex combination of two feasible solutions. The solution xe = 1/3,
for each edge e, is not an extreme point solution. An extreme optimal solution
is shown in the figure below; thick edges are picked to the extent of 1/2, thin
edges to the extent of 1/4, and the missing edge is not picked.

23.1 The LP-relaxation and half-integrality 215

The isomorphism group of the Petersen graph is edge-transitive, and there
are 15 related extreme point solutions; the solution xe = 1/3 for each edge e
is the average of these.

Notice that although the extreme point solution is not half-integral, it
picks some edges to the extent of half. We will show below that in fact this is
a property of any extreme point solution to LP (23.2). We will obtain a factor
2 algorithm by rounding up these edges and iterating. Let H be the set of
edges picked by the algorithm at some point. Then, the residual requirement
of cut (S, S) is f ′(S) = f(S) − |δH(S)|, where δH(S) represents the set of
edges of H crossing the cut (S, S). In general, the residual cut requirement
function, f ′, may not correspond to the cut requirement function for any
set of connectivity requirements. We will need the following definitions to
characterize it:

Function f : 2V → Z+ is said to be submodular if f(V) = 0, and for every
two sets A,B ⊆ V , the following two conditions hold:

• f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)
• f(A) + f(B) ≥ f(A−B) + f(B −A).

Remark 23.3 Sometimes submodularity is defined only with the first con-
dition. We will need to work with the stronger definition given above.

Two subsets of V , A and B, are said to cross if each of the sets, A − B,
B −A, and A ∩B, is nonempty. If A and B don’t cross then either they are
disjoint or one of these sets is contained in the other.

Lemma 23.4 For any graph G on vertex set V , the function |δG(.)| is sub-
modular.

216 23 Steiner Network

Proof: If sets A and B do not cross, then the two conditions given in the
definition of submodular functions hold trivially. Otherwise, edges having
one endpoint in A ∩ B and the other in A ∪B (edge e1 in the figure below)
contribute to δ(A) and δ(B) but not to δ(A−B) or δ(B−A). Similarly, edge
e2 below does not contribute to δ(A∩B) or to δ(A∪B). The remaining edges
contribute equally to both sides of both conditions. ✷

A B

e

e

1

2

Function f : 2V → Z is said to be weakly supermodular if f(V) = 0, and
for every two sets A,B ⊆ V , at least one of the following conditions holds:

• f(A) + f(B) ≤ f(A−B) + f(B −A)
• f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

It is easy to check that the original cut requirement function is weakly
supermodular; by Lemma 23.5, so is the residual cut requirement function.

Lemma 23.5 Let H be a subgraph of G. If f : 2V (G) → Z+ is a weakly
supermodular function, then so is the residual cut requirement function f ′.

Proof: Suppose f(A)+f(B) ≤ f(A−B)+f(B−A); the proof of the other
case is similar. By Lemma 23.4, |δH(A)|+|δH(B)| ≥ |δH(A−B)|+|δH(B−A)|.
Subtracting, we get f ′(A) + f ′(B) ≤ f ′(A−B) + f ′(B −A). ✷

We can now state the central polyhedral fact needed for the factor 2
algorithm in its full generality.

Theorem 23.6 For any weakly supermodular function f , any extreme point
solution, x, to LP (23.2) must pick some edge to the extent of at least a half,
i.e., xe ≥ 1/2 for at least one edge e.

23.2 The technique of iterated rounding 217

23.2 The technique of iterated rounding

In this section, we will give an iterated rounding algorithm for the Steiner
network problem, using Theorem 23.6.

Algorithm 23.7 (Steiner network)

1. Initialization: H ← ∅: f ′ ← f .
2. While f ′ �≡ 0, do:

Find an extreme optimal solution,
x, to LP (23.2) with cut requirements given by f ′.

For each edge e such that xe ≥ 1/2, include �xe� copies of e in H,
and decrement ue by this amount.

Update f ′: for S ⊆ V , f ′(S) ← f(S)− |δH(S)|.
3. Output H.

The algorithm presented above achieves an approximation guarantee of
factor 2 for an arbitrary weakly supermodular function f . Establishing a
polynomial running time involves showing that an extreme optimal solution
to LP (23.2) can be found efficiently. We do not know how to do this for
an arbitrary weakly supermodular function f . However, if f is the original
cut requirement function for some connectivity requirements, then a poly-
nomial time implementation follows from the existence of a polynomial time
separation oracle for each iteration.

For the first iteration, a separation oracle follows from a max-flow sub-
routine. Given a solution x, construct a graph on vertex set V with capacity
xe for each edge e. Then, for each pair of vertices u, v ∈ V , check if this graph
admits a flow of at least r(u, v) from u to v. If not, we will get a violated cut,
i.e., a cut (S, S) such that δx(S) < f(S), where

δx(S) =
∑

e: e∈δ(S)

xe.

Let f ′ be the cut requirement function of a subsequent iteration. Given
a solution to LP (23.2) for this function, say x′, define x as follows: for each
edge e, xe = x′

e + eH , where eH is the number of copies of edge e in H. The
following lemma shows that a separation oracle for the original function f
leads to a separation oracle for f ′. Furthermore, this lemma also shows that
there is no need to update f ′ explicitly after each iteration.

Lemma 23.8 A cut (S, S) is violated by solution x′ under cut requirement
function f ′ iff it is violated by solution x under cut requirement function f .

Proof: Notice that δx(S) = δx′(S)+ |δH(S)|. Since f(S) = f ′(S)+ |δH(S)|,
δx(S) ≥ f(S) iff δx′(S) ≥ f ′(S). ✷

218 23 Steiner Network

Lemma 23.8 implies that solution x′ is feasible for the cut requirement
function f ′ iff solution x is feasible for f . Assuming Theorem 23.6, whose
proof we will provide below, let us show that Algorithm 23.7 achieves an
approximation guarantee of 2.

Theorem 23.9 Algorithm 23.7 achieves an approximation guarantee of 2
for the Steiner network problem.

Proof: By induction on the number of iterations executed by the algorithm
when run with a weakly supermodular cut requirement function f , we will
prove that the cost of the integral solution obtained is within a factor of two
of the cost of the optimal fractional solution. Since the latter is a lower bound
on the cost of the optimal integral solution, the claim follows.

For the base case, if f requires one iteration, the claim follows, since the
algorithm rounds up only edges e with xe ≥ 1/2.

For the induction step, assume that x is the extreme optimal solution
obtained in the first iteration. Obtain x̂ from x by zeroing out components
that are strictly smaller than 1/2. By Theorem 23.6, x̂ �= 0. Let H be the set of
edges picked in the first iteration. Since H is obtained by rounding up nonzero
components of x̂ and each of these components is ≥ 1/2, cost(H) ≤ 2·cost(x̂).

Let f ′ be the residual requirement function after the first iteration and
H ′ be the set of edges picked in subsequent iterations for satisfying f ′. The
key observation is that x − x̂ is a feasible solution for f ′, and thus by the
induction hypothesis, cost(H ′) ≤ 2 · cost(x − x̂). Let us denote by H + H ′

the edges of H together with those of H ′. Clearly, H + H ′ satisfies f . Now,

cost(H + H ′)≤ cost(H) + cost(H ′)

≤ 2 · cost(x̂) + 2 · cost(x− x̂) ≤ 2 · cost(x). ✷

Corollary 23.10 The integrality gap of LP (23.2) is bounded by 2.

Notice that previous algorithms obtained using LP-rounding solved the
relaxation once and did the entire rounding based on this solution. These al-
gorithms did not exploit the full power of rounding – after part of the solution
is rounded, the remaining fractional solution may not be the best solution
to continue the rounding process. It may be better to assume integral values
for the rounded variables and recompute fractional values for the remaining
variables, as is done above. We will call this technique iterated rounding.

Example 23.11 The tight example given for the metric Steiner tree prob-
lem, Example 3.4, is also a tight example for this algorithm. Observe that
after including a subset of edges of the cycle, an extreme optimal solution to
the resulting problem picks the remaining edges of the cycle to the extent of
one half each. The algorithm finds a solution of cost (2− ε)(n− 1), whereas
the cost of the optimal solution is n. ✷

23.3 Characterizing extreme point solutions 219

23.3 Characterizing extreme point solutions

From polyhedral combinatorics we know that a feasible solution for a set of
linear inequalities in Rm is an extreme point solution iff it satisfies m linearly
independent inequalities with equality. Extreme solutions of LP (23.2) satisfy
an additional property which leads to a proof of Theorem 23.6.

We will assume that the cut requirement function f in LP (23.2) is an
arbitrary weakly supermodular function. Given a solution x to this LP, we
will say that an inequality is tight if it holds with equality. If this inequality
corresponds to the cut requirement of a set S, then we will say that set S is
tight. Let us make some simplifying assumptions. If xe = 0 for some edge e,
this edge can be removed from the graph, and if xe ≥ 1, �xe� copies of edge
e can be picked and the cut requirement function be updated accordingly.
We may assume without loss of generality that an extreme point solution
x satisfies 0 < xe < 1, for each edge e in graph G. Therefore, each tight
inequality corresponds to a tight set. Let the number of edges in G be m.

We will say that a collection, L, of subsets of V forms a laminar family
if no two sets in this collection cross. The inequality corresponding to a set
S defines a vector in Rm: the vector has a 1 corresponding to each edge
e ∈ δG(S), and 0 otherwise. We will call this the incidence vector of set S,
and will denote it by AS .

Theorem 23.12 Corresponding to any extreme point solution to LP (23.2)
there is a collection of m tight sets such that

• their incidence vectors are linearly independent, and
• collection of sets forms a laminar family.

Example 23.13 The extreme point solution for the Peterson graph assigns
nonzero values to 14 of the 15 edges. By Theorem 23.12, there should be 14
tight sets whose incidence vectors are linearly independent. These are marked
in figure. ✷

Fix an extreme point solution, x, to LP (23.2). Let L be a laminar family
of tight sets whose incidence vectors are linearly independent. Denote by
span(L) the vector space generated by the set of vectors {AS |S ∈ L}. Since
x is an extreme point solution, the span of the collection of all tight sets is m.
We will show that if span(L) < m, then there is a tight set S whose addition
to L does not violate laminarity and also increases the span. Continuing in
this manner, we will obtain m tight sets as required in Theorem 23.12.

We begin by studying properties of crossing tight sets.

Lemma 23.14 Let A and B be two crossing tight sets. Then, one of the
following must hold:

• A−B and B −A are both tight and AA +AB = AA−B +AB−A
• A ∪B and A ∩B are both tight and AA +AB = AA∪B +AA∩B.

220 23 Steiner Network

Proof: Since f is weakly supermodular, either f(A) + f(B) ≤ f(A − B) +
f(B −A) or f(A) + f(B) ≤ f(A∪B) + f(A∩B). Let us assume the former
holds; the proof for the latter is similar. Since A and B are tight, we have

δx(A) + δx(B) = f(A) + f(B).

Since A−B and B −A are not violated,

δx(A−B) + δx(B −A) ≥ f(A−B) + f(B −A).

Therefore,

δx(A) + δx(B) ≤ δx(A−B) + δx(B −A).

As argued in Lemma 23.4 (which established the submodularity of func-
tion |δG(.)|), edges having one endpoint in A∪B and the other in A∩B can
contribute only to the left-hand side of this inequality. The rest of the edges
must contribute equally to both sides. So, this inequality must be satisfied
with equality. Furthermore, since xe > 0 for each edge e, G cannot have
any edge having one endpoint in A ∪ B and the other in A ∩ B. Therefore,
AA +AB = AA−B +AB−A. ✷

For any set S ⊆ V , define its crossing number to be the number of sets of
L that S crosses.

Lemma 23.15 Let S be a set that crosses set T ∈ L. Then, each of the sets
S − T, T − S, S ∪ T and S ∩ T has a smaller crossing number than S.

Proof: The figure below illustrates the three ways in which a set T ′ ∈ L can
cross one of these four sets without crossing T itself (T ′ is shown dotted). In
all cases, T ′ crosses S as well. In addition, T crosses S but not any of the
four sets. ✷

T

S

23.4 A counting argument 221

Lemma 23.16 Let S be a tight set such that AS �∈ span(L) and S crosses
some set in L. Then, there is a tight set S′ having a smaller crossing number
than S and such that AS′ �∈ span(L).

Proof: Let S cross T ∈ L. Suppose the first possibility established in Lemma
23.14 holds; the proof of the second possibility is similar. Then, S−T and T−
S are both tight sets and AS +AT = AS−T +AT−S . This linear dependence
implies that AS−T and AT−S cannot both be in span(L), since otherwise
AS ∈ span(L). By Lemma 23.15, S − T and T − S both have a smaller
crossing number than S. The lemma follows. ✷

Corollary 23.17 If span(L) �= Rm, then there is a tight set S such that
AS �∈ span(L) and L ∪ {S} is a laminar family.

By Corollary 23.17, if L is a maximal laminar family of tight sets with lin-
early independent incidence vectors, then |L| = m. This establishes Theorem
23.12.

23.4 A counting argument

The characterization of extreme point solutions given in Theorem 23.12 will
yield Theorem 23.6 via a counting argument. Let x be an extreme point
solution and L be the collection of tight sets established in Theorem 23.12.
The number of sets in L equals the number of edges in G, i.e., m. The proof
is by contradiction. Suppose that for each edge e, xe < 1/2. Then, we will
show that G has more than m edges.

Since L is a laminar family, it can be viewed as a forest of trees if its
elements are ordered by inclusion. Let us make this precise. For S ∈ L, if S
is not contained in any other set of L, then we will say that S is a root set. If
S is not a root set, we will say that T is the parent of S if T is a minimal set
in L containing S; by laminarity of L, T is unique. Further, S will be called
a child of T . Let the relation descendent be the reflexive transitive closure of
the relation “child”. Sets that have no children will be called leaves. In this
manner, L can be partitioned into a forest of trees, each rooted at a root set.
For any set S, by the subtree rooted at S we mean the set of all descendents
of S.

Edge e is incident at set S if e ∈ δG(S). The degree of S is defined to be
|δG(S)|. Set S owns endpoint v of edge e = (u, v) if S is the smallest set of L
containing v. The subtree rooted at set S owns endpoint v of edge e = (u, v)
if some descendent of S owns v.

Since G has m edges, it has 2m endpoints. Under the assumption that
∀e, xe < 1/2, we will prove that for any set S, the endpoints owned by the
subtree rooted at S can be redistributed in such a way that S gets at least
3 endpoints, and each of its proper descendents gets 2 endpoints. Carrying

222 23 Steiner Network

out this procedure for each of the root sets of the forest, the total number of
endpoints in the graph must exceed 2m, leading to a contradiction.

We have assumed that ∀e : 0 < xe < 1/2. For edge e, define ye = 1/2−xe,
the halves complement of e. Clearly, 0 < ye < 1/2. For S ∈ L define its
corequirement to be

coreq(S) =
∑
e∈δ(S)

ye =
1
2
|δG(S)| − f(S).

Clearly, 0 < coreq(S) < |δG(S)|/2. Furthermore, since |δG(S)| and f(S) are
both integral, coreq(S) is half-integral. Let us say that coreq(S) is semi-
integral if it is not integral, i.e., if coreq(S) ∈ {1/2, 3/2, 5/2, . . .}. Since f(S)
is integral, coreq(S) is semi-integral iff |δG(S)| is odd.

Sets having a corequirement of 1/2 play a special role in this argument.
The following lemma will be useful in establishing that certain sets have this
corequirement.

Lemma 23.18 Suppose S has α children and owns β endpoints, where α +
β = 3. Furthermore, each child of S, if any, has a corequirement of 1/2.
Then, coreq(S) = 1/2.

Proof: Since each child of S has corequirement of 1/2, it has odd degree.
Using this and the fact that α + β = 3, one can show that S must have odd
degree (see Exercise 23.3). Therefore the corequirement of S is semi-integral.
Next, we show that coreq(S) is strictly smaller than 3/2, thereby proving the
lemma. Clearly,

coreq(S) =
∑
e∈δ(S)

ye ≤
∑
S′

coreq(S′) +
∑
e

ye,

where the first sum is over all children S′ of S, and the second sum is over
all edges e having an endpoint in S. Since ye is strictly smaller than 1/2, if
β > 0, then coreq(S) < 3/2. If β = 0, all edges incident at the children of S
cannot also be incident at S, since otherwise the incidence vectors of these
four sets will be linearly dependent. Therefore,

coreq(S) <
∑
S′

coreq(S′) = 3/2.

✷

The next two lemmas place lower bounds on the number of endpoints
owned by certain sets.

Lemma 23.19 If set S has only one child, then it must own at least two
endpoints.

23.4 A counting argument 223

Proof: Let S′ be the child of S. If S has no endpoint incident at it, the set
of edges incident at S and S′ must be the same. But then AS = AS′ , leading
to a contradiction. S cannot own exactly one endpoint, because then δx(S)
and δx(S′) will differ by a fraction, contradicting the fact that both these
sets are tight and have integral requirements. The lemma follows. ✷

Lemma 23.20 If set S has two children, one of which has a corequirement
of 1/2, then it must own at least one endpoint.

Proof: Let S′ and S′′ be the two children of S, with coreq(S′) = 1/2.
Suppose S does not own any endpoints. Since the three vectors AS ,AS′ , and
AS′′ are linearly independent, the set of edges incident at S′ cannot all be
incident at S or all be incident at S′′. Let a denote the sum of ye’s of all edges
incident at S′ and S, and let b denote the sum of ye’s of all edges incident at
S′ and S′′. Thus, a > 0, b > 0, and a + b = coreq(S) = 1/2.

Since S′ has a semi-integral corequirement, it must have odd degree.
Therefore, the degrees of S and S′′ have different parities, and these two sets
have different corequirements. Furthermore, coreq(S) = coreq(S′′) + a − b.
Therefore, coreq(S)− coreq(S′′) = a− b. But −1/2 < a− b < 1/2. Therefore,
S and S′′ must have the same corequirement, leading to a contradiction. ✷

Lemma 23.21 Consider a tree T rooted at set S. Under the assumption
that ∀e, xe < 1/2, the endpoints owned by T can be redistributed in such
a way that S gets at least 3 endpoints, and each of its proper descendents
gets 2 endpoints. Furthermore, if coreq(S) �= 1/2, then S must get at least 4
endpoints.

Proof: The proof is by induction on the height of tree T . For the base case,
consider a leaf set S. S must have degree at least 3, because otherwise an
edge e incident at it will have xe ≥ 1/2. If it has degree exactly 3, coreq(S) is
semi-integral. Further, since coreq(S) < |δG(S)|/2 = 3/2, the corequirement
of S is 1/2. Since S is a leaf, it owns an endpoint of each edge incident at it.
Therefore, S has the required number of endpoints.

Let us say that a set has a surplus of 1 if 3 endpoints have been assigned to
it and a surplus of 2 if 4 endpoints have been assigned to it. For the induction
step, consider a nonleaf set S. We will prove that by moving the surplus of
the children of S and considering the endpoints owned by S itself, we can
assign the required number of endpoints to S. There are four cases:

1. If S has 4 or more children, we can assign the surplus of each child to S,
thus assigning at least 4 endpoints to S.

2. Suppose S has 3 children. If at least one of them has a surplus of 2, or if S
owns an endpoint, we can assign 4 endpoints to S. Otherwise, each child
must have a corequirement of half, and by Lemma 23.18, coreq(S) = 1/2
as well. Thus, assigning S the surplus of its children suffices.

224 23 Steiner Network

3. Suppose S has two children. If each has a surplus of 2, we can assign 4
endpoints to S. If one of them has surplus 1, then by Lemma 23.20, S
must own at least one endpoint. If each child has a surplus of 1 and S
owns exactly one endpoint, then we can assign 3 endpoints to S, and this
suffices by Lemma 23.18. Otherwise, we can assign 4 endpoints to S.

4. If S has one child, say S′, then by Lemma 23.19, S owns at least 2
endpoints. If S owns exactly 2 endpoints and S′ has surplus of exactly 1,
then we can assign 3 endpoints to S; by Lemma 23.18, coreq(S) = 1/2,
so this suffices. In all other cases, we can assign 4 endpoints to S.

✷

23.5 Exercises

23.1 Give an LP-relaxation for the Steiner network problem, having poly-
nomially many constraints over polynomially many variables.
Hint: Pick a minimum cost set of edges so as to route

(
n
2

)
independent

commodities, one for each pair of vertices. Each flow should be at least as
large as the connectivity requirement of this pair. The extent to which an
edge is picked bounds the amount of each commodity that can flow through
this edge.

23.2 Show that a function f : 2V → Z+ satisfying the following conditions
is submodular: f(V) = 0, f is symmetric, i.e., for any set A ⊆ V f(A) =
f(V −A), and for every two sets A,B ⊆ V f(A)+f(B) ≥ f(A∩B)+f(A∪B).

23.3 Prove that set S in Lemma 23.18 must have odd degree. (Consider the
following possibilities: S owns endpoint v of edge (u, v) that is incident at S,
S owns endpoint v of edge (u, v) that is incident at a child of S, and an edge
is incident at two children of S.)

23.4 Prove that there must be a set in L that has degree at most 3, and
thus some edge must have xe ≥ 1/3. The counting argument required for
this is much simpler. Notice that this fact leads to a factor 3 algorithm. (The
counting argument requires the use of Lemma 23.19.)

The next two exercises develop a factor 2Hk algorithm for the Steiner
network problem using the primal–dual schema, where k is the largest con-
nectivity requirement specified in the instance. For simplicity, assume that
the upper bounds, ue, are 1 for each edge e.

23.5 (Williamson, Goemans, Mihail, and Vazirani [258]) Say that a function
h : 2V → {0, 1} is uncrossable if h(V) = 0, and for any two sets A,B ⊂ V , if

23.5 Exercises 225

h(A) = h(B) = 1 then h(A−B) = h(B−A) = 1 or h(A∩B) = h(A∪B) = 1.
Exercise 22.7 asked for a factor 2 approximation algorithm for IP (22.1)
for the case that f was a proper function. In this exercise, we will extend
this further to the case that f is an uncrossable function. Now, we need
to enhance the last step of Algorithm 22.3; the pruning step needs to be
done using reverse delete. Again, F denotes the forest of edges picked by the
algorithm. Let us say that a set A ⊂ V is unsatisfied w.r.t. the picked edges
F if h(A) = 1 and δF (A) = ∅. A minimal unsatisfied set will be said to be
active. The algorithm is as follows.

Algorithm 23.22 (Uncrossable function)

1. (Initialization) F ← ∅; for each S ⊆ V , yS ← 0.
2. (Edge augmentation) while there exists an unsatisfied set do:

simultaneously raise yS for each active set S, until some edge e goes
tight;

F ← F ∪ {e}.
3. Let e1, e2, . . . , el be the ordered list of edges in F .
4. (Reverse delete) For j = l downto 1 do:

If F − {ej} satisfies h, then F ← F − {ej}.
5. Return F .

Show that in each iteration, active sets must be disjoint. Assuming that
active sets can be efficiently found, show that Algorithm 23.22 finds a primal
solution of cost at most twice the dual, i.e.,∑

e∈F
ce ≤ 2

∑
S

yS .

Hint: Corresponding to each edge e ∈ F , there must be a set A ⊂ V such
that h(A) = 1 and δF (A) = {e}. Call such a set a witness for e. A family C
consisting of a witness for each e ∈ F is called a witness family. Include V in
this family. Show, by uncrossing, that C can be assumed to be laminar and
therefore can be viewed as a tree. Use this to prove that in each iteration,
the average degree of active sets is at most two, as in Lemma 22.8.

23.6 Give an example to show that if reverse delete is replaced by a forward
delete, then the approximation factor for Algorithm 23.22 can be unbounded
for some uncrossable function.

23.7 (Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [102])
We will solve the Steiner network problem in k phases, numbered 0, 1, . . . , k−
1. In each phase, we will pick a forest from the remaining graph. The solution
will be the union of the k forests. Let Fp−1 denote the set of edges picked

226 23 Steiner Network

in phases numbered 0, 1, . . . , p− 1. At the beginning of the pth phase, define
the deficiency of set S ⊂ V to be max{f(S) − |δFp−1(A)|, 0}. The first p − 1
phases ensure that every set has deficiency at most k − p. In the pth phase,
define function h as

h(S) =
{

1 if deficiency(S) = k − p
0 otherwise

Show that h is an uncrossable function. Show that Algorithm 23.22 can be
implemented in polynomial time for this uncrossable function, i.e., active
sets can be found in polynomial time. Let F be the set of edges picked by
Algorithm 23.22 from E−Fp−1, and y be the dual solution constructed when
run with function h. Construct the dual program to LP (23.2), and show that
there is a feasible solution, say d, to this program such that

∑
e∈F

ce ≤ 2
∑
S

yS ≤ 2
k − p

g(d),

where g(d) is the objective function value of dual solution d. Adding over all
k phases leads to the required factor.
Hint: Use a max-flow algorithm for finding active sets. The dual pro-
gram will have a variable ze for each edge e. For edges e ∈ Fp−1, set
ze =

∑
S: e∈δ(S) yS , for constructing a dual feasible solution.

23.8 Give an infinite family of graphs to show that the performance guar-
antee of the algorithm in Exercise 23.7 is tight within constant factors.

The following definitions will be useful for the next three exercises. These
notions are connected to the theme of this chapter, i.e., small subgraphs with
specified numbers of disjoint paths, via Menger’s theorem (see Exercise 12.5.
An undirected graph is said to be k-vertex (k-edge) connected if it has at least
k+1 vertices, and the removal of any set of at most k−1 vertices (edges) from
it leaves a connected graph. A directed graph is said to be k-vertex (k-edge)
connected if it has at least k + 1 vertices, and the deletion of any set of at
most k − 1 vertices (edges) leaves a strongly connected graph.

23.9 (Cheriyan and Thurimella [42]) This exercise develops a 1+2/k factor
algorithm for the following problem.

Problem 23.23 (Minimum k-vertex connected subgraph) Given a
nonnegative integer k and an undirected graph G = (V,E) that is k-vertex
connected, find a minimum cardinality set E′ ⊂ E such that the subgraph
G′ = (V,E′) is k-vertex connected.

Let G = (V,E) be k-vertex connected. We will say that edge e ∈ E is
critical if its removal leaves a graph that is not k-vertex connected. A simple
cycle C in G is critical if every edge on C is critical. A theorem of Mader,

23.5 Exercises 227

which states that a critical cycle in G must have a vertex of degree exactly
k, is central to the algorithm.

Algorithm 23.24 (k-vertex connected subgraph)

1. Find a minimum cardinality set M ⊂ E such that
∀v ∈ V : degM (v) ≥ k − 1.

2. Find a minimal set F such that M ∪ F is k-vertex connected.
3. Output G′ = (V,M ∪ F).

1. Give a polynomial time algorithm for Step 1 of Algorithm 23.24. Observe
that |M | ≤ OPT.
Hint: Use a b-matching algorithm on the complement of G. Given an
undirected graph G = (V,E) and a function b : V → Z+ specifying an
upper bound for each vertex, the b-matching problem asks for a maximum
cardinality set M ⊆ E such that ∀v ∈ V,degM (v) ≤ b(v). This problem
is in P.

2. Give an efficient implementation for Step 2 of Algorithm 23.24.
3. Use Mader’s theorem to show that F must be acyclic, and hence |F | ≤

|V |−1. Use this to show that Algorithm 23.24 achieves an approximation
factor of 1 + 2/k.
Hint: Use the fact that k|V |/2 is a lower bound on OPT.

23.10 (Cheriyan and Thurimella [42]) Consider the problem of finding a
minimum k-vertex connected subgraph of a directed graph. Give an algorithm
similar to that in Exercise 23.9 for achieving factor 1 + 2/k for this problem.
Use the following two facts.

1. In a directed graph, an alternating cycle, C, is an even length sequence of
distinct edges (v0, v1)(v2, v1)(v2, v3)(v4, v3) . . . (vm−1, vm)(v0, vm), where
vertices are allowed to repeat. Notice that alternate vertices on C have
two out-edges (two in-edges). Vertices having two out-edges (two in-
edges) will be called C-out (C-in) vertices. Mader showed that if G is
a k-vertex connected directed graph containing an alternating cycle C,
each of whose edges is critical, then C contains either a C-out vertex
having out-degree exactly k or a C-in vertex having in-degree exactly k.

2. Given a directed graph G = (V,E), define its associated bipartite graph
H to be the following. Corresponding to each vertex v ∈ V , H has two
vertices, v− and v+, and corresponding to each edge (u, v) ∈ E, H has
the edge (u+, v−). There is an alternating cycle in G iff its associated
bipartite graph contains a cycle.

228 23 Steiner Network

23.11 (Khuller and Vishkin [172], using Edmonds [72]) This exercise devel-
ops a factor 2 algorithm for the following problem.

Problem 23.25 (Minimum k-edge connected subgraph) Given an
undirected graph G = (V,E), a function w : E → Q+, and an integer k, find
a minimum weight subgraph of G that is k-edge connected.

1. Let r ∈ V be any vertex of G. Consider the problem of finding a minimum
weight subgraph G′ of G such that for each vertex v ∈ V , there are k
edge-disjoint paths from r to v in G′. Show that this problem is the same
as Problem 23.25, i.e., any solution to one is also a solution to the other.

2. Let G = (V,E) be an edge-weighted directed graph and r ∈ V be one of
its vertices. A set E′ ⊆ E is said to be an r-arborescence if every vertex,
other than r, has in-degree 1. In effect, an r-arborescence is a spanning
tree directed out of r. Define the r-connectivity of G to be

max{k | ∀v ∈ V ∃k edge-disjoint paths from r to v in G}.

Edmonds showed that the maximum number of edge-disjoint r-arbores-
cences in G is equal to the r-connectivity of G. Use this to show that
the problem of finding a minimum weight subgraph of G that has an r-
connectivity of k is the same as the problem of finding a minimum weight
subgraph of G that has k edge-disjoint r-arborescences.

3. Edmonds showed that the edges of a directed graph G = (V,E) can be
partitioned into k edge-disjoint r-arborescences iff, on ignoring directions,
E can be partitioned into k spanning trees, and the in-degree of every
vertex, other than r, is exactly k. Use this characterization to show that
the problem of finding a minimum weight subgraph of G that has k edge-
disjoint arborescences can be solved in polynomial time.
Hint: This problem can be expressed as a matroid intersection problem,
the two matroids being a partition matroid and the k-fold union of a
graphic matroid (which is also a matroid).

4. Let G = (V,E) be an edge-weighted undirected graph and r ∈ V be one
of its vertices. Let OPT(G) denote the weight of an optimal solution to
Problem 23.25 on instance G. Obtain graph H by bidirecting G, i.e., by
replacing each edge (u, v) ∈ E with the two edges (u → v) and (v → u),
each having the same weight as (u, v). Let OPT(H) denote the weight
of a minimum weight subgraph of H that can be partitioned into k r-
arborescences. Show that

OPT(G) ≤ OPT(H) ≤ 2 ·OPT(G).

Use this to obtain a factor 2 approximation algorithm for Problem 23.25.

23.12 (Goemans and Bertsimas [101]) The metric Steiner network problem
is the Steiner network problem with the restrictions that G is a complete

23.5 Exercises 229

graph, the cost function on edges satisfies the triangle inequality, and ue = ∞
for each edge. It generalizes the metric Steiner tree problem to arbitrary
connectivity requirements. For D ⊆ V , define LPS(D) to be LP-relaxation
(23.2), together with a set of equality constraints for vertices in D, as follows.

minimize
∑
e∈E

cexe (23.4)

subject to
∑

e: e∈δ(S)

xe ≥ f(S), S ⊆ V

∑
e: e∈δ({v})

xe = f({v}), v ∈ D

xe ≥ 0, e ∈ E

It turns out that the equality constraints are redundant for the metric
Steiner network problem. For any choice of D ⊆ V , an optimal solution to
LPS(D) is also an optimal solution to LPS(∅). This is called the parsimo-
nious property. Let us say that a vertex v is Steiner if it has no connectivity
requirements, i.e., if ∀v ∈ V, r(u, v) = 0. Use the parsimonious property to
prove that there is a fractional optimal solution to the metric Steiner network
problem which has no edges incident at Steiner vertices.

23.13 Consider the following integer program for the traveling salesman
problem (Problem 3.5).

minimize
∑
e∈E

cexe (23.5)

subject to
∑

e: e incident at v
xe = 2, v ∈ V

∑
e: e∈δ(S)

xe ≥ 2, S ⊂ V

xe ∈ {0, 1}, e ∈ E

Show that optimal solutions to this integer program are optimal TSP tours.
The linear relaxation of this program is called the subtour elimination LP-
relaxation for TSP.

The rest of this exercise deals with the special case of metric TSP and de-
velops a proof that the solution found by Christofides’ algorithm, Algorithm
3.10, is within a factor of 3/2 of the optimal solution to this LP-relaxation.

1. Give an example that puts a lower bound of (essentially) 4/3 on the
integrality gap of this relaxation.
Hint: Use the following graph.

230 23 Steiner Network

�

�

�

�

�

�

�

�

�

✚
✚

✚✚

�

�

�

�

�

�

�

�

�

�

�

�

�

✚

✚
✚✚

. . .

. . .

. . .

2. Let v1 be an arbitrary vertex in the given graph G = (V,E). Define a
1-tree in G to be a spanning tree on the vertices V −{v1}, together with
two distinct edges incident at vertex v1. Clearly, the cost of an optimal
1-tree is a lower bound on the cost of an optimal TSP tour. LP (12.12)
stated in Exercise 12.9 was an exact relaxation for the MST problem. Use
it to obtain an exact LP-relaxation for the minimum 1-tree problem.

3. (Held and Karp [123]) Show that the cost of a minimum 1-tree is a lower
bound on the cost of an optimal solution to the subtour elimination LP.
Hint: Compare the LP obtained above for minimum 1-tree with the
following equivalent formulation of the subtour elimination LP. (By e :
e ∈ S we mean edges e that have both endpoints in S.)

minimize
∑
e∈E

cexe (23.6)

subject to
∑

e: e incident at v
xe = 2, v ∈ V

∑
e: e∈S

xe ≤ |S| − 1, S ⊆ V

xe ≥ 0, e ∈ E

4. Use the parsimonious property, introduced in Exercise 23.12, to show
that the equality constraints, on vertices, in the subtour elimination LP
are redundant. (Observe that the LP obtained on removing these con-
straints is also an LP-relaxation for the problem of finding a minimum
cost spanning two-edge connected subgraph of G.)

5. For D ⊆ V , let LPT (D) denote the subtour elimination LP for GD, the
subgraph of G induced on D. Let OPTf (LPT (D) denote the cost of an
optimal solution to LPT (D). Show the following monotonicity property

OPTf (LPT (D)) ≤ OPTf (LPT (V)).

Hint: Use the relaxation without equality constraints.
6. Let D ⊆ V be of even cardinality. Show that the cost of a mini-

mum cost perfect matching in the subgraph of G induced on D is
≤ 1

2OPTf (LPT (D)).
Hint: Use LP (12.9), introduced in Exercise 12.8, for matching, and LP
(23.6) for TSP.

23.6 Notes 231

7. Show that the metric TSP solution found using Algorithm 3.10, is within
a factor of 3/2 of the optimal solution to the subtour elimination LP.

23.6 Notes

The result of this chapter is due to Jain [137]. Cheriyan and Thurimella [42]
contains further results on finding small subgraphs of a given graph with a
specified connectivity, as well as references to Mader’s theorems. The subtour
elimination LP-relaxation for TSP was given in Dantzig, Ford, and Fulkerson
[59]. The result of Exercise 23.13 was first established by Wolsey [260]. The
proof developed here is from Shmoys and Williamson [240].

24 Facility Location

The facility location problem has occupied a central place in operations re-
search since the early 1960’s. It models design situations such as deciding
placements of factories, warehouses, schools, and hospitals. Modern day ap-
plications include placement of proxy servers on the web.

In this chapter, we will present a primal–dual schema based factor 3
approximation algorithm for the special case when connection costs satisfy
the triangle inequality. The algorithm differs in two respects from previous
primal–dual algorithms. First, the primal and dual pair of LPs have negative
coefficients and do not form a covering-packing pair. Second, we will relax
primal complementary slackness conditions rather than the dual ones. Also,
the idea of synchronization, introduced in the primal–dual schema in Chapter
22, is developed further, with an explicit timing of events playing a role.

Problem 24.1 (Metric uncapacitated facility location) Let G be a
bipartite graph with bipartition (F,C), where F is the set of facilities and C
is the set of cities. Let fi be the cost of opening facility i, and cij be the cost
of connecting city j to (opened) facility i. The connection costs satisfy the
triangle inequality. The problem is to find a subset I ⊆ F of facilities that
should be opened, and a function φ : C → I assigning cities to open facilities
in such a way that the total cost of opening facilities and connecting cities
to open facilities is minimized.

Consider the following integer program for this problem. In this program,
yi is an indicator variable denoting whether facility i is open, and xij is an
indicator variable denoting whether city j is connected to the facility i. The
first set of constraints ensures that each city is connected to at least one
facility, and the second ensures that this facility must be open.

minimize
∑

i∈F, j∈C
cijxij +

∑
i∈F

fiyi (24.1)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

24.1 An intuitive understanding of the dual 233

The LP-relaxation of this program is:

minimize
∑

i∈F, j∈C
cijxij +

∑
i∈F

fiyi (24.2)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ≥ 0, i ∈ F, j ∈ C

yi ≥ 0, i ∈ F

The dual program is:

maximize
∑
j∈C

αj (24.3)

subject to αj − βij ≤ cij , i ∈ F, j ∈ C∑
j∈C

βij ≤ fi, i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F, j ∈ C

24.1 An intuitive understanding of the dual

Let us first give the reader some feel for how the dual variables “pay” for
a primal solution by considering the following simple setting. Suppose LP
(24.2) has an optimal solution that is integral, say I ⊆ F and φ : C → I.
Thus, under this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j). Let (α,β)
denote an optimal dual solution.

The primal and dual complementary slackness conditions are:

(i) ∀i ∈ F, j ∈ C : xij > 0 ⇒ αj − βij = cij

(ii) ∀i ∈ F : yi > 0 ⇒
∑
j∈C

βij = fi

(iii) ∀j ∈ C : αj > 0 ⇒
∑
i∈F

xij = 1

(iv) ∀i ∈ F, j ∈ C : βij > 0 ⇒ yi = xij

By condition (ii), each open facility must be fully paid for, i.e., if i ∈ I,
then ∑

j: φ(j)=i

βij = fi.

234 24 Facility Location

Consider condition (iv). Now, if facility i is open, but φ(j) �= i, then
yi �= xij , and so βij = 0, i.e., city j does not contribute to opening any
facility besides the one it is connected to.

By condition (i), if φ(j) = i, then αj − βij = cij . Thus, we can think of
αj as the total price paid by city j; of this, cij goes towards the use of edge
(i, j), and βij is the contribution of j towards opening facility i.

24.2 Relaxing primal complementary slackness
conditions

Suppose the primal complementary slackness conditions were relaxed as fol-
lows, while maintaining the dual conditions:

∀j ∈ C : (1/3)cφ(j)j ≤ αj − βφ(j)j ≤ cφ(j)j ,

and

∀i ∈ I : (1/3)fi ≤
∑

j: φ(j)=i

βij ≤ fi.

Then, the cost of the (integral) solution found would be within thrice the
dual found, thus leading to a factor 3 approximation algorithm. However, we
would like to obtain the stronger inequality stated in Theorem 24.7. Now, the
dual pays at least one-third the connection cost, but must pay completely for
opening facilities. This stronger inequality will be needed in order to use this
algorithm to solve the k-median problem in Chapter 25.

For this reason, we will relax the primal conditions as follows. The cities
are partitioned into two sets, directly connected and indirectly connected. Only
directly connected cities will pay for opening facilities, i.e., βij can be nonzero
only if j is a directly connected city and i = φ(j). For an indirectly connected
city j, the primal condition is relaxed as follows:

(1/3)cφ(j)j ≤ αj ≤ cφ(j)j .

All other primal conditions are maintained, i.e., for a directly connected city
j,

αj − βφ(j)j = cφ(j)j ,

and for each open facility i,∑
j: φ(j)=i

βij = fi.

24.3 Primal–dual schema based algorithm 235

24.3 Primal–dual schema based algorithm

The algorithm consists of two phases. In Phase 1, the algorithm operates in
a primal–dual fashion. It finds a dual feasible solution and also determines
a set of tight edges and temporarily open facilities, Ft. Phase 2 consists of
choosing a subset I of Ft to open, and finding a mapping, φ, from cities to I.

Algorithm 24.2

Phase 1
We would like to find as large a dual solution as possible. This motivates
the following underlying process for dealing with the non-covering-packing
pair of LPs. Each city j raises its dual variable, αj , until it gets connected to
an open facility. All other primal and dual variables simply respond to this
change, trying to maintain feasibility or satisfying complementary slackness
conditions.

A notion of time is defined in this phase, so that each event can be associ-
ated with the time at which it happened; the phase starts at time 0. Initially,
each city is defined to be unconnected. Throughout this phase, the algorithm
raises the dual variable αj for each unconnected city j uniformly at unit rate,
i.e., αj will grow by 1 in unit time. When αj = cij for some edge (i, j), the
algorithm will declare this edge to be tight. Henceforth, dual variable βij will
be raised uniformly, thus ensuring that the first constraint in LP (24.3) is
not violated. βij goes towards paying for facility i. Each edge (i, j) such that
βij > 0 is declared special.

Facility i is said to be paid for if
∑

j βij = fi. If so, the algorithm de-
clares this facility temporarily open. Furthermore, all unconnected cities hav-
ing tight edges to this facility are declared connected and facility i is declared
the connecting witness for each of these cities. (Notice that the dual vari-
ables αj of these cities are not raised anymore.) In the future, as soon as an
unconnected city j gets a tight edge to i, j will also be declared connected
and i will be declared the connecting witness for j (notice that βij = 0 and
thus edge (i, j) is not special). When all cities are connected, the first phase
terminates. If several events happen simultaneously, the algorithm executes
them in arbitrary order.

Remark 24.3 At the end of Phase 1, a city may have paid towards tem-
porarily opening several facilities. However, we want to ensure that a city
pays only for the facility that it is eventually connected to. This is ensured
in Phase 2, which chooses a subset of temporarily open facilities for opening
permanently.

Phase 2
Let Ft denote the set of temporarily open facilities and T denote the subgraph
of G consisting of all special edges. Let T 2 denote the graph that has edge
(u, v) iff there is a path of length at most 2 between u and v in T , and let H

236 24 Facility Location

be the subgraph of T 2 induced on Ft. Find any maximal independent set in
H, say I. All facilities in the set I are declared open.

For city j, define Fj = {i ∈ Ft | (i, j) is special}. Since I is an independent
set, at most one of the facilities in Fj is opened. If there is a facility i ∈
Fj that is opened, then set φ(j) = i and declare city j directly connected.
Otherwise, consider tight edge (i′, j) such that i′ was the connecting witness
for j. If i′ ∈ I, again set φ(j) = i′ and declare city j directly connected (notice
that in this case βi′j = 0). In the remaining case that i′ /∈ I, let i be any
neighbor of i′ in graph H such that i ∈ I. Set φ(j) = i and declare city j
indirectly connected.

I and φ define a primal integral solution: xij = 1 iff φ(j) = i and yi = 1
iff i ∈ I. The values of αj and βij obtained at the end of Phase 1 form a dual
feasible solution.

24.4 Analysis

We will show how the dual variables αj ’s pay for the primal costs of opening
facilities and connecting cities to facilities. Denote by αfj and αej the contribu-
tions of city j to these two costs respectively; αj = αfj + αej . If j is indirectly
connected, then αfj = 0 and αej = αj . If j is directly connected, then the
following must hold:

αj = cij + βij ,

where i = φ(j). Now, let αfj = βij and αej = cij .

Lemma 24.4 Let i ∈ I. Then,∑
j: φ(j)=i

αfj = fi.

Proof: Since i is temporarily open at the end of Phase 1, it is completely
paid for, i.e.,∑

j: (i,j) is special
βij = fi.

The critical observation is that each city j that has contributed to fi must
be directly connected to i. For each such city, αfj = βij . Any other city j′

that is connected to facility i must satisfy αfj′ = 0. The lemma follows. ✷

Corollary 24.5
∑

i∈I fi =
∑

j∈C αfj .

24.4 Analysis 237

Recall that αfj was defined to be 0 for indirectly connected cities. Thus,
only the directly connected cities pay for the cost of opening facilities.

Lemma 24.6 For an indirectly connected city j, cij ≤ 3αej , where i = φ(j).

Proof: Let i′ be the connecting witness for city j. Since j is indirectly
connected to i, (i, i′) must be an edge in H. In turn, there must be a city,
say j′, such that (i, j′) and (i′, j′) are both special edges. Let t1 and t2 be
the times at which i and i′ were declared temporarily open during Phase 1.

� �

� �
❏
❏
❏
❏
❏❏✡
✡
✡
✡
✡✡❏
❏
❏
❏
❏❏

j′ j

i i′

Since edge (i′, j) is tight, αj ≥ ci′j . We will show that αj ≥ cij′ and
αj ≥ ci′j′ . Then, the lemma will follow by using the triangle inequality.

Since edges (i′, j′) and (i, j′) are tight, αj′ ≥ cij′ and αj′ ≥ ci′j′ . Since
both these edges are special, they must both have gone tight before either i
or i′ is declared temporarily open. Consider the time min(t1, t2). Clearly, αj′

cannot be growing beyond this time. Therefore, αj′ ≤ min(t1, t2). Finally,
since i′ is the connecting witness for j, αj ≥ t2. Therefore, αj ≥ αj′ , and the
required inequalities follow. ✷

Theorem 24.7 The primal and dual solutions constructed by the algorithm
satisfy: ∑

i∈F, j∈C
cijxij + 3

∑
i∈F

fiyi ≤ 3
∑
j∈C

αj .

Proof: For a directly connected city j, cij = αej ≤ 3αej , where φ(j) = i.
Combining with Lemma 24.6 we get∑

i∈F,j∈C
cijxij ≤ 3

∑
j∈C

αej .

Adding to this the equality stated in Corollary 24.5 multiplied by 3 gives the
theorem. ✷

238 24 Facility Location

24.4.1 Running time

A special feature of the primal–dual schema is that it yields algorithms with
good running times. Since this is especially so for the current algorithm,
we will provide some implementation details. We will adopt the following
notation: nc = |C| and nf = |F |. The total number of vertices nc + nf = n,
and the total number of edges nc × nf = m.

Sort all the edges by increasing cost – this gives the order and the times
at which edges go tight. For each facility, i, we maintain the number of cities
that are currently contributing towards it, and the anticipated time, ti, at
which it would be completely paid for if no other event happens on the way.
Initially all ti’s are infinite, and each facility has 0 cities contributing to it.
The ti’s are maintained in a binary heap so we can update each one and find
the current minimum in O(log nf) time. Two types of events happen, and
they lead to the following updates.

• An edge (i, j) goes tight.
– If facility i is not temporarily open, then it gets one more city contribut-

ing towards its cost. The amount contributed towards its cost at the
current time can be easily computed. Therefore, the anticipated time for
facility i to be paid for can be recomputed in constant time. The heap
can be updated in O(log nf) time.

– If facility i is already temporarily open, city j is declared connected, and
αj is not raised anymore. For each facility i′ that was counting j as a
contributor, we need to decrease the number of contributors by 1 and
recompute the anticipated time at which it gets paid for.

• Facility i is completely paid for. In this event, i will be declared temporarily
open, and all cities contributing to i will be declared connected. For each
of these cities, we will execute the second case of the previous event, i.e.,
update facilities that they were contributing towards.

The next theorem follows by observing that each edge (i, j) will be consid-
ered at most twice. First, when it goes tight. Second, when city j is declared
connected. For each consideration of this edge, we will do O(log nf) work.

Theorem 24.8 Algorithm 24.2 achieves an approximation factor of 3 for
the facility location problem and has a running time of O(m log m).

24.4.2 Tight example

The following infinite family of examples shows that the analysis of our algo-
rithm is tight: The graph has n cities, c1, c2, . . . , cn and two facilities f1 and
f2. Each city is at a distance of 1 from f2. City c1 is at a distance of 1 from
f1, and c2, . . . , cn are at a distance of 3 from f1. The opening cost of f1 and
f2 are ε and (n + 1)ε, respectively, for a small number ε.

24.5 Exercises 239

�
�
�

�

� �✑
✑
✑
✑
✑
✑
✑✑◗◗

◗
◗
◗
◗
◗◗

�
�
�
�
�
�
�
�❅

❅
❅
❅
❅
❅
❅
❅

✏✏
✏✏

✏✏
✏✏��������

...

f1 f2

c1

c2

c3

cn

3
3

3

1 1

1
1

1

The optimal solution is to open f2 and connect all cities to it, at a total
cost of (n+1)ε+n. Algorithm 24.2 will however open facility f1 and connect
all cities to it, at a total cost of ε + 1 + 3(n− 1).

24.5 Exercises

24.1 Consider the general uncapacitated facility location problem in which
the connection costs are not required to satisfy the triangle inequality. Give
a reduction from the set cover problem to show that approximating this
problem is as hard as approximating set cover and therefore cannot be done
better than O(log n) factor unless NP ⊆ P̃. Also, give an O(log n) factor
algorithm for this problem.

24.2 In Phase 2, instead of picking all special edges in T , pick all tight edges.
Show that now Lemma 24.6 does not hold. Give a suitable modification to
the algorithm that restores Lemma 24.6.
Hint: Order facilities in H in the order in which they were temporarily
opened, and pick I to be the lexicographically first maximal independent set.

24.3 Give a factor 3 tight example for Algorithm 24.2 in which the set of
cities and facilities is the same, i.e., C = F .

24.4 Consider the proof of Lemma 24.6. Give an example in which αj > t2.

24.5 The vector α found by Algorithm 24.2 is maximal in the sense that if
we increase any αj in this vector, then there is no way of setting the βij ’s to
get a feasible dual solution. Is every maximal solution α within 3 times the
optimal solution to dual program for facility location?

240 24 Facility Location

Hint: It is easy to construct a maximal solution that is 2/n times the
optimal. Consider n facilities with an opening cost of 1 each and n cities
connected to distinct facilities by edges of cost ε each. In addition, there is
another city that is connected to each facility with an edge of cost 1.

24.6 Consider the following modification to the metric uncapacitated facility
location problem. Define the cost of connecting city j to facility i to be c2

ij .
The cij ’s still satisfy the triangle inequality (but the new connection costs, of
c2
ij , do not). Show that Algorithm 24.2 achieves an approximation guarantee

of factor 9 for this case.

24.7 Consider the following generalization to arbitrary demands. For each
city j, a nonnegative demand dj is specified, and any open facility can serve
this demand. The cost of serving this demand via facility i is cijdj . Give an
IP and LP-relaxation for this problem, and extend Algorithm 24.2 to get a
factor 3 algorithm.
Hint: Raise αj at rate dj .

24.8 In the capacitated facility location problem, we are given a number ui
for each facility i, and facility i can serve at most ui cities. Show that the
modification of LP (24.2) to this problem has an unbounded integrality gap.

24.9 Consider the variant of the capacitated metric facility location problem
in which each facility can be opened an unbounded number of times. If facility
i is opened yi times, it can serve at most uiyi cities. Give an IP and LP-
relaxation for this problem, and extend Algorithm 24.2 to obtain a constant
factor algorithm.

24.10 (Charikar, Khuller, Mount, and Narshimhan [40]) Consider the prize-
collecting variant of the facility location problem, in which there is a specified
penalty for not connecting a city to an open facility. The objective is to min-
imize the sum of the connection costs, facility opening costs, and penalties.
Give a factor 3 approximation algorithm for this problem.

24.11 (Jain and Vazirani [140]) Consider the fault tolerant variant of the
facility location problem, in which the additional input is a connection re-
quirement rj for each city j. In the solution, city j needs to be connected to
rj distinct open facilities. The objective, as before, is to minimize the sum of
the connection costs and the facility opening costs.

Decompose the problem into k phases, numbered k down to 1, as in
Exercise 23.7. In phase p, all cities having a residual requirement of p are
provided one more connection to an open facility. In phase p, the facility
location algorithm of this chapter is run on the following modified graph, Gp.
The cost of each facility that is opened in an earlier phase is set to 0. If city
j is connected to facility i in an earlier phase, then cij is set to ∞.

24.5 Exercises 241

1. Show that even though Gp violates the triangle inequality at some places,
the algorithm gives a solution within factor 3 of the optimal solution for
this graph.
Hint: Every time short-cutting is needed; the triangle inequality holds.

2. Show that the solution found in phase p is of cost at most 3 · OPT/p,
where OPT is the cost of the solution to the entire problem.
Hint: Remove ∞ cost edges of Gp from the optimal solution and divide
the rest by p. Show that this is a feasible fractional solution for phase p.

3. Show that this algorithm achieves an approximation factor of 3 · Hk for
the fault tolerant facility location problem.

24.12 (Mahdian, Markakis, Saberi, and Vazirani [201]) This exercise devel-
ops a factor 3 greedy algorithm for the metric uncapacitated facility location
problem, together with an analysis using the method of dual fitting.

Consider the following modification to Algorithm 24.2. As before, dual
variables, αj , of all unconnected cities, j, are raised uniformly. If edge (i, j)
is tight, βij is raised. As soon as a facility, say i, is paid for, it is declared
open. Let S be the set of unconnected cities having tight edges to i. Each city
j ∈ S is declared connected and stops raising its αj . So far, the new algorithm
is the same as Algorithm 24.2. The main difference appears at this stage:
Each city j ∈ S withdraws its contribution from other facilities, i.e., for each
facility i′ �= i, set βi′j = 0. When all cities have been declared connected, the
algorithm terminates. Observe that each city contributes towards the opening
cost of at most one facility – the facility it gets connected to.

1. This algorithm actually has a simpler description as a greedy algorithm.
Provide this description.
Hint: Use the notion of cost–effectiveness defined for the greedy set
cover algorithm.

2. The next 3 parts use the method of dual fitting to analyze this algorithm.
First observe that the primal solution found is fully paid for by the dual
computed.

3. Let i be an open facility and let {1, . . . , k} be the set of cities that con-
tributed to opening i at some point in the algorithm. Assume w.l.o.g.
that α1 ≤ αj for j ≤ k. Show that for j ≤ k, αj − cij ≤ 2α1. Also, show
that

k∑
j=1

αj ≤ 3
k∑
j=1

cij + fi.

Hint: Use the triangle inequality and the following inequality which is a
consequence of the fact that at any point, the total amount contributed
for opening facility i is at most fi:

242 24 Facility Location∑
j: cij≤α1

α1 − cij ≤ fi.

4. Hence show that α/3 is a dual feasible solution.
5. How can the analysis be improved – a factor 1.86 analysis is known for

this algorithm.
6. Give a time efficient implementation of this algorithm, matching the run-

ning time of Algorithm 24.2
7. Do you see room for improving the algorithm?

Hint: Suppose city j is connected to open facility i at some point in the
algorithm. Later, facility i′ is opened, and suppose that cij > ci′j . Then,
connecting j to i′ will reduce the cost of the solution.

24.13 (Mahdian, Markakis, Saberi, and Vazirani [201]) Consider the follow-
ing variant of the metric uncapacitated facility location problem. Instead of
fi, the opening cost for each facility i ∈ F , we are provided a startup cost
si and an incremental cost ti. Define the new opening cost for connecting
k > 0 cities to facility i to be si + kti. Connection costs are specified by a
metric, as before. The object again is to connect each city to an open facility
so as to minimize the sum of connection costs and opening costs. Give an
approximation factor preserving reduction from this problem to the metric
uncapacitated facility location problem.
Hint: Modify the metric appropriately.

24.6 Notes

The first approximation algorithm for the metric uncapacitated facility loca-
tion problem, due to Hochbaum [124], achieved an approximation guarantee
of O(log n). The first constant factor approximation algorithm, achieving a
guarantee of 3.16, was due to Shmoys, Tardos, and Aardal [239]. It was based
on LP-rounding. The current best algorithm, achieving an approximation
guarantee of 1.61, is due to Jain, Mahdian, and Saberi [138]. This algorithm,
a small modification of the greedy algorithm presented in Exercise 24.12, is
analyzed using the method of dual fitting. The primal–dual schema based
Algorithm 24.2 is due to Jain and Vazirani [141].

25 k-Median

The k-median problem differs from the facility location problem in two re-
spects – there is no cost for opening facilities and there is an upper bound,
k, on the number of facilities that can be opened. It models the problem of
finding a minimum cost clustering, and therefore has numerous applications.

The primal–dual schema works by making judicious local improvements
and is not suitable for ensuring a global constraint, such as the constraint in
the k-median problem that at most k facilities be opened. We will get around
this difficulty by borrowing the powerful technique of Lagrangian relaxation
from combinatorial optimization.

Problem 25.1 (Metric k-median) Let G be a bipartite graph with bi-
partition (F,C), where F is the set of facilities and C is the set of cities, and
let k be a positive integer specifying the number of facilities that are allowed
to be opened. Let cij be the cost of connecting city j to (opened) facility i.
The connection costs satisfy the triangle inequality. The problem is to find
a subset I ⊆ F, |I| ≤ k, of facilities that should be opened and a function
φ : C → I assigning cities to open facilities in such a way that the total
connecting cost is minimized.

25.1 LP-relaxation and dual

The following is an integer program for the k-median problem. The indicator
variables yi and xij play the same role as in (24.1).

minimize
∑

i∈F, j∈C
cijxij (25.1)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C∑
i∈F

−yi ≥ −k

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

244 25 k-Median

The LP-relaxation of this program is:

minimize
∑

i∈F, j∈C
cijxij (25.2)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C∑
i∈F

−yi ≥ −k

xij ≥ 0, i ∈ F, j ∈ C

yi ≥ 0, i ∈ F

The dual program is:

maximize
∑
j∈C

αj − zk (25.3)

subject to αj − βij ≤ cij , i ∈ F, j ∈ C∑
j∈C

βij ≤ z, i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F, j ∈ C

z ≥ 0

25.2 The high-level idea

The similarity between the two problems, facility location and k-median,
leads to a similarity in their linear programs, which will be exploited as
follows. Take an instance of the k-median problem, assign a cost of z for
opening each facility, and find optimal solutions to LP (24.2) and LP (24.3),
say (x,y) and (α,β), respectively. By the strong duality theorem,

∑
i∈F, j∈C

cijxij +
∑
i∈F

zyi =
∑
j∈C

αj .

Now, suppose that the primal solution (x,y) happens to open exactly
k facilities (fractionally), i.e.,

∑
i yi = k. Then, we claim that (x,y) and

(α,β, z) are optimal solutions to LP (25.2) and LP (25.3), respectively. Fea-
sibility is easy to check. Optimality follows by substituting

∑
i yi = k in

the above equality and rearranging terms to show that the primal and dual
solutions achieve the same objective function value:

25.2 The high-level idea 245∑
i∈F, j∈C

cijxij =
∑
j∈C

αj − zk.

Let’s use this idea, together with Algorithm 24.2 and Theorem 24.7, to
obtain a “good” integral solution to LP (25.2). Suppose with a cost of z for
opening each facility, Algorithm 24.2, happens to find solutions (x,y) and
(α,β), where the primal solution opens exactly k facilities. By Theorem 24.7,∑

i∈F, j∈C
cijxij + 3zk ≤ 3

∑
j∈C

αj .

Now, observe that (x,y) and (α,β, z) are primal (integral) and dual feasible
solutions to the k-median problem satisfying∑

i∈F, j∈C
cijxij ≤ 3(

∑
j∈C

αj − zk).

Therefore, (x,y) is a solution to the k-median problem within thrice the
optimal.

Notice that the factor 3 proof given above would not work if less than
k facilities were opened; if more than k facilities are opened, the solution
is infeasible for the k-median problem. The remaining problem is to find a
value of z so that exactly k facilities are opened. Several ideas are required
for this. The first is the following principle from economics. Taxation is an
effective way of controlling the amount of goods coming across a border –
raising tariffs will reduce inflow and vice versa. In a similar manner, raising
z should reduce the number of facilities opened and vice versa.

It is natural now to seek a modification to Algorithm 24.2 that can find a
value of z so that exactly k facilities are opened. This would lead to a factor
3 approximation algorithm. Such a modification is not known. Instead, we
present the following strategy which leads to a factor 6 algorithm. For the rest
of the discussion, assume that we never encountered a run of the algorithm
which resulted in exactly k facilities being opened.

Clearly, when z = 0 the algorithm will open all facilities, and when z is
very large it will open only one facility. The latter value of z can be picked
to be ncmax, where cmax is the length of the longest edge. We will conduct
a binary search on the interval [0, ncmax] to find z2 and z1 for which the
algorithm opens k2 > k and k1 < k facilities, respectively, and, furthermore,
z1 − z2 ≤ (cmin/12n2

c), where cmin is the length of the shortest nonzero edge.
As before, we will adopt the following notation: nc = |C| and nf = |F |.
The total number of vertices nc + nf = n and the total number of edges
nc×nf = m. Let (xs,ys) and (xl,yl) be the two primal solutions found, with∑

i∈F ysi = k1 and
∑

i∈F yli = k2 (the superscripts s and l denote “small” and
“large,” respectively). Further, let (αs, βs) and (αl, βl) be the corresponding
dual solutions found.

246 25 k-Median

Let (x,y) = a(xs,ys) + b(xl, yl) be a convex combination of these two
solutions, with ak1 + bk2 = k. Under these conditions, a = (k2 − k)/(k2 − k1)
and b = (k − k1)/(k2 − k1). Since (x,y) is a feasible (fractional) solution to
the facility location problem that opens exactly k facilities, it is also a feasible
(fractional) solution to the k-median problem. In this solution each city is
connected to at most two facilities.

Lemma 25.2 The cost of (x,y) is within a factor of (3 + 1/nc) of the cost
of an optimal fractional solution to the k-median problem.

Proof: By Theorem 24.7 we have∑
i∈F, j∈C

cijx
s
ij ≤ 3(

∑
j∈C

αsj − z1k1),

and ∑
i∈F, j∈C

cijx
l
ij ≤ 3(

∑
j∈C

αlj − z2k2).

Since z1 > z2, (αl,βl) is a feasible dual solution to the facility location
problem even if the cost of facilities is z1. We would like to replace z2 with z1 in
the second inequality, at the expense of the increased factor. This is achieved
using the upper bound on z1−z2 and the fact that

∑
i∈F, j∈C cijx

l
ij ≥ cmin.

We get

∑
i∈F, j∈C

cijx
l
ij ≤

(
3 +

1
nc

)∑
j∈C

αlj − z1k2

 .

Adding this inequality multiplied by b with the first inequality multiplied
by a gives

∑
i∈F, j∈C

cijxij ≤
(

3 +
1
nc

)∑
j∈C

αj − z1k

 ,

where α = aαs+bαl. Let β = aβs+bβl. Observe that (α,β, z1) is a feasible
solution to the dual of the k-median problem. The lemma follows. ✷

In Section 25.3 we give a randomized rounding procedure that obtains an
integral solution to the k-median problem from (x,y), with a small increase
in cost. In Section 25.3.1 we derandomize this procedure.

25.3 Randomized rounding 247

25.3 Randomized rounding

We give a randomized rounding procedure that produces an integral solution
to the k-median problem from (x,y). In the process, it increases the cost by
a multiplicative factor of 1 + max(a, b).

Let A and B be the sets of facilities opened in the two solutions, |A| = k1
and |B| = k2. For each facility in A, find the closest facility in B – these
facilities are not required to be distinct. Let B′ ⊂ B be these facilities. If
|B′| < k1, arbitrarily include additional facilities from B − B′ into B′ until
|B′| = k1.

With probability a, open all facilities in A, and with probability b = 1−a,
open all facilities in B′. In addition, a set of cardinality k − k1 is picked
randomly from B −B′ and facilities in this set are opened. Notice that each
facility in B − B′ has a probability of b of being opened. Let I be the set of
facilities opened, |I| = k.

The function φ : C → I is defined as follows. Consider city j and suppose
that it is connected to i1 ∈ A and i2 ∈ B in the two solutions. If i2 ∈ B′, then
one of i1 and i2 is opened by the procedure given above, i1 with probability
a and i2 with probability b. City j is connected to the open facility.

� �

��
❏
❏
❏
❏
❏❏

.................................

A B

B′

B −B′j

i1 i3

i2

k1 k2

If i2 ∈ B − B′, let i3 ∈ B′ be the facility in B that is closest to i1. City j is
connected to i2 if it is open. Otherwise, it is connected to i1 if it is open. If
neither i2 or i1 is open, then j is connected to i3.

Denote by cost(j) the connection cost for city j in the fractional solution
(x,y); cost(j) = aci1j + bci2j .

Lemma 25.3 The expected connection cost for city j in the integral solution,
E[cφ(j)j], is ≤ (1 + max(a, b))cost(j). Moreover, E[cφ(j)j] can be efficiently
computed.

Proof: If i2 ∈ B′, E[cφ(j)j] = aci1j + bci2j = cost(j). Consider the second
case, that i2 /∈ B′. Now, i2 is open with probability b. The probability that
i2 is not open and i1 is open is (1 − b)a = a2, and the probability that both
i2 and i1 are not open is (1− b)(1− a) = ab. This gives

248 25 k-Median

E[cφ(j)j] ≤ bci2j + a2ci1j + abci3j .

Since i3 is the facility in B that is closest to i1, ci1i3 ≤ ci1i2 ≤ ci1j + ci2j ,
where the second inequality follows from the triangle inequality. Again, by
the triangle inequality, ci3j ≤ ci1j + ci1i3 ≤ 2ci1j + ci2j . Therefore,

E[cφ(j)j] ≤ bci2j + a2ci1j + ab(2ci1j + ci2j).

Now, a2ci1j + abci1j = aci1j . Therefore,

E[cφ(j)j]≤ (aci1j + bci2j) + ab(ci1j + ci2j)

≤ (aci1j + bci2j)(1 + max(a, b)).

Clearly, in both cases, E[cφ(j)j] is easy to compute. ✷

Let (xk,yk) denote the integral solution obtained to the k-median prob-
lem by this randomized rounding procedure. Then,

Lemma 25.4 E

 ∑
i∈F, j∈C

cijx
k
ij

 ≤ (1 + max(a, b))

 ∑
i∈F, j∈C

cijxij

and, moreover, the expected cost of the solution found can be computed effi-
ciently.

25.3.1 Derandomization

Derandomization follows in a straightforward manner using the method of
conditional expectation. First, the algorithm opens the set A with probability
a and the set B′ with probability b = 1−a. Pick A, and compute the expected
value if k− k1 facilities are randomly chosen from B−B′. Next, do the same
by picking B′ instead of A. Choose to open the set that gives the smaller
expectation.

Second, the algorithm opens a random subset of k − k1 facilities from
B−B′. For a choice D ⊂ B−B′, |D| ≤ k−k1, denote by E[D,B− (B′∪D)]
the expected cost of the solution if all facilities in D and additionally k −
k1−|D| facilities are randomly opened from B− (B′∪D). Since each facility
of B − (B′ ∪D) is equally likely to be opened, we get

E[D,B − (B′ ∪D)] =
1

|B − (B′ ∪D)|
∑

i∈B−(B′∪D)

E[D ∪ {i}, B − (B′ ∪D ∪ {i})].

This implies that there is an i such that

25.3 Randomized rounding 249

E[D ∪ {i}, B − (B′ ∪D ∪ {i})] ≤ E[B′, B − (B′ ∪D)].

Choose such an i and replace D with D ∪ {i}. Notice that the computation
of E[D ∪ {i}, B − (B′ ∪D ∪ {i})] can be done as in Lemma 25.4.

25.3.2 Running time

It is easy to see that a ≤ 1− 1/nc (this happens for k1 = k − 1 and k2 = nc)
and b ≤ 1 − 1/k (this happens for k1 = 1 and k2 = k + 1). Therefore,
1 + max(a, b) ≤ 2 − 1/nc. Altogether, the approximation guarantee is (2 −
1/nc)(3 + 1/nc) < 6. This procedure can be derandomized using the method
of conditional probabilities, as in Section 25.3.1. The binary search will make
O(log2(n3cmax/cmin)) = O(L+log n) probes. The running time for each probe
is dominated by the time taken to run Algorithm 24.2; randomized rounding
takes O(n) time and derandomization takes O(m) time. Hence we get

Theorem 25.5 The algorithm given above achieves an approximation factor
of 6 for the k-median problem, and has a running time of O(m log m(L +
log(n))).

25.3.3 Tight example

A tight example for the factor 6 k-median algorithm is not known. However,
below we give an infinite family of instances which show that the analysis of
the randomized rounding procedure cannot be improved.

The two solutions (xs,ys) and (xl,yl) open one facility, f0, and k + 1
facilities, f1, . . . , fk+1, respectively. The distance between f0 and any other
fi is 1, and that between two facilities in the second set is 2. All n cities
are at a distance of 1 from f0, and at a distance of ε from fk+1. The rest of
the distances are given by the triangle inequality. The convex combination is
constructed with a = 1/k and b = 1− 1/k.

�
�
�

�

�

�� � �

✏✏
✏✏

✏✏
✏✏

��������

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙❙

✡
✡
✡
✡
✡
✡
✡
✡�
�
�
�
��

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁❍❍❍❍❍❍

❇
❇
❇
❇
❇
❇
❇
❇✚

✚
✚
✚
✚
✚
✚
✚
✚
✚✚

�
�
�
�
�
�
�
�

✡
✡
✡
✡
✡
✡
✡
✡

.......................................
...........
...

...........
......

...

c1

c2

c3

cn

. . .

f0

f2 f3 fk+1f1

111
1

1
1
1

1

2 2

ε ε
ε

ε

250 25 k-Median

Now, the cost of the convex combination is an + bεn. Suppose the algo-
rithm picks f1 as the closest neighbor of f0. The expected cost of the solutions
produced by the randomized rounding procedure is then n(bε+a2+ab(2+ε)).
Letting ε tend to 0, the cost of the convex combination is essentially na and
that of the rounded solution is na(1 + b).

25.3.4 Integrality gap

The algorithm given above places an upper bound of 6 on the integrality gap
of relaxation (25.2). The following example places a lower bound of essentially
2. The graph is a star with n + 1 vertices and unit cost edges. F consists of
all n + 1 vertices, C consists of all but the center vertex and k = n − 2. An
optimal integral solution is to open facilities at n − 2 vertices of C and has
a cost of 2. Consider the following fractional solution. Open a facility to the
extent of 1/(n − 1) on the center vertex and (n − 2)/(n − 1) on each vertex
of C. This has a cost of n/(n− 1), giving a ratio of 2(n− 1)/n.

� �

�. . .�

� �
�
�
�
��

❅
❅

❅
❅

❅❅

1
n−1

n−2
n−1

25.4 A Lagrangian relaxation technique
for approximation algorithms

In this section we will abstract away the ideas developed above so they may
be more widely applicable. First, let us recall the fundamental technique
of Lagrangian relaxation from combinatorial optimization. This technique
consists of relaxing a constraint by moving it into the objective function,
together with an associated Lagrange multiplier.

Let us apply this relaxation to the constraint, in the k-median IP (25.1),
that at most k facilities be opened. Let λ be the Lagrangian multiplier.

minimize
∑

i∈F, j∈C
cijxij + λ

(∑
i∈F

yi − k

)
(25.4)

subject to
∑
i∈F

xij ≥ 1, j ∈ C

25.5 Exercises 251

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

This is precisely the facility location IP, with the restriction that the cost
of each facility is the same, i.e., λ. It contains an additional constant term
of −λk in the objective function. We may assume w.l.o.g. that an optimal
solution, (x,y), to IP (25.1) opens exactly k facilities. Now, (x,y) is a feasible
solution to IP (25.4) as well, with the same objective function value. Hence,
for each value of λ, IP (25.4) is a lower bound on IP (25.1).

We have shown that a Lagrangian relaxation of the k-median problem is
the facility location problem. In doing so, the global constraint that at most
k facilities be opened has been replaced with a penalty for opening facilities,
the penalty being the Lagrangian multiplier. (See Exercise 25.4 for another
application of this idea.)

The next important observation was to notice that in the facility location
approximation algorithm, Theorem 24.7, the duals pay one-for-one for the
cost of opening facilities, i.e., with approximation factor 1. (See Exercise 22.9
for another such algorithm.)

The remaining difficulty was finding a value of λ so that the facility loca-
tion algorithm opened exactly k facilities. The fact that the facility location
algorithm works with the linear relaxation of the problem helped. The con-
vex combination of two (integer) solutions was a feasible (fractional) solution.
The last step was rounding this (special) fractional solution into an integral
one. For the k-median problem we used randomized rounding (see Exercise
25.4 for a different rounding procedure).

25.5 Exercises

25.1 (Lin and Vitter [188]) Consider the general k-median problem in which
the connection costs are not required to satisfy the triangle inequality. Give
a reduction from the set cover problem to show that approximating this
problem is as hard as approximating set cover, and therefore cannot be done
with a factor better than O(log n) unless NP ⊆ P̃.

25.2 Obtain the dual of LP-relaxation to (25.4). (The constant term in the
objective function will simply carry over.) How does it relate with the dual
of the k-median LP?

25.3 Use the Lagrangian relaxation technique to give a constant factor ap-
proximation algorithm for the following common generalization of the facility
location and k-median problems. Consider the uncapacitated facility location

252 25 k-Median

problem with the additional constraint that at most k facilities can be opened.
This is a common generalization of the two problems solved in this paper:
if k is made nf , we get the first problem, and if the facility costs are set to
zero, we get the second problem.

25.4 (Garg [94] and Chudak, Roughgarden, and Williamson [47]) Consider
the following variant of the metric Steiner tree problem.

Problem 25.6 (Metric k-MST) We are given a complete undirected
graph G = (V,E), a special vertex r ∈ V , a positive integer k, and a function
cost : E → Q+ satisfying the triangle inequality. The problem is to find a
minimum cost tree containing exactly k vertices, including r.

We will develop a factor 5 algorithm for this problem.

1. Observe that a Lagrangian relaxation of this problem is the prize-
collecting Steiner tree problem, Problem 22.12, stated in Exercise 22.9.

2. Observe that the approximation algorithm for the latter problem, given
in Exercise 22.9, pays for the penalties one-for-one with the dual, i.e.,
with an approximation factor of 1.

3. Use the prize-collecting algorithm as a subroutine to obtain two trees, T1
and T2, for very close values of the penalty, containing k1 and k2 vertices,
with k1 < k < k2. Obtain a convex combination of these solutions, with
multipliers α1 and α2.

4. We may assume that every vertex in G is at a distance of ≤ OPT from
r. (Use the idea behind parametric pruning, introduced in Chapter 5.
The parameter t is the length of the longest edge used by the optimal
solution, which is clearly a lower bound on OPT. For each value of t,
instance G(t) is obtained by restricting G to vertices that are within a
distance of t of r. The algorithm is run on each graph of this family, and
the best tree is output.) Consider the following procedure for rounding
the convex combination. If α2 ≥ 1/2, then cost(T2) ≤ 4 · OPT; remove
k2−k vertices from T2. Otherwise, double every edge of T2, find an Euler
tour, and shortcut the tour to a cycle containing only those vertices that
are in T2 and not in T1 (i.e., at most k2 − k1 vertices). Pick the cheapest
path of length k − k1 − 1 from this cycle, and connect it by means of an
edge to vertex r in T1. The resulting tree has exactly k vertices. Show
that the cost of this tree is ≤ 5 ·OPT.
Hint: Use the fact that α2 = (k − k1)/(k2 − k1).

25.5 Let us apply the Lagrangian relaxation technique to the following linear
program.

minimize cTx (25.5)

subject to Ax = b

25.5 Exercises 253

Then the lower bound is given by

max
y

min
x

(
cTx− yT (Ax − b)

)
= max

y

((
min
x

(cT − yTA)x
)

+ yT b
)

If y does not satisfy ATy = c, then by a suitable choice of x, the lower
bound given by this expression can be made as small as desired and therefore
meaningless. Meaningful lower bounds arise only if we insist that ATy = c.
But then we get the following LP:

maximize yT b (25.6)

subject to ATy = c

Notice that this is the dual of LP (25.5)! Hence, the Lagrangian relaxation
of a linear program is simply its dual and is therefore tight.

Obtain the Lagrangian relaxation of the following LP:

minimize cTx (25.7)

subject to Ax ≥ b

x ≥ 0

25.6 (Jain and Vazirani [141]) Consider the l22 clustering problem. Given a
set of n points S = {v1, . . . , vn} in Rd and a positive integer k, the problem
is to find a minimum cost k-clustering, i.e., to find k points, called centers,
f1, . . . , fk ∈ Rd, so as to minimize the sum of squares of distances from each
point vi to its closest center. This naturally defines a partitioning of the n
points into k clusters. Give a constant factor approximation algorithm for
this problem.
Hint: First show that restricting the centers to be a subset S increases the
cost of the optimal solution by a factor of at most 2. Apply the solution of
Exercise 24.6 to this modified problem.

25.7 (Korupolu, Plaxton, and Rajaraman [176] and Arya et al. [15]) For a
set S of k facilities, define cost(S) to be the total cost of connecting each city
to its closest facility in S. Define a swap to be the process of replacing one
facility in S by a facility from S. A natural algorithm for metric k-median,
based on local search, is: Start with an arbitrary set S of k facilities. In
each iteration, check if there is a swap that leads to a lower cost solution.
If so, execute any such swap and go to the next iteration. If not, halt. The
terminating solution is said to be locally optimal.

Let G = {o1, . . . , ok} be an optimal solution and L = {s1, . . . , sk} be a
locally optimal solution. This exercise develops a proof showing cost(L) ≤
5 · cost(G), as well as a constant factor approximation algorithm.

254 25 k-Median

1. For o ∈ G, let NG(o) denote the set of cities connected to facility o in the
optimal solution. Similarly, for s ∈ L, let NL(s) denote the set of cities
connected to facility s in the locally optimal solution. Say that s ∈ L
captures o ∈ G if |NG(o) ∩ NL(s)| > |NG(o)|/2. Clearly, each o ∈ G
is captured by at most one facility in L. In this part let us make the
simplifying assumption that each facility s ∈ L captures a unique facility
in G. Assume that the facilities are numbered so that si captures oi, for
1 ≤ i ≤ k. Use the fact that for 1 ≤ i ≤ k, cost(L + oi − si) ≥ cost(L) to
show that cost(L) ≤ 3 · cost(G).
Hint: cost(L + oi− si) is bounded by the cost of the following solution:
The cities in NL(si) ∪NG(oi) are connected as in the locally optimal
solution. Those in NG(oi) are connected to facility oi. Cities in NL(si)−
NG(oi) are connected to facilities in L− si using “3 hops” in such a way
that each connecting edge of G and each connecting edge of L is used at
most once in the union of all these hops.

2. Show that without the simplifying assumption of the previous part,
cost(L) ≤ 5 · cost(G).
Hint: Consider k appropriately chosen swaps so that each facility o ∈ G
is swapped in exactly once and each facility s ∈ L is swapped out at most
twice.

3. Strengthen the condition for swapping so as to obtain, for any ε > 0 a
factor 5 + ε algorithm running in time polynomial in 1/ε and the size of
the instance.

25.6 Notes

The first approximation algorithm, achieving a factor of O(log n log log n),
was given by Bartal [21]. The first constant factor approximation algorithm
for the k-median problem, achieving a guarantee of 62

3 , was given by Charikar,
Guha, Tardos, and Shmoys [39], using ideas from Lin and Vitter [189]. This
algorithm used LP-rounding. The results of this chapter are due to Jain and
Vazirani [141]. The current best factor is 3 + 2/p, with a running time of
O(np), due to Arya et al. [15]. This is a local search algorithm that swaps p
facilities at a time (see Exercise 25.7 for the algorithm for p = 1).

The example of Section 25.3.4 is due to Jain, Mahdian, and Saberi [138].
The best upper bound on the integrality gap of relaxation (25.2) is 4, due
to Charikar and Guha [38]. For a factor 2 approximation algorithm for the
l22 clustering problem (Exercise 25.6), see Drineas, Kannan, Frieze, Vempala,
and Vinay [62].

26 Semidefinite Programming

In the previous chapters of Part II of this book we have shown how linear
programs provide a systematic way of placing a good upper bound on OPT
(assuming a minimization problem), for numerous NP-hard problems. As
stated earlier, this is a key step in the design of an approximation algorithm
for an NP-hard problem. It is natural, then, to ask if there are other widely
applicable ways of doing this.

In this chapter we provide another class of relaxations, called vector pro-
grams. These serve as relaxations for several NP-hard problems, in partic-
ular, for problems that can be expressed as strict quadratic programs (see
Section 26.1 for a definition). Vector programs are equivalent to a powerful
and well-studied generalization of linear programs, called semidefinite pro-
grams. Semidefinite programs, and consequently vector programs, can be
solved within an additive error of ε, for any ε > 0, in time polynomial in n
and log(1/ε), using the ellipsoid algorithm (see Section 26.3).

We will illustrate the use of vector programs by deriving a 0.87856 factor
algorithm for the following problem (see Exercises 2.1 and 16.6 for a factor
1/2 algorithm).

Problem 26.1 (Maximum cut (MAX-CUT)) Given an undirected
graph G = (V,E), with edge weights w : E → Q+, find a partition (S, S)
of V so as to maximize the total weight of edges in this cut, i.e., edges that
have one endpoint in S and one endpoint in S.

26.1 Strict quadratic programs and vector programs

A quadratic program is the problem of optimizing (minimizing or maximiz-
ing) a quadratic function of integer valued variables, subject to quadratic
constraints on these variables. If each monomial in the objective function, as
well as in each of the constraints, is of degree 0 (i.e., is a constant) or 2, then
we will say that this is a strict quadratic program.

Let us give a strict quadratic program for MAX-CUT. Let yi be an in-
dicator variable for vertex vi which will be constrained to be either +1 or
−1. The partition (S, S) will be defined as follows. S = {vi | yi = 1} and
S = {vi | yi = −1}. If vi and vj are on opposite sides of this partition,

256 26 Semidefinite Programming

then yiyj = −1, and edge (vi, vj) contributes wij to the objective function.
On the other hand, if they are on the same side, then yiyj = 1, and edge
(vi, vj) makes no contribution. Hence, an optimal solution to this program is
a maximum cut in G.

maximize
1
2

∑
1≤i<j≤n

wij(1− yiyj) (26.1)

subject to y2
i = 1, vi ∈ V

yi ∈ Z, vi ∈ V

We will relax this program to a vector program. A vector program is
defined over n vector variables in Rn, say v1, . . . ,vn, and is the problem of
optimizing (minimizing or maximizing) a linear function of the inner products
vi · vj , 1 ≤ i ≤ j ≤ n, subject to linear constraints on these inner products.
Thus, a vector program can be thought of as being obtained from a linear
program by replacing each variable with an inner product of a pair of these
vectors.

A strict quadratic program over n integer variables defines a vector pro-
gram over n vector variables in Rn as follows. Establish a correspondence
between the n integer variables and the n vector variables, and replace each
degree 2 term with the corresponding inner product. For instance, the term
yiyj in (26.1) is replaced with vi ·vj . In this manner, we obtain the following
vector program for MAX-CUT.

maximize
1
2

∑
1≤i<j≤n

wij(1− vi · vj) (26.2)

subject to vi · vi = 1, vi ∈ V

vi ∈ Rn, vi ∈ V

Because of the constraint vi ·vi = 1, the vectors v1, . . . ,vn are constrained
to lie on the n-dimensional sphere, Sn−1. Any feasible solution to (26.1) yields
a solution to (26.2) having the same objective function value, by assigning
the vector (yi, 0, . . . , 0) to vi. (Notice that under this assignment, vi · vj is
simply yiyj .) Therefore, the vector program (26.2) is a relaxation of the strict
quadratic program (26.1). Clearly, this holds in general as well; the vector
program corresponding to a strict quadratic program is a relaxation of the
quadratic program.

Interestingly enough, vector programs are approximable to any desired
degree of accuracy in polynomial time, and thus relaxation (26.2) provides
an upper bound on OPT for MAX-CUT. To show this, we need to recall
some interesting and powerful properties of positive semidefinite matrices.

26.2 Properties of positive semidefinite matrices 257

Remark 26.2 Vector programs do not always come about as relaxations
of strict quadratic programs. Exercise 26.13 gives an NP-hard problem that
has vector program relaxation; however, we do not know of a strict quadratic
program for it.

26.2 Properties of positive semidefinite matrices

Let A be a real, symmetric n×n matrix. Then A has real eigenvalues and has
n linearly independent eigenvectors (even if the eigenvalues are not distinct).
We will say that A is positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0.

We will use the following two equivalent conditions crucially. We provide a
proof sketch for completeness.

Theorem 26.3 Let A be a real symmetric n×n matrix. Then, the following
are equivalent:

1. ∀x ∈ Rn, xTAx ≥ 0.
2. All eigenvalues of A are nonnegative.
3. There is an n× n real matrix W , such that A = W TW .

Proof: (1 ⇒ 2): Let λ be an eigenvalue of A, and let v be a corresponding
eigenvector. Therefore, Av = λv. Pre-multiplying by vT we get vTAv =
λvTv. Now, by (1), vTAv ≥ 0. Therefore, λvTv ≥ 0. Since vTv > 0, λ ≥ 0.

(2 ⇒ 3): Let λ1, . . . , λn be the n eigenvalues of A, and v1, . . . ,vn be the
corresponding complete collection of orthonormal eigenvectors. Let Q be the
matrix whose columns are v1, . . . ,vn, and Λ be the diagonal matrix with
entries λ1, . . . , λn. Since for each i, Avi = λivi, we have AQ = QΛ. Since
Q is orthogonal, i.e., QQT = I, we get that QT = Q−1. Therefore,

A = QΛQT .

Let D be the diagonal matrix whose diagonal entries are the positive square
roots of λ1, . . . , λn (by (2), λ1, . . . , λn are nonnegative, and thus their square
roots are real). Then, Λ = DDT . Substituting, we get

A = QDDTQT = (QD)(QD)T .

Now, (3) follows by letting W = (QD)T .
(3 ⇒ 1): For any

x ∈ Rn, xTAx = xTW TWx = (Wx)T (Wx) ≥ 0. ✷

258 26 Semidefinite Programming

Using Cholesky decomposition (see Section 26.7), a real symmetric matrix
can be decomposed, in polynomial time, as A = UΛUT , where Λ is a diago-
nal matrix whose diagonal entries are the eigenvalues of A. Now A is positive
semidefinite iff all the entries of Λ are nonnegative, thus giving a polynomial
time test for positive semidefiniteness. The decomposition WW T is not poly-
nomial time computable because in general it may contain irrational entries.
However, it can be approximated to any desired degree by approximating the
square roots of the entries of Λ. In the rest of this chapter we will assume
that we have an exact decomposition, since the inaccuracy resulting from an
approximate decomposition can be absorbed into the approximation factor
(see Exercise 26.6).

It is easy to see that the sum of two n×n positive semidefinite matrices is
also positive semidefinite (e.g., using characterization (1) of Theorem 26.3).
This is also true of any convex combination of such matrices.

26.3 The semidefinite programming problem

Let Y be an n× n matrix of real valued variables whose (i, j)th entry is yij .
The problem of maximizing a linear function of the yij ’s, subject to linear
constraints on them, and the additional constraint that Y be symmetric and
positive semidefinite, is called the semidefinite programming problem.

Let us introduce some notation to state this formally. Denote by Rn×n

the space of n×n real matrices. Recall that the trace of a matrix A ∈ Rn×n

is the sum of its diagonal entries and is denoted by tr(A). The Frobenius
inner product of matrices A,B ∈ Rn×n, denoted A •B, is defined to be

A •B = tr(ATB) =
n∑
i=1

n∑
j=1

aijbij ,

where aij and bij are the (i, j)th entries of A and B, respectively. Let Mn

denote the cone of symmetric n×n real matrices. For A ∈ Mn, A / 0 denotes
the fact that matrix A is positive semidefinite.

Let C,D1, . . . ,Dk ∈ Mn and d1, . . . dk ∈ R. Following is a statement of
the general semidefinite programming problem. Let us denote it by S.

maximize C • Y (26.3)

subject to Di • Y = di, 1 ≤ i ≤ k

Y / 0,

Y ∈ Mn.

Observe that if C,D1, . . . ,Dk are all diagonal matrices, this is simply a
linear programming problem. As in the case of linear programs, it is easy to

26.3 The semidefinite programming problem 259

see that allowing linear inequalities, in addition to equalities, does not make
the problem more general.

Let us call a matrix in Rn×n satisfying all the constraints of S a feasible
solution. Since a convex combination of positive semidefinite matrices is pos-
itive semidefinite, it is easy to see that the set of feasible solutions is convex,
i.e., if A ∈ Rn×n and B ∈ Rn×n are feasible solutions then so is any convex
combination of these solutions.

Let A ∈ Rn×n be an infeasible point. Let C ∈ Rn×n. A hyperplane
C •Y ≤ b is called a separating hyperplane for A if all feasible points satisfy
it and point A does not satisfy it. In the next theorem we show how to find a
separating hyperplane in polynomial time. As a consequence, for any ε > 0,
semidefinite programs can be solved within an additive error of ε, in time
polynomial in n and log(1/ε), using the ellipsoid algorithm (see Section 26.7
for more efficient methods).

Theorem 26.4 Let S be a semidefinite programming problem, and A be a
point in Rn×n. We can determine, in polynomial time, whether A is feasible
for S and, if it is not, find a separating hyperplane.

Proof: Testing for feasibility involves ensuring that A is symmetric and
positive semidefinite and that it satisfies all the linear constraints. By remarks
made in Section 26.2, this can be done in polynomial time. If A is infeasible,
a separating hyperplane is obtained as follows.

• If A is not symmetric, aij > aji for some i, j. Then yij ≤ yji is a separating
hyperplane.

• If A is not positive semidefinite, then it has a negative eigenvalue, say λ.
Let v be the corresponding eigenvector. Now (vvT) • Y = vTY v ≥ 0 is a
separating hyperplane.

• If any of the linear constraints is violated, it directly yields a separating
hyperplane.

✷

Next, let us show that vector programs are equivalent to semidefinite
programs, thereby showing that the former can be solved efficiently to any
desired degree of accuracy. Let V be a vector program on n n-dimensional
vector variables v1, . . . ,vn. Define the corresponding semidefinite program, S,
over n2 variables yij , 1 ≤ i, j ≤ n, as follows. Replace each inner product vi·vj
occurring in V by the variable yij . The objective function and constraints are
now linear in the yij ’s. Additionally, require that matrix Y , whose (i, j)th
entry is yij , be symmetric and positive semidefinite.

Lemma 26.5 Vector program V is equivalent to semidefinite program S.

Proof: We will show that corresponding to each feasible solution to V,
there is a feasible solution to S of the same objective function value, and vice

260 26 Semidefinite Programming

versa. Let a1, . . . ,an be a feasible solution to V. Let W be the matrix whose
columns are a1, . . . ,an. Then, it is easy to see that A = W TW is a feasible
solution to S having the same objective function value.

For the other direction, let A be a feasible solution to S. By Theorem
26.3, there is an n × n matrix W such that A = W TW . Let a1, . . . ,an be
the columns of W . Then, it is easy to see that a1, . . . ,an is a feasible solution
to V having the same objective function value. ✷

Finally, we give the semidefinite programming relaxation to MAX-CUT
that is equivalent to vector program 26.2.

maximize
1
2

∑
1≤i<j≤n

wij(1− yiyj) (26.4)

subject to y2
i = 1, vi ∈ V

Y / 0,

Y ∈ Mn.

26.4 Randomized rounding algorithm

We now present the algorithm for MAX-CUT. For convenience, let us assume
that we have an optimal solution to the vector program (26.2). The slight
inaccuracy in solving it can be absorbed into the approximation factor (see
Exercise 26.6). Let a1, . . . ,an be an optimal solution, and let OPTv denote its
objective function value. These vectors lie on the n-dimensional unit sphere
Sn−1. We need to obtain a cut (S, S) whose weight is a large fraction of
OPTv.

Let θij denote the angle between vectors ai and aj . The contribution of
this pair of vectors to OPTv is

wij
2

(1− cos θij).

Clearly, the closer θij is to π, the larger this contribution will be. In turn,
we would like vertices vi and vj to be separated if θij is large. The following
method accomplishes precisely this. Pick r to be a uniformly distributed
vector on the unit sphere Sn−1, and let S = {vi | ai · r ≥ 0}.

Lemma 26.6 Pr[vi and vj are separated] =
θij
π

.

Proof: Project r onto the plane containing vi and vj . Now, vertices vi and
vj will be separated iff the projection lies in one of the two arcs of angle θij
shown below.

26.4 Randomized rounding algorithm 261

θij

θij

v i

v j

Since r has been picked from a spherically symmetric distribution, its pro-
jection will be a random direction on this plane. The lemma follows. ✷

The next lemma shows how to generate vectors that are uniformly dis-
tributed on the unit sphere Sn−1.

Lemma 26.7 Let x1, . . . , xn be picked independently from the normal distri-
bution with mean 0 and unit standard deviation. Let d = (x2

1 + . . . + x2
n)

1/2.
Then, (x1/d, . . . , xn/d) is a random vector on the unit sphere Sn−1.

Proof: Consider the vector r = (x1, . . . , xn). The distribution function for
r has density

f(y1, . . . , yn) =
n∏
i=1

1√
2π

e−y2
i /2 =

1
(2π)n/2

e− 1
2

∑
i
y2

i .

Notice that the density function depends only on the distance of the point
from the origin. Therefore, the distribution of r is spherically symmetric.
Hence, dividing by the length of r, i.e., d, we get a random vector on Sn−1.

✷

The algorithm is summarized below.

Algorithm 26.8 (MAX-CUT)

1. Solve vector program (26.2). Let a1, . . . ,an be an optimal solution.
2. Pick r to be a uniformly distributed vector on the unit sphere Sn−1.
3. Let S = {vi | ai · r ≥ 0}.

Let W be the random variable denoting the weight of edges in the cut
picked by Algorithm 26.8, and let

α =
2
π

min
0≤θ≤π

θ

1− cos θ
.

262 26 Semidefinite Programming

One can show that α > 0.87856 (see Exercise 26.3).

Lemma 26.9 E[W] ≥ α ·OPTv.

Proof: By the definition of α we have that for any θ, 0 ≤ θ ≤ π,

θ

π
≥ α

(
1− cos θ

2

)
. (26.5)

Using this and Lemma 26.6, we get

E[W] =
∑

1≤i<j≤n
wijPr[vi and vj are separated]

=
∑

1≤i<j≤n
wij

θij
π

≥ α ·
∑

1≤i<j≤n

1
2
wij(1− cos θij) = α ·OPTv.

✷

Let us define the integrality gap for relaxation (26.2) to be

inf
I

OPT(I)
OPTv(I)

,

where the infimum is over all instances I of MAX-CUT.

Corollary 26.10 The integrality gap for relaxation (26.2) is at least α >
0.87856.

Theorem 26.11 There is a randomized approximation algorithm for MAX-
CUT achieving an approximation factor of 0.87856.

Proof: Let us first obtain a “high probability” statement using the bound
on expectation established in Lemma 26.9. Let T denote the sum of weights
of all edges in G, and define a so that E[W] = aT . Let

p = Pr[W < (1− ε)aT],

where ε > 0 is a constant. Since the random variable W is always bounded
by T , we get

aT ≤ p(1− ε)aT + (1− p)T.

Therefore,

p ≤ 1− a

1− a + aε
.

26.5 Improving the guarantee for MAX-2SAT 263

Now,

T ≥ E[W] = aT ≥ α ·OPTv ≥ α ·OPT ≥ αT

2
,

where the last inequality follows from the fact that OPT ≥ T/2 (see Exercise
2.1). Therefore, 1 ≥ a ≥ α/2. Using this upper and lower bound on a, we get

p ≤ 1− εα/2
1 + ε− α/2

≤ 1− c,

where

c =
εα/2

1 + ε− α/2
.

Run Algorithm 26.8 1/c times, and output the heaviest cut found in these
runs. Let W ′ be the weight of this cut. Then,

Pr[W ′ ≥ (1− ε)aT] ≥ 1− (1− c)1/c ≥ 1− 1
e
.

Since aT ≥ α · OPT > 0.87856 OPT, we can pick a value of ε > 0 so that
(1− ε)aT ≥ 0.87856 OPT. ✷

Example 26.12 The following example shows that the bound on the inte-
grality gap of relaxation (26.2) given in Corollary 26.10 is almost tight. Con-
sider a graph which is a 5-cycle v1, v2, v3, v4, v5, v1. Then, an optimal solution
to relaxation (26.2) is to place the five vectors in a 2-dimensional subspace
within which they are given by vi = (cos(4iπ

5), sin(4iπ
5)), for 1 ≤ i ≤ 5 (see

Exercise 26.5). The cost of this solution is OPTv = 5
2 (1 + cos π5) = 25+5

√
5

8 .
Since OPT = 4 for this graph, the integrality gap for this example is

32
25+5

√
5

= 0.88445.... ✷

26.5 Improving the guarantee for MAX-2SAT

MAX-2SAT is the restriction of MAX-SAT (Problem 16.1) to formulae in
which each clause contains at most two literals. In Chapter 16 we obtained
a factor 3/4 algorithm for this problem using randomization, followed by the
method of conditional expectation. We will give an improved algorithm using
semidefinite programming.

The key new idea needed is a way of converting the obvious quadratic
program (see Exercise 26.8) for this problem into a strict quadratic program.
We will accomplish this as follows. Corresponding to each Boolean variable

264 26 Semidefinite Programming

xi, introduce variable yi which is constrained to be either +1 or −1, for
1 ≤ i ≤ n. In addition, introduce another variable, say y0, which is also
constrained to be +1 or −1. Let us impose the convention that Boolean
variable xi is true if yi = y0 and false otherwise. Under this convention we
can write the value of a clause in terms of the yi’s, where the value, v(C), of
clause C is defined to be 1 if C is satisfied and 0 otherwise. Thus, for clauses
containing only one literal,

v(xi) =
1 + y0yi

2
and v(xi) =

1− y0yi
2

.

Consider a clause containing 2 literals, e.g., (xi ∨ xj). Its value is

v(xi ∨ xj) = 1− v(xi)v(xj) = 1− 1− y0yi
2

1− y0yj
2

=
1
4
(
3 + y0yi + y0yj − y2

0yiyj
)

=
1 + y0yi

4
+

1 + y0yj
4

+
1− yiyj

4
.

Observe that in this derivation we have used the fact that y2
0 = 1. In all

the remaining cases as well, it is easy to check that the value of a 2 literal
clause consists of a linear combination of terms of the form (1 + yiyj) or
(1− yiyj). Therefore, a MAX-2SAT instance can be written as the following
strict quadratic program, where the aij ’s and bij ’s are computed by collecting
terms appropriately.

maximize
∑

0≤i<j≤n
aij(1 + yiyj) + bij(1− yiyj) (26.6)

subject to y2
i = 1, 0 ≤ i ≤ n

yi ∈ Z, 0 ≤ i ≤ n

Following is the vector program relaxation for (26.6), where vector vari-
able vi corresponds to yi.

maximize
∑

0≤i<j≤n
aij(1 + vi · vj) + bij(1− vi · vj) (26.7)

subject to vi · vi = 1, 0 ≤ i ≤ n

vi ∈ Rn+1, 0 ≤ i ≤ n

The algorithm is similar to that for MAX-CUT. We solve vector program
(26.7). Let a0, . . . ,an be an optimal solution. Pick a vector r uniformly dis-
tributed on the unit sphere in (n + 1) dimensions, Sn, and let yi = 1 iff

26.6 Exercises 265

r · ai ≥ 0, for 0 ≤ i ≤ n. This gives a truth assignment for the Boolean
variables. Let W be the random variable denoting the weight of this truth
assignment.

Lemma 26.13 E[W] ≥ α ·OPTv.

Proof:

E[W] = 2
∑

0≤i<j≤n
aijPr[yi = yj] + bijPr[yi �= yj].

Let θij denote the angle between ai and aj . By inequality (26.5),

Pr[yi �= yj] =
θij
π

≥ α

2
(1− cos θij).

By Exercise 26.4,

Pr[yi = yj] = 1− θij
π

≥ α

2
(1 + cos θij).

Therefore,

E[W] ≥ α ·
∑

0≤i<j≤n
aij(1 + cos θij) + bij(1− cos θij) = α ·OPTv.

✷

26.6 Exercises

26.1 Is matrix W in Theorem 26.3 unique (up to multiplication by −1)?
Hint: Consider the matrix QDQT .

26.2 Let B be obtained from matrix A by throwing away a set of columns
and the corresponding set of rows. We will say that B is a principal submatrix
of A. Show that the following is another equivalent condition for a real sym-
metric matrix to be positive semidefinite: that all of its principal submatrices
have nonnegative determinants. (See Theorem 26.3 for other conditions.)

26.3 Show, using elementary calculus, that α > 0.87856.

26.4 Show that for any φ, 0 ≤ φ ≤ π,

1− φ

π
≥ α

2
(1 + cosφ).

266 26 Semidefinite Programming

Hint: Substitute θ = π − φ in inequality (26.5).

26.5 Show that for a 5-cycle, the solution given in Example 26.12 is indeed
an optimal solution to the vector program relaxation for MAX-CUT.

26.6 Show that the inaccuracies resulting from the fact we do not have
an optimal solution to the vector program (26.2) and that matrix A is not
exactly decomposed as WW T (see end of Section 26.2) can be absorbed into
the approximation factor for MAX-CUT.
Hint: Use the idea behind the proof of Theorem 26.11 and the fact that the
solution to program (26.2) lies in the range [T/2, T], where T is the sum of
weights of all edges in G.

26.7 Theorem 26.11 shows how to obtain a “high probability” statement
from Lemma 26.9. Obtain a similar statement for MAX-2SAT, using Lemma
26.13, thereby obtaining a 0.87856 factor algorithm for MAX-2SAT.

26.8 Give a quadratic program for MAX-2SAT.

26.9 (Linial, London, and Rabinovich [190]) Let G be the complete undi-
rected graph on n vertices, V , and let w be a function assigning nonnegative
weights to the edges of G. The object is to find an optimal distortion �22-
embedding of the vertices of G. Let vertex i be mapped to vi ∈ Rn by such
an embedding. The embedding should satisfy:

1. no edge is overstretched, i.e., for 1 ≤ i < j ≤ n, ||vi − vj ||2 ≤ w(ij), and
2. the maximum shrinkage is minimized, i.e.,

maximize min
(i,j):wij �=0

(||vi − vj ||2/wij).

Give a vector program for finding such an optimal embedding and give the
equivalent semidefinite program.
Hint: The vector program is:

minimize c (26.8)

subject to vi · vi + vj · vj − 2vi · vj ≤ wij , 1 ≤ i < j ≤ n

vi · vi + vj · vj − 2vi · vj ≥ cwij , 1 ≤ i < j ≤ n

vi ∈ Rn, 1 ≤ i ≤ n

26.10 (Knuth [174]) Give an efficient algorithm for sampling from the nor-
mal distribution with mean 0 and unit standard deviation, given a source of
unbiased random bits.

26.6 Exercises 267

26.11 Give a strict quadratic program for the MAX k-CUT and maximum
directed cut problems, Problems 2.14 and 2.15 stated in Exercises 2.3 and
2.4. Give a vector program relaxation and an equivalent semidefinite program
as well.

26.12 (Goemans and Williamson [106]) Consider MAX-CUT with the ad-
ditional constraint that specified pairs of vertices be on the same/opposite
sides of the cut. Formally, we are specified two sets of pairs of vertices, S1
and S2. The pairs in S1 need to be separated, and those in S2 need to be on
the same side of the cut sought. Under these constraints, the problem is to
find a maximum weight cut. Assume that the constraints provided by S1 and
S2 are not inconsistent. Give a strict quadratic program and vector program
relaxation for this problem. Show how Algorithm 26.8 can be adapted to this
problem so as to maintain the same approximation factor.

26.13 (Karger, Motwani, and Sudan [158]) Let G = (V,E) be an undirected
graph. Consider a vector program with n n-dimensional vectors corresponding
to the vertices of G, and constraints that the vectors lie on the unit sphere,
Sn−1, and that for each edge (i, j) ∈ G,

vi · vj ≤ − 1
k − 1

.

Show that this vector program is a relaxation of the k-coloring problem, i.e.,
if G is k-colorable, then this vector program has a feasible solution.
Hint: Consider the following k vectors in Rn. Each vector has 0 in the last

n− k positions. Vector i has −
√

k−1
k in the ith position and 1/

√
k(k − 1) in

the remaining positions.

26.14 (Chor and Sudan [43]) Consider the following problem:

Problem 26.14 (Betweenness) We are given a set S = {x1, x2, . . . , xn} of
n items and a set T of m triplets T ⊆ S×S×S. Each triplet consists of three
distinct items. A total ordering (permutation) of S, xπ1 < xπ2 < . . . < xπn

satisfies a triplet (xi, xj , xk) ∈ T if xj occurs between xi and xk in the
ordering, i.e., if either xi < xj < xk holds or xk < xj < xi holds. The
problem is to find a total ordering that maximizes the number of satisfied
triplets.

1. Show that a random ordering (i.e., a permutation chosen uniformly at
random among all possible permutations) will satisfy in expectation one
third of all triplets in T .

2. Use the method of conditional expectation to derandomize the above
algorithm, thereby obtaining a factor 1/3 approximation algorithm. What
upper bound on OPT is this algorithm using? Give an example showing
that with this upper bound a better algorithm is not possible.

268 26 Semidefinite Programming

3. The rest of the exercise develops an algorithm based on semidefinite pro-
gramming. The ideas can be illustrated more simply by assuming that the
instance is satisfiable, i.e., that all m triplets can be satisfied simultane-
ously. Note that checking for this condition is NP-hard, so the restriction
of the betweenness problem to such instances is not an NP-optimization
problem (see Exercise 1.9). Show that an instance is satisfiable iff the
following strict quadratic program in variables pi ∈ R, i = 1, . . . , n, has
a solution:

(pi − pj)2 ≥ 1 for all i, j,

(pi − pj)(pk − pj)≤ 0 for all (xi, xj , xk) ∈ T.

4. Obtain the vector programming relaxation of this strict quadratic pro-
gram as well as the equivalent semidefinite program.

5. Give an instance where the above semidefinite program is satisfiable but
the instance itself is not satisfiable.

6. Let us assume that n × n matrix Y is a feasible solution to the above
semidefinite program, and let vi ∈ Rn for i = 1, · · · , n be vectors such that
Yij = vTi vj . Now select r uniformly at random on the unit sphere Sn−1.
Consider the random ordering obtained by sorting rT vi. Show that, in
expectation, this random ordering satisfies at least half of the constraints
in T .
Hint: What is the probability that a single triplet is satisfied? What is
the angle between vi − vj and vk − vj?

26.7 Notes

The results of this chapter are based on the seminal work of Goemans and
Williamson [106] that introduced the use of semidefinite programs in approx-
imation algorithms. Experimental results reported in their paper show that
Algorithm 26.8 performs much better on typical instances than the worst case
guarantee. Mahajan and Ramesh [200] give a derandomization of Algorithm
26.8, as well as the MAX-2SAT algorithm, using the method of conditional
expectation. Karloff [161] provides a family of tight examples for Algorithm
26.8, for which the expected weight of the cut produced is arbitrarily close to
α · OPTv. Feige and Schechtman [84] strengthen this to showing that there
are graphs such that even the best hyperplane (rather than a random one,
as prescribed in Algorithm 26.8) gives a cut of weight only α · OPTv. They
also show that the integrality gap of the semidefinite relaxation (26.2) for
MAX-CUT is α.

For efficient algorithms, using interior point methods, for approximating
semidefinite programs, see Alizadeh [4], Nesterov and Nemirovskii [214] and
Overton [215]. For a duality theory for semidefinite programs, see Wolkowitz
[260] and Vandeberghe and Boyd [250].

26.7 Notes 269

Lovász and Schrijver [196] use semidefinite programming to provide an
automatic way of strengthening any convex relaxation (having a convex fea-
sible region) of a 0/1 integer program. They also show that if the original
relaxation can be optimized in polynomial time, then so can the strength-
ened relaxation (however, in order to guarantee polynomial running time,
this process can be applied only a constant number of times).

Feige and Goemans [81] improve the approximation factor for MAX-
2SAT to 0.931. They also give a 0.859 factor for the maximum directed
cut problem (see Exercise 26.11). For semidefinite-programming-based al-
gorithms for the MAX k-CUT problem see Frieze and Jerrum [90]. Karger,
Motwani, and Sudan [158] use the relaxation in Exercise 26.13 to obtain an
O(n1−3/(k+1) log1/2 n) coloring for k-colorable graphs.

Part III

Other Topics

27 Shortest Vector

The shortest vector problem is a central computational problem in the clas-
sical area of geometry of numbers. The approximation algorithm presented
below has many applications in computational number theory and cryptogra-
phy. Two of its most prominent applications are the derivation of polynomial
time algorithms for factoring polynomials over the rationals and for simulta-
neous diophantine approximation.

Problem 27.1 (Shortest vector) Given n linearly independent vectors
a1, . . . ,an ∈ Qn, find the shortest vector, in Euclidean norm, in the lattice
generated by these vectors. The lattice L generated by a1, . . . ,an is the set
of all integer linear combinations of these vectors, i.e., L = {λ1a1 + . . . +
λnan | λi ∈ Z}.
Remark 27.2 We will consider only full rank lattices, i.e., lattices that span
the entire space on which they are defined. Most of the results apply to the
general case as well, although the details can get more involved.

We will present an exponential (in n) factor algorithm for this problem.
The problem of finding a polynomial factor algorithm for shortest vector
has remained open for over two decades. It is worth pointing out that the
exponential factor algorithm does perform well in practice and is widely used.

The shortest vector in the 1-dimensional lattice generated by two inte-
gers is simply the greatest common divisor (gcd) of these integers, which is
polynomial time computable by Euclid’s algorithm. When restricted to two
dimensions, the shortest vector problem is polynomial time solvable. This
follows from an algorithm of Gauss that was originally formulated in the
language of quadratic forms. It will be instructive to first study these two al-
gorithms, since Gauss’ algorithm can be viewed as a generalization of Euclid’s
algorithm, and the n-dimensional algorithm can be seen as a generalization
of Gauss’ algorithm.

Several peculiarities set the shortest vector problem apart from other
problems studied in this book. Unlike other NP-hard problems, we do not
know if there is an instance of shortest vector that has exponentially many
solutions, i.e., a lattice that has exponentially many shortest vectors. Indeed,
this problem is not known to be NP-hard in the usual sense; it is only known
to be NP-hard under randomized reductions. Another point of difference is
that the lower bounding scheme used for obtaining the exponential factor

274 27 Shortest Vector

algorithm can, in principle, be used to obtain a polynomial factor algorithm
– by an existential argument we will prove that this scheme gives rise to
a factor n approximate No certificate for the shortest vector problem. In
contrast, for all other problems studied in this book, the best known lower
bound is actually polynomial time computable.

27.1 Bases, determinants, and orthogonality defect

In this chapter all vectors will be assumed to be row vectors, unless otherwise
stated. Let A denote the n × n matrix whose rows are the given vectors,
a1, . . . ,an. Let vectors b1, . . . , bn ∈ L, and let B denote the n × n matrix
whose rows are b1, . . . , bn. Since a1, . . . ,an can generate b1, . . . , bn, B = ΛA,
where Λ is an n× n integer matrix. Therefore det(B) is an integer multiple
of det(A). We will say that b1, . . . , bn form a basis for lattice L if the lattice
generated by these vectors is precisely L. A square matrix with integer entries
whose determinant is ±1 will be called unimodular. Observe that its inverse
is also unimodular.

Theorem 27.3 Let vectors b1, . . . , bn ∈ L. The following conditions are
equivalent:

1. b1, . . . , bn form a basis for lattice L
2. |det(B)| = |det(A)|
3. there is an n× n unimodular matrix U such that B = UA

Proof: Since a1, . . . ,an can generate b1, . . . , bn, B = ΛA, where Λ is an
n× n integer matrix.

1 ⇒ 2: If b1, . . . , bn form a basis for L, they can generate a1, . . . ,an. There-
fore, A = Λ′B, where Λ′ is an n × n integer matrix. Hence,
det(Λ)det(Λ′) = 1. Since both Λ and Λ′ have integer determinants,
det(Λ) = ±1, and so |det(B)| = |det(A)|.

2 ⇒ 3: Since |det(B)| = |det(A)|, det(Λ) = ±1, and hence Λ is unimodular.
3 ⇒ 1: Since U is unimodular, U−1 is also unimodular. Now, A = U−1B,

and so each of a1, . . . ,an can be written as an integer linear combi-
nation of b1, . . . , bn. Therefore, b1, . . . , bn form a basis for L.

✷

By Theorem 27.3, the determinant of a basis for L is invariant, up to sign.
We will call |det(A)| the determinant of lattice L and will denote it as det L.
Observe that det L is the volume of the parallelohedron defined by the basis
vectors. Theorem 27.3 also tells us that we can move from basis to basis by
applying unimodular transforms. We will use this fact in our algorithms.

The most desirable basis to obtain is an orthogonal basis, since it must
contain a shortest vector of L (see Exercise 27.1). However, not every lattice

27.1 Bases, determinants, and orthogonality defect 275

admits such a basis. For instance, the following 2-dimensional lattice has no
orthogonal basis. (The two shaded parallelohedra have volume det L each.)

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

We will denote the Euclidean norm of vector a by ‖a‖. Recall Hadamard’s
inequality, which states that for an n× n real matrix A,

|det(A)| ≤ ‖a1‖ . . . ‖an‖.

This inequality holds with equality iff one of the rows of A is the zero vector
or else the rows are mutually orthogonal. Applying this inequality we get
that any basis b1, . . . , bn satisfies

det L ≤ ‖b1‖ . . . ‖bn‖.

Since none of the basis vectors is the zero vector, the inequality holds with
equality iff the basis is orthogonal. Let us define the orthogonality defect of
basis b1, . . . , bn to be

‖b1‖ . . . ‖bn‖
det L .

Since det L is invariant, the smaller the orthogonality defect of a basis, the
shorter its vectors must be.

Let us say that linearly independent vectors b1, . . . , bk ∈ L are primitive
if they can be extended to a basis of L. For a single vector, primitivity is easy
to characterize. Let us say that a ∈ L is shortest in its direction if xa is not
a vector in L for 0 < |x| < 1.

Theorem 27.4 Vector a ∈ L is primitive iff a is shortest in its direction.

Proof: Suppose there is a basis B of L containing a. Any vectors of the
form xa, where x is a scalar, that can be generated using B must have x ∈ Z.
Therefore, a is shortest in its direction.

276 27 Shortest Vector

Suppose a is shortest its direction. Since a ∈ L, we can write

a = λ1a1 + . . . + λnan,

where λi ∈ Z, and a1, . . . ,an form a basis for L. Since a is shortest in
its direction, gcd(λ1, . . . , λn) is 1. Therefore, there exists a unimodular n×n
matrix, say Λ, whose first row is λ1, . . . , λn (see Exercise 27.2). Let B = ΛA.
By Theorem 27.3, B is a basis for L. Since the first row of B is a, the theorem
follows. ✷

27.2 The algorithms of Euclid and Gauss

In one dimension the lattice generated by basis vector a is simply all in-
teger multiples of a. Hence, the shortest vector problem is trivial in the
1-dimensional case. Instead, consider the following problem. Given integers
a and b, consider all integer linear combinations of a and b, and find the
smallest number in this lattice. This will be the gcd of a and b, denoted by
(a, b).

Assume w.l.o.g. that a ≥ b ≥ 0. The idea behind Euclid’s algorithm is that
since (a, b) = (a− b, b), we can replace the original problem by a smaller one.
Continuing in this manner we are left with finding the smallest number, in
absolute value, in the sequence {|a−mb|, for m ∈ Z}. Let this be c. If c = 0,
then (a, b) = b, and we are done. Otherwise, (a, b) = (b, c), and we proceed
with the pair b, c. Observe that c ≤ b/2. Hence this process terminates in
log2 b iterations.

Next, let us present Gauss’ algorithm in 2 dimensions. For this case, a
weaker condition than orthogonality is sufficient for ensuring that a basis
contains a shortest vector. Let θ denote the angle between basis vectors b1
and b2, 0◦ < θ < 180◦. Thus, det L = ‖b1‖ · ‖b2‖ sin θ. Number the vectors
so that ‖b1‖ ≤ ‖b2‖.
Theorem 27.5 If 60◦ ≤ θ ≤ 120◦, then b1 is a shortest vector in lattice L.

Proof: Assume for the purpose of contradiction that there is a vector b ∈ L
that is shorter than b1. Since b1 and b2 are both primitive, b cannot be
linearly dependent on b1 or b2. By a simple case analysis it is easy to see
that b must form an angle of at most 60◦ with one of b1, b2, −b1, or −b2.

27.2 The algorithms of Euclid and Gauss 277

-b 1

b2

b1

-b 2

>60
<120

ο
ο

Let D be the 2 × 2 matrix whose rows consist of this vector and b. Observe
that |det(D)| is nonzero and is strictly smaller than det L = ‖b1‖ · ‖b2‖ sin θ.
This contradicts the fact that det(D) is an integer multiple of det L. Hence
b1 is a shortest vector in L. ✷

Define

µ21 =
b2 · b1

‖b1‖2 ,

where · represents inner product. Observe that µ21b1 is the component of b2
in the direction of b1. The following proposition suggests an algorithm for
finding a basis satisfying the condition of Theorem 27.5.

Proposition 27.6 If basis (b1, b2) satisfies

• ‖b1‖ ≤ ‖b2‖ and
• |µ21| ≤ 1/2,

then 60◦ ≤ θ ≤ 120◦.

Proof: Note that,

cos θ =
b1 · b2

‖b1‖ · ‖b2‖ =
µ21‖b1‖
‖b2‖ .

Therefore, by the two conditions, | cos θ| ≤ 1/2. Hence, 60◦ ≤ θ ≤ 120◦. ✷

278 27 Shortest Vector

Gauss gave the following algorithm for transforming an arbitrary basis
into one satisfying the above conditions.

Algorithm 27.7 (Shortest vector for 2 dimensions)

1. Initialization: assume ‖b1‖ ≤ ‖b2‖.
2. While the conditions of Proposition 27.6 are not satisfied, do:

(a) If |µ21| > 1/2, let b2 ← b2 −mb1, where m is the integer closest to
µ21.

(b) If ‖b1‖ > ‖b2‖, interchange b1 and b2.
3. Output b1.

Observe that the operations involve interchanging the rows of B and
subtracting a multiple of one row from another. These are clearly unimod-
ular operations (the absolute value of the determinant remains unchanged).
Therefore, we always have a basis for L.

Clearly, after step 2(a) is performed, |µ21| ≤ 1/2. Observe that the opera-
tion in this step is quite similar to that in Euclid’s gcd algorithm. It minimizes
the component of b2 in the direction of b1 by subtracting a suitable multiple
of b1. Since ‖b1‖ · ‖b2‖ decreases after each iteration, the algorithm must
terminate (there are only a bounded number of vectors of L within a given
radius). For polynomial time termination of Algorithm 27.7, see Exercises
27.3, 27.4, and 27.5, and the comments in Section 27.7.

27.3 Lower bounding OPT using Gram–Schmidt
orthogonalization

In this section we will present the Gram–Schmidt lower bound on OPT, the
length of a shortest vector in lattice L.

Intuitively, the Gram–Schmidt orthogonalization of basis b1, . . . , bn gives
the n “altitudes” of the parallelohedron defined by this basis. Formally, it is
a set of mutually orthogonal vectors b∗

1, . . . , b
∗
n, where b∗

1 = b1 and b∗
i is the

component of bi orthogonal to b∗
1, . . . , b

∗
i−1, for 2 ≤ i ≤ n. b∗

i can be obtained
from bi by subtracting from it components in the directions of b∗

1, . . . , b
∗
i−1,

as given by the following recurrence:

b∗
1 = b1

b∗
i = bi −

i−1∑
j=1

bi · b∗
j

‖b∗
j‖2 b∗

j , i = 2, . . . , n. (27.1)

27.3 Lower bounding OPT using Gram–Schmidt orthogonalization 279

b =b *

b

1 1

2

b *2

b3b *3

For 1 ≤ j < i ≤ n, define

µij =
bi · b∗

j

‖b∗
j‖2 ,

and define µii = 1. Then

bi =
i∑

j=1

µijb
∗
j , i = 1, . . . , n. (27.2)

For j ≤ i, define bi(j) to be the component of bi orthogonal to b1, . . . , bj−1,
i.e.,

bi(j) = µijb
∗
j + µi,j+1b

∗
j+1 + · · ·+ b∗

i .

It is easy to see that

det L = ‖b∗
1‖ . . . ‖b∗

n‖.

Therefore, the orthogonality defect of this basis can be written as

‖b1‖ . . . ‖bn‖
‖b∗

1‖ . . . ‖b∗
n‖

=
1

sin θ2 . . . sin θn
,

where θi is the angle between bi and the vector space spanned by b1, . . . , bi−1,
for 2 ≤ i ≤ n. This angle is defined as follows. Let b′

i be the projection of bi
onto the space spanned by b1, . . . , bi−1. Then

280 27 Shortest Vector

θi = cos−1
(‖b′

i‖
‖bi‖

)
.

Notice that the Gram–Schmidt orthogonalization depends not only on
the basis chosen, but also on the ordering chosen among the basis vectors. It
provides a lower bound on OPT as follows.

Lemma 27.8 Let b1, . . . , bn be a basis for lattice L, and b∗
1, . . . , b

∗
n be the

Gram–Schmidt orthogonalization for it. Then

OPT ≥ min{‖b∗
1‖, . . . , ‖b∗

n‖}.

Proof: Let v be a shortest vector in L. Suppose k is the largest indexed
basis vector used in generating v, i.e.,

v =
k∑
i=1

λibi,

where λk �= 0. Using (27.2), v can also be expressed as a linear combination
of the vectors b∗

1, . . . , b
∗
k. In this combination, the coefficient of b∗

k is λk, since
µk,k = 1. Since the vectors b∗

1, . . . , b
∗
n are orthogonal,

‖v‖2 ≥ λ2
k‖b∗

k‖2 ≥ ‖b∗
k‖2

.

Hence

OPT = ‖v‖ ≥ ‖b∗
k‖ ≥ min{‖b∗

1‖, . . . , ‖b∗
n‖}.

✷

27.4 Extension to n dimensions

In this section we will extend Gauss’ 2 dimensions algorithm to n dimensions.
As usual, our main effort will be on improving the lower bound on OPT.
Recall that for any basis, b1, . . . , bn,

‖b∗
1‖ . . . ‖b∗

n‖ = det L

is an invariant, and min{‖b∗
1‖, . . . , ‖b∗

n‖} is a lower bound on OPT. In a
typical basis, the minimum will be attained towards the end of the sequence
‖b∗

1‖, . . . , ‖b∗
n‖. We will try to make this sequence lexicographically small,

thereby ensuring that the last entries, and hence the minimum, are not too

27.4 Extension to n dimensions 281

small. The conditions in Proposition 27.6 suggest a way of accomplishing
this. By the first condition we have

‖b1‖2 ≤ ‖b2‖2, i.e., ‖b∗
1‖2 ≤ µ2

21‖b∗
1‖2 + ‖b∗

2‖2.

Substituting for µ21 from the second condition, we get

‖b∗
1‖2 ≤ 1

4
‖b∗

1‖2 + ‖b∗
2‖2

Therefore,

‖b∗
1‖ ≤

2√
3
‖b∗

2‖.

Thus b∗
2 cannot be smaller than b∗

1 by more than a factor of 2/
√

3. Let
us impose similar conditions on each consecutive pair of basis vectors, so
that for each i, b∗

i+1 is not smaller than b∗
i by more than a factor of 2/

√
3.

Then the first vector, b1, will be within an exponential factor of the lower
bound. Algorithm 27.7 extends in a natural way to iteratively ensuring all
these conditions. However, we do not know how to establish termination for
this extended algorithm (see Exercise 27.7 for details).

To ensure termination in a polynomial number of iterations, we will use
an idea similar to that in Exercise 27.3. Let us say that basis b1, . . . , bn is
Gauss reduced if, for 1 ≤ i ≤ n− 1,

• ‖bi(i)‖ ≤ 2√
3
‖bi+1(i)‖

• |µi+1,i| ≤ 1/2.

The algorithm for obtaining a Gauss reduced basis is a simple generaliza-
tion of Algorithm 27.7.

Algorithm 27.9 (Shortest vector algorithm)

1. While basis b1, . . . , bn is not Gauss reduced, do:
(a) For each i, 1 ≤ i ≤ n− 1, ensure that |µi+1,i| ≤ 1/2.

If |µi+1,i| > 1/2 then bi+1 ← bi+1 −mbi, where m is the integer
closest to µi+1,i.

(b) Pick any i such that ‖bi‖ > 2√
3
‖bi+1‖, and interchange bi and

bi+1.
2. Output b1.

Theorem 27.10 Algorithm 27.9 terminates in a polynomial number of iter-
ations and achieves an approximation guarantee of 2(n−1)/2.

282 27 Shortest Vector

Proof: For 1 ≤ i ≤ n− 1 we have

‖bi(i)‖2 = ‖b∗
i ‖2 ≤ 4

3
‖bi+1(i)‖2 =

4
3
(µ2
i+1,i ‖b∗

i ‖2 + ‖b∗
i+1‖2)

≤ 4
3

(
1
4
‖b∗
i ‖2 + ‖b∗

i+1‖2).

Therefore,

‖b∗
i ‖2 ≤ 2 ‖b∗

i+1‖2. (27.3)

and so

‖b1‖ ≤ 2(n−1)/2 min
i
{‖b∗

i ‖} ≤ 2(n−1)/2 OPT.

In order to show termination in a polynomial number of iterations, we
will use the following potential function.

Φ =
n∏
i=1

‖b∗
i ‖(n−i).

Notice that step 1(a) in Algorithm 27.9 does not change the Gram–Schmidt
orthogonalization of the basis and can be executed in O(n) arithmetic oper-
ations (each addition, subtraction, multiplication, and division counts as one
operation). In an iteration, at most one interchange of vectors is performed
in Step 1(b). If this happens, Φ drops by a factor of at least 2/

√
3. Indeed

this was the reason to introduce the factor of 2/
√

3 in the definition of a
Gauss reduced basis. Let us assume w.l.o.g. that the initial basis has integer
components. Then, the initial value of Φ is at most

(max
i

‖ai‖)n(n−1)/2.

We will show that Φ ≥ 1 throughout the execution of the algorithm. Conse-
quently, if the number of iterations is m, then(

2√
3

)m
≤ (max

i
‖ai‖)n(n−1)/2.

Therefore,

m ≤ n(n− 1) maxi log ‖ai‖
2 log(2/

√
3)

.

Express basis vectors b1, . . . bn in the orthogonal basis b∗
1, . . . , b

∗
n. For 1 ≤ k ≤

n− 1, let Bk be the k× k lower-triangular matrix whose rows are b1, . . . , bk.
Clearly,

27.4 Extension to n dimensions 283

det(Bk) = ‖b∗
1‖ . . . ‖b∗

k‖.

Now, the (i, j)th entry of BkB
T
k is bi · bj , which is an integer. Therefore,

det(BkB
T
k) = ‖b∗

1‖2 . . . ‖b∗
k‖2 ≥ 1.

Hence,

Φ =
(n−1)∏
k=1

det(BkB
T
k) ≥ 1.

✷

We have shown that Algorithm 27.9 terminates in a polynomial number of
arithmetic operations. Strictly speaking, we need to upper bound the number
of bit operations, i.e., we need to show that the numbers being handled can
be written using a polynomial number of bits. Below we define the stronger
notion of a Lovász reduced basis. One can show that a simple extension of
Algorithm 27.9 that finds a Lovász reduced basis executes only a polynomial
number of bit operations. However, the proof is tedious and is omitted.

Another motivation for defining the stronger notion of a Lovász reduced
basis is that its orthogonality defect can also be bounded. Let us say that
basis b1, . . . , bn is weakly reduced if for 1 ≤ j ≤ i ≤ n, |µij | ≤ 1/2. The basis
is said to be Lovász reduced if it is Gauss reduced and weakly reduced. One
can obtain a weakly reduced basis from a given basis without changing the
Gram–Schmidt orthogonalization, using at most n(n − 1)/2 operations (see
Exercise 27.9). Substituting step 1(a) in Algorithm 27.9 by this procedure,
we obtain an algorithm for finding a Lovász reduced basis. The bound on the
number of iterations established in Theorem 27.10 applies to this algorithm
as well.

Theorem 27.11 The orthogonality defect of a Lovász reduced basis is bound-
ed by 2n(n−1)/4.

Proof: We will use inequality (27.3) established in Theorem 27.10.

‖bi‖2 =
i∑

j=1

µ2
ij‖b∗

j‖2 ≤
i−1∑
j=1

1
4
‖b∗
j‖2 + ‖b∗

i ‖2

≤ (1 +
1
4
(2 + · · ·+ 2i−1))‖b∗

i ‖2 ≤ 2i−1‖b∗
i ‖2.

Therefore,

284 27 Shortest Vector

n∏
i=1

‖bi‖2 ≤ 2n(n−1)/2
n∏
i=1

‖b∗
i ‖2 = 2n(n−1)/2(det L)2.

The theorem follows. ✷

Example 27.12 Consider the following basis, together with its Gram–
Schmidt orthogonalization.

1 0 0 . . . 0 0

1/2 ρ 0 . . . 0 0
1/2 ρ/2 ρ2 . . . 0 0
...

1/2 ρ/2 ρ2/2 . . . ρn−2/2 ρn−1

Here ρ =
√

3/2. It is easy to verify that this basis is Lovász reduced. Each
basis vector is of unit length. The Gram–Schmidt lower bound is ρ(n−1), i.e.,
exponentially smaller than any of the basis vectors. Subtracting the last two
rows we obtain the vector(

0, . . . , 0,
ρ(n−2)

2
,−ρ(n−1)

)
.

This vector is exponentially smaller than any of the basis vectors. ✷

27.5 The dual lattice and its algorithmic use

As in the case of linear programs, one can define a structure that can be
viewed as the dual of a given lattice. The power of duality in linear programs
derives from the potent min–max relation connecting a linear program and
its dual. In contrast, there is no such relation connecting a lattice with its
dual. Yet, the dual lattice does seem to have algorithmic significance. In this
section we will use it to show that the Gram–Schmidt lower bound is good
by producing a basis for which this lower bound is at least OPT/n.

The dual lattice, L∗, is defined by L∗ = {v ∈ Rn | ∀b ∈ L, b · v ∈ Z}. For
an n× n matrix B, we will denote (B−1)T by B−T .

Theorem 27.13 Let b1, . . . , bn be any basis for L. Then, the rows of B−T

form a basis for the dual lattice L∗. Furthermore, det L∗ = 1/det L.

Proof: Let us name the rows of B−T as v1, . . . ,vn. Then,

bi · vj =
{

1 if i = j
0 otherwise.

27.5 The dual lattice and its algorithmic use 285

Therefore, any integer linear combination of v1, . . . ,vn has an integer inner
product with each of b1, . . . , bn, and hence is in L∗. Conversely, let v ∈ L∗.
Let v · bi = ai ∈ Z, for 1 ≤ i ≤ n. Let a = (a1, . . . , an). Thus, we have
BvT = aT . Therefore, v = aB−T , i.e., v is an integer linear combination of
the vectors v1, . . . ,vn. Hence v1, . . . ,vn form a basis for L∗. Finally,

det L∗ = det(B−T) =
1

det L .

✷

Let v ∈ Rn be a nonzero vector. Then, v⊥ will denote the (n − 1)-
dimensional vector space {b ∈ Rn | b · v = 0}. A set L′ ⊂ L that is a
lattice in its own right will be called a sublattice of L. Its dimension is the
dimension of the vector space spanned by L′. Lemma 27.14 and Exercise
27.11 will establish that there is a one-to-one correspondence between (n−1)-
dimensional sublattices of L and primitive vectors of L∗.

Lemma 27.14 Let v ∈ L∗ be primitive. Then

• L ∩ (v⊥) is an (n− 1)-dimensional sublattice of L.
• There is a vector b ∈ L such that v · b = 1.

Proof: Since v is primitive, there is a basis of L∗ containing v. Let it be
v,v2, . . . ,vn, and let V be the n × n matrix whose rows are these basis
vectors. Let b1, . . . , bn be the rows of V −T . Since v · bi = 0, for 2 ≤ i ≤ n,
the (n − 1)-dimensional sublattice of L generated by b2, . . . , bn lies in v⊥.
The second assertion follows from the fact that v · b1 = 1. ✷

Next we will present a key primitive for constructing a basis with a good
Gram–Schmidt orthogonalization. Let v ∈ L∗ be primitive, L′ = L ∩ (v⊥),
and w ∈ L with v · w = 1. Let b1, . . . , bn−1 be a basis for L′ with Gram–
Schmidt orthogonalization b∗

1, . . . , b
∗
n−1.

Lemma 27.15 b1, . . . , bn−1,w is a basis for L, with Gram–Schmidt orthog-
onalization

b∗
1, . . . , b

∗
n−1,

v

‖v‖2 .

Proof: Let b ∈ L be an arbitrary vector. Let us first observe that b − (b ·
v)w ∈ L′. This is so because (b− (b · v)w) · v = 0. Thus, we can write

b− (b · v)w =
n−1∑
i=1

λibi,

where λ1, . . . , λn−1 ∈ Z. Therefore,

286 27 Shortest Vector

b =
n−1∑
i=1

λibi + (b · v)w.

Hence, every vector of L can be written as an integer linear combination of
b1, . . . , bn−1,w, thus establishing the first part.

Let µib
∗
i be the component of w in the direction of b∗

i , for 1 ≤ i ≤ n− 1.
Let

w∗ = w −
n−1∑
i=1

µib
∗
i .

Since w∗ is orthogonal to each of b1, . . . , bn−1, it is linearly dependent on v.
Since v ·w = 1, v ·w∗ = 1. Therefore,

‖w∗‖ =
1
‖v‖ .

Hence,

w∗ =
v

‖v‖2 . ✷

Let us use the primitive given above as follows. Let L1 = L, and let L∗
1 be

its dual. Pick a primitive vector v1 ∈ L∗
1, and let sublattice L2 = L1 ∩ (v⊥

1).
Let L∗

2 denote the dual of L2 (it lies in the vector space spanned by L2).
Now we proceed by picking another primitive vector v2 ∈ L∗

2, and define
L3 = L2∩(v⊥

2), and so on. In general, we pick a primitive vector vi ∈ L∗
i , and

define sublattice Li+1 = Li∩(v⊥
i). Observe that although Li is a sublattice of

L, L∗
i is not necessarily a sublattice of L∗, for 1 ≤ i ≤ n. Next, use the second

part of Lemma 27.14 to pick wi ∈ Li such that vi · wi = 1, for 1 ≤ i ≤ n.
We summarize this procedure below. (We call it a “procedure” rather than
an “algorithm” because we do not know how to execute some of its steps in
polynomial time.)

Procedure 27.16

1. Initialization: L1 ← L, and L∗
1 ← dual of L.

2. For i = 1 to n do:
Pick a primitive vector vi ∈ L∗

i .
Pick wi ∈ Li such that vi ·wi = 1.
Li+1 ← Li ∩ (v⊥

i).
L∗
i+1 ← dual of Li+1.

3. Output wn,wn−1, . . . ,w1 and(
vn

‖vn‖2 , . . . ,
v1

‖v1‖2

)
.

27.5 The dual lattice and its algorithmic use 287

Using Lemma 27.15 and applying induction, we get

Lemma 27.17 The output of Procedure 27.16 satisfies that wn,wn−1, . . . ,w1
is a basis for L with Gram–Schmidt orthogonalization(

vn
‖vn‖2 , . . . ,

v1

‖v1‖2

)
.

We will need the following fundamental theorem of Minkowski.

Theorem 27.18 There is a vector b ∈ L such that ‖b‖ ≤ √
n n
√

det L.

Proof: Let ‖a‖∞ denote the �∞ norm of vector a. Now, ‖a‖ ≤ √
n‖a‖∞.

Therefore, it is sufficient to show that there is a vector b ∈ L such that
‖b‖∞ ≤ n

√
det L. Further, w.l.o.g. assume that det L = 1 (since we can

scale).
Now, let C = {v ∈ Rn | ‖v‖∞ ≤ 1/2} be the unit cube with center at the

origin. Place a cube at each lattice point of L, i.e., consider the cubes C + b,
for each lattice point b. Define the density of a lattice to be the number of
lattice points per unit volume. Clearly, the density of a lattice L′ is 1/det L′.
Since det L = 1, the density of lattice L is 1. Now, we claim that two of
these cubes must intersect. Suppose the cubes are disjoint. Then, each cube
contains exactly one lattice point. Since the cubes are of unit volume, this
implies that the density of lattice points is strictly smaller than 1, leading to
a contradiction.

Let the intersecting cubes be centered at lattice points b1 and b2. Then,
‖b1−b2‖∞ ≤ 1. Since b = b1−b2 is also a lattice point, the theorem follows.

✷

Theorem 27.19 There is a basis for L whose Gram–Schmidt lower bound
is at least OPT/n.

Proof: By Theorem 27.18, there are vectors b ∈ L and v ∈ L∗ such that
‖b‖‖v‖ ≤ n. Refine Procedure 27.16 as follows. Let vi ∈ L∗

i be a primitive
vector, and bi ∈ Li such that ‖vi‖‖bi‖ ≤ n+1−i ≤ n. Vectors wi are defined
as above.

By Lemma 27.17, wn, . . . ,w1 is a basis for L with Gram–Schmidt orthog-
onalization(

vn
‖vn‖2 , . . . ,

v1

‖v1‖2

)
.

Let b denote the shortest vector among b1, . . . , bn. Then,

‖b‖ = min{‖b1‖, . . . , ‖bn‖} ≤ nmin
{

1
‖v1‖ , . . . ,

1
‖vn‖

}
.

288 27 Shortest Vector

Hence, the Gram–Schmidt lower bound,

min
{

1
‖v1‖ , . . . ,

1
‖vn‖

}
≥ ‖b‖

n
≥ OPT

n
.

✷

As a result of Theorem 27.19, there is a factor n approximate No certificate
for the shortest vector problem (see Section 1.2 for definition). Thus, if the
answer to the question “Is the shortest vector in lattice L of length at most
α?” is “no”, and in fact α < OPT/n, then there is a polynomial sized guess
that enables us to verify in polynomial time that the answer is indeed “no”.
The guess is a basis whose existence is demonstrated in Theorem 27.19, and
the verification simply involves confirming that α is less than the lower bound
established by this basis.

27.6 Exercises

27.1 Show that if lattice L has a basis whose vectors are mutually orthogonal,
then the shortest vector in the basis is a shortest vector in L.
Hint: Write the length of a shortest vector v ∈ L in terms of the basis
vectors.

27.2 Recall that if (a, b) = 1, then Euclid’s algorithm gives integers x, y such
that ax+ by = 1. Generalize this fact to the following: If gcd(a1, . . . , an) = 1,
then there is an n× n unimodular matrix U whose first row is a1, . . . , an.
Hint: Prove by induction on n.

27.3 For the purpose of showing polynomial time termination, let us relax
the first condition of Gauss’ algorithm in 2 dimensions to ensuring that vector
b1 is not much bigger than b2, i.e., ‖b1‖ ≤ (1+ ε)‖b2‖. The second condition
is as before. Show that the algorithm terminates after a polynomial – in the
length of the initial vectors and 1/ε – number of iterations. What is the
guarantee on the length of b1 at termination?
Hint: Use the Gram–Schmidt lower bound to establish the guarantee.

27.4 Polynomial time termination for Algorithm 27.7 is difficult to establish
because in any one iteration, the progress may be minimal. Give an example
to show this.
Hint: Consider for instance b1 = (1, 0) and b2 = (1

2 + ε,
√

3
2).

27.5 (Kaib and Schnorr [152]) To get around the difficulty mentioned in
Exercise 27.4, consider the following small modification to Algorithm 27.7.
Say that basis (b1, b2) is well ordered if

27.6 Exercises 289

‖b1‖ ≤ ‖b1 − b2‖ < ‖b2‖.

1. Assume ‖b1‖ ≤ ‖b2‖. Show that one of the three bases (b1, b2), (b1, b1 −
b2), and (b1−b2, b1) is well ordered. Hence, modify the initialization step
to start with a well ordered basis.

2. The main algorithm is as follows:
(a) If |µ21| > 1/2, let b2 ← b2 − mb1, where m is the integer closest to

µ21.
(b) If ‖b1 − b2‖ > ‖b1 + b2‖, then let b2 ← −b2.
(c) If ‖b1‖ ≤ ‖b2‖, output (b1, b2) and halt.

Otherwise, interchange b1 and b2 and go to step (a).
Show that the basis obtained after step (b) is well ordered.

3. Suppose the modified algorithm, starting with well ordered basis (b1, b2),
executes k iterations and ends with a reduced basis. Renumber the vectors
encountered in reverse order as (a1,a2, . . . ,ak,ak+1), where b1 = ak,
b2 = ak+1, and the terminating basis is (a1,a2). Prove that for i >
1, ‖ai‖ ≤ (1/2)‖ai+1‖, thereby establishing a polynomial bound on the
running time.

27.6 Give an example of a 3-dimensional lattice L and vectors b1, b2 ∈ L
such that b1 and b2 are individually primitive, but b1, b2 is not.

27.7 Suppose basis b1, . . . , bn satisfies the following conditions for 1 ≤ i ≤
n− 1:

• ‖bi(i)‖ ≤ ‖bi+1(i)‖
• |µi+1,i| ≤ 1/2,

Show that

‖b1‖ ≤
(

2√
3

)i
‖b∗
i+1‖,

for 1 ≤ i ≤ n− 1. Hence,

‖b1‖ ≤
(

2√
3

)n−1

min
i
{‖b∗

i ‖} ≤
(

2√
3

)n−1

OPT.

Hint: By a calculation similar to the 2-dimensional case show that for
1 ≤ i ≤ n− 1,

‖b∗
i ‖ ≤

2√
3
‖b∗
i+1‖.

290 27 Shortest Vector

27.8 By modifying the definition of a Gauss reduced basis appropriately,
obtain a factor c(n−1)/2 algorithm, for any constant c > 2/

√
3, for the shortest

vector problem.
Hint: Replace the factor of 2/

√
3 in the definition of Gauss reduced basis

by 1 + ε, for a suitable ε > 0.

27.9 Show that a basis can be made weakly reduced using at most n(n−1)/2
arithmetic operations.
Hint: In Algorithm 27.9, the operations of step 1(a) can be carried out in any
order. In contrast, for obtaining a weakly reduced basis, order is important.
Pick a pair (i, j) with |µij | > 1/2 such that j is the largest possible, and carry
out the operation of step 1(a) in Algorithm 27.9.

27.10 Prove that the dual of lattice L∗ is L.

27.11 Prove the converse of Lemma 27.14.

• If L′ is an (n−1)-dimensional sublattice of L, then there is a vector v ∈ L∗

such that L′ = L ∩ (v⊥).
• If v ∈ L∗ and ∃b ∈ L such that v · b = 1, then v is primitive.

27.12 Let v ∈ L∗ be primitive and L′ be an (n− 1)-dimensional sublattice
of L such that L′ = L ∩ (v⊥). Prove that det L′ = ‖v‖ · det L.

27.13 This exercise develops a partial converse for Lemma 27.15. Let v and
b1, . . . , bn−1 be as defined in Lemma 27.15. Show that if b1, . . . , bn−1,w form
a basis for L, then v ·w = 1.
Hint: By Lemma 27.14, there is a vector w′ ∈ L such that v · w′ = 1.
Express w′ in the basis b1, . . . , bn−1,w, and use this to argue that v ·w = 1.

27.14 Show that the basis whose existence is established in Theorem 27.19
can be found in polynomial time, given an oracle for the shortest vector
problem.
Hint: A shortest vector satisfies the condition of Theorem 27.18.

27.15 (Korkhine and Zolotarav [175]) A basis b1, . . . , bn for lattice L is said
to be KZ reduced if:

• b1 is a shortest vector in L, b2 is such that b∗
2 is shortest possible while

ensuring the primitiveness of b1, b2, etc. In general, bi is such that b∗
i is

shortest possible while ensuring the primitiveness of b1, . . . , bi, i.e., the
component of bi orthogonal to the vector space spanned by b1, . . . , bi−1 is
being minimized, while ensuring primitiveness.

27.6 Exercises 291

• For 1 ≤ j < i ≤ n, |µij | ≤ 1/2.

Give a polynomial time algorithm for finding a KZ reduced basis in a
lattice, given an oracle for the shortest vector problem.

27.16 (Lovász [193]) Let p(n) be a polynomial function. Show that if there
is a polynomial time algorithm that finds a vector v ∈ L such that

‖v‖ ≤ p(n) n
√

det L,

then there is a factor p2(n) approximation algorithm for the shortest vector
problem.
Hint: The main idea is present in Theorem 27.19.

27.17 (Designed by K. Jain and R. Venkatesan, based on Frieze [88]) Given
a set S of n nonnegative integers S = {a1, . . . , an} and an integer b, the
subset sum problem asks if there is a subset of S that adds up to b. This
NP-hard problem lends itself naturally to the design of a one–way function,
a basic cryptographic primitive, as follows. An n bit message c = c1, . . . , cn
can be encoded as

fS(c) =
n∑
i=1

aici = b, say.

Clearly, fS is easy to compute. The NP-hardness of the subset sum problem
implies that fS is hard to invert in general, i.e., given a1, . . . , an and b, it is
hard to compute c.

This exercise shows how, using Algorithm 27.9, fS can be inverted with
high probability if a1, . . . , an are picked uniformly and independently in the
(large) range [1, B], where B ≥ 2n

2
. In practice, it is desirable to pick B to

be a large number so that fS turns out to be one-to-one.
Let m = 2n/2

√
n + 1 and p = m+1. Pick the following basis vectors for an

(n + 1)-dimensional lattice L. b0 = (pb, 0, ...0), b1 = (−pa1,1, 0...0), . . . , bn =
(−pan, 0, 0, ..., 1).

1. Let u1, . . . , un be fixed integers. Show that if the ai’s are picked uniformly
and independently in the range [1, B], then

Pr[
n∑
i=1

uiai = 0] ≤ 1
B

,

where the probability is over the choice of ai’s.
2. Observe that L has a vector of length ≤ √

n. Show that if there is no
other vector in L of length ≤ m, then Algorithm 27.9 can be used to find
c such that fS(c) = b.

292 27 Shortest Vector

3. Suppose there is another vector in L of length ≤ m, say v. Let v =
λb0 +

∑n
i=1 vibi, say, with λ, vi ∈ Z. Clearly each vi ∈ [−m,m]. Show

that λ ∈ [−2m, 2m].
Hint: We can assume w.l.o.g. that b ≥ (1

2)
∑n

i=1 ai (if not, then decode∑n
i=1 ai − b). The first coordinate of v must be zero, which gives

|λ|b ≤
n∑
i=1

ai|vi| ≤ (
n∑
i=1

ai)‖v‖ ≤ 2bm.

4. Show that if there is another vector in L of length ≤ m then there are
integers u1, . . . , un, with each ui ∈ [−3m, 3m], such that

∑n
i=1 uiai = 0.

Hint:
∑n

i=1 ai(λci − vi) = 0.
5. Show that if the ai’s are picked uniformly and independently in the range

[1, B], then the probability that
∑n

i=1 uiai = 0 for integers u1, . . . , un,
with each ui ∈ [−3m, 3m], is very small.
Hint: Use the fact that the number of choices for u1, . . . , un is (6m+1)n.

6. Hence prove that fS can be inverted with high probability.

27.18 (Goldreich, Micciancio, Safra, and Seifert [108]) Consider the closest
vector problem. Given basis vectors b1, . . . , bn for lattice L and a target vector
b ∈ Rn, find a lattice vector that is closest to b in Euclidean distance. Show
that for any function f(n), an f(n) factor approximation algorithm for the
closest vector problem can be used as a subroutine to give an f(n) factor
approximation algorithm for the shortest vector problem.
Hint: Given basis vectors b1, . . . , bn for a lattice L, suppose b =

∑
i λibi

is a shortest vector in L. Clearly all λi cannot be even. Suppose λi is odd.
Now consider lattice L′ whose basis vectors are b1, . . . , bi−1, 2bi, bi+1, . . . , bn.
Observe that if the closest vector in lattice L′ to target vector bi is v, then
b = v − bi. Since i is not known, construct n such questions and pick the
best answer.

27.7 Notes

Algorithm 27.9 and Theorem 27.11 are due to Lenstra, Lenstra, and Lovász
[183]. Schnorr [235] modified this algorithm to achieve an approximation fac-
tor of (1 + ε)n, for any ε > 0. More precisely, Schnorr’s algorithm runs in
polynomial time for a suitable choice of ε = o(1), which results in a slightly
subexponential factor algorithm, i.e., an algorithm with an approximation
factor of 2o(n). This is currently the best approximation guarantee known for
shortest vector.

Algorithm 27.7 appears in Gauss [99], though it is stated there in terms
of quadratic forms. Using a complex potential function argument, Lagarias
[180] showed that this algorithm has polynomial running time (in the number

27.7 Notes 293

of bits needed to write the input basis). For a polynomial time algorithm
for shortest vector in d-dimensions, for fixed constant d, see Kannan [154].
Example 27.12 is due to Kannan [153]. Ajtai [2] showed that the shortest
vector problem is NP-hard under randomized reductions. Theorem 27.19 is
due to Lagarias, Lenstra, and Schnorr [181].

28 Counting Problems

The techniques for approximately counting the number of solutions to #P-
complete problems are quite different from those for obtaining approximation
algorithms for NP-hard optimization problems. Much of the former theory
is built around the Markov chain Monte Carlo method, see Section 28.4 for
references. In this chapter, we will present combinatorial algorithms (not
using Markov chains) for two fundamental problems, counting the number of
satisfying truth assignments for a DNF formula, and estimating the failure
probability of an undirected network.

Intuitively, the class #P captures the problems of counting the number of
solutions to NP problems. Let us formalize this notion. Let L be a language
in NP, M be its associated verifier, and polynomial p be the bound on the
length of its Yes certificates (see Section A.1). For string x ∈ Σ∗, define f(x)
to be the number of strings y such that |y| ≤ p(|x|) and M(x, y) accepts.
Functions f : Σ∗ → Z+ that arise in this manner constitute the class #P.

Function f ∈ #P is said to be #P-complete if every function g ∈ #P can
be reduced to f in the following sense. There is a polynomial time transducer
R : Σ∗ → Σ∗, that, given an instance, x, of g, produces an instance, R(x),
of f . Furthermore, there is a polynomial time computable function S : Σ∗ ×
Z+ → Z+ that given x and f(R(x)) computes g(x), i.e.,

∀x ∈ Σ∗, g(x) = S(x, f(R(x))).

In other words, an oracle for f can be used to compute g in polynomial time.
The solution counting versions of all known NP-complete problems are

#P-complete.1 Interestingly enough, other than a handful of exceptions, this
is true of problems in P as well. This raises the question of designing poly-
nomial time algorithms for approximately counting the number of solutions
to these latter problems (see Exercise 28.3 regarding the question of approx-
imately counting the number of solutions to NP-complete problems). These
problems admit only two interesting possibilities: they either allow approx-
imability to any required degree, or essentially not at all (see Section 28.4).
1 In fact, typically a polynomial time reduction from one NP-complete problem
to another maps solutions of the given instance to solutions of the transformed
instance, and so preserves the number of solutions; hence, the proof of #P-
completeness follows directly from the proof of NP-completeness.

28.1 Counting DNF solutions 295

The former possibility is captured in the definition of a fully polynomial ran-
domized approximation scheme, abbreviated FPRAS.

Consider a problem in P whose counting version, f , is #P-complete. An
algorithm A is an FPRAS for this problem if for each instance x ∈ Σ∗, and
error parameter ε > 0,

Pr[|A(x)− f(x)| ≤ εf(x)] ≥ 3
4
,

and the running time of A is polynomial in |x| and 1/ε. (See Exercise 28.1
for a method for reducing the error probability of an FPRAS.)

28.1 Counting DNF solutions

Problem 28.1 (Counting DNF solutions) Let f = C1∨C2∨ . . .∨Cm be
a formula in disjunctive normal form on n Boolean variables x1, . . . , xn. Each
clause Ci is of the form Ci = l1 ∧ l2 ∧ . . . ∧ lri , where each lj is a literal, i.e.,
it is either a Boolean variable or its negation. We may assume w.l.o.g. that
each clause is satisfiable, i.e., does not contain a variable and its negation.
The problem is to compute #f, the number of satisfying truth assignments
of f .

The main idea is to define an efficiently samplable random variable X
which is an unbiased estimator for #f, i.e., E[X] = #f. If in addition, the stan-
dard deviation of X is within a polynomial factor of E[X], then an FPRAS for
#f can be obtained in a straightforward manner by sampling X a polynomial
number of times (in n and 1/ε) and outputting the mean.

Constructing an unbiased estimator for #f is easy. Let random variable Y
have uniform distribution on all 2n truth assignments, and let Y (τ) be 2n if τ
satisfies f , and 0 otherwise (see Exercise 28.4). However, this random variable
can have a very large standard deviation, and does not yield an FPRAS. For
instance, suppose f has only polynomially many satisfying truth assignments.
Then, with high probability, a polynomial number of randomly picked truth
assignments will all have Y = 0, giving a poor estimate for #f.

We will rectify this by defining a random variable that assigns nonzero
probability to only the satisfying truth assignments of f . Let Si denote the set
of truth assignments to x1, . . . , xn that satisfy clause Ci. Clearly, |Si| = 2n−ri ,
where ri is the number of literals in clause Ci. Also, #f = | ∪mi=1 Si|. Let
c(τ) denote the number of clauses that truth assignment τ satisfies. Let M
denote the multiset union of the sets Si, i.e., it contains each satisfying truth
assignment, τ , c(τ) number of times. Notice that |M | =

∑
i |Si| is easy to

compute.
Pick a satisfying truth assignment, τ , for f with probability c(τ)/|M |,

and define X(τ) = |M |/c(τ). We will first show that X can be efficiently
sampled, i.e., using a randomized polynomial time algorithm.

296 28 Counting Problems

Lemma 28.2 Random variable X can be efficiently sampled.

Proof: Picking a random element from the multiset M ensures that each
truth assignment is picked with the desired probability. The following two-
step process will accomplish this. First pick a clause so that the probability of
picking clause Ci is |Si|/|M |. Next, among the truth assignments satisfying
the picked clause, pick one at random.

Now, the probability with which truth assignment τ is picked is

∑
i:τ satisfies Ci

|Si|
|M | ×

1
|Si| =

c(τ)
|M | .

✷

Lemma 28.3 X is an unbiased estimator for #f.

Proof:

E[X] =
∑
τ

Pr[τ is picked] ·X(τ) =
∑

τ satisfies f

c(τ)
|M | ×

|M |
c(τ)

= #f.

✷

X takes values only in a “polynomial range”, thereby ensuring that its
standard deviation is not large compared to its expectation. This fact is
proved in the next lemma, and leads to the FPRAS construction.

Lemma 28.4 If m denotes the number of clauses in f , then

σ(X)
E[X]

≤ m− 1.

Proof: Denote |M |/m by α. Clearly, E[X] ≥ α. For each satisfying truth
assignment τ of f , 1 ≤ c(τ) ≤ m. Therefore, X(τ) lies in the range [α,mα],
and so the random variable deviates from its mean by at most (m − 1)α,
i.e., |X(τ) − E[X]| ≤ (m − 1)α. Therefore, the standard deviation of X is
bounded by (m − 1)α. Using the lower bound on E[X] stated above, we get
the lemma. ✷

Finally, we will show that sampling X polynomially many times (in n
and 1/ε) and simply outputting the mean leads to an FPRAS for #f. Let Xk

denote the mean of k samples of X.

Lemma 28.5 For any ε > 0,

Pr[|Xk −#f | ≤ ε#f] ≥ 3/4,

28.2 Network reliability 297

where k = 4(m− 1)2/ε2.

Proof: We will use Chebyshev’s inequality (see Section B.2), with a =
εE[Xk]. Using the value of k stated above we get

Pr[|Xk −E[Xk]| ≥ εE[Xk]] ≤
(

σ(Xk)
εE[Xk]

)2

=
(

σ(X)
ε
√

kE[X]

)2

≤ 1
4
,

where the equality follows by noting that E[Xk] = E[X] and σ(Xk) =
σ(X)/

√
k, and the last inequality follows by applying Lemma 28.4. The

lemma follows. ✷

Theorem 28.6 There is an FPRAS for the problem of counting DNF solu-
tions.

28.2 Network reliability

Problem 28.7 (Network reliability) Given a connected, undirected graph
G = (V,E), with failure probability pe specified for each edge e, compute the
probability that the graph becomes disconnected.

Graph G will become disconnected if all edges in some cut (C,C), C ⊂ V
fail. We will present an FPRAS for this problem.

Let us first handle the case that each edge has the same failure probability,
denoted by p. However, we will allow G to have parallel edges between any
two vertices. Denote by FAIL(p) the probability that G gets disconnected. If
FAIL(p) is at least inverse polynomial, then it can be efficiently estimated by
Monte Carlo sampling (see proof of Theorem 28.11 for details). Let us handle
the difficult case that FAIL(p) is small. Assume that FAIL(p) ≤ n−4. The
reason for this choice will become clear below.

The probability that cut (C,C) gets disconnected is simply pc where c
is the number of edges crossing this cut. Since the failure probability of a
cut decreases exponentially with capacity, the most important cuts for the
purpose of estimating FAIL(p) are cuts with “small” capacity. The algorithm
is built around two ideas:

1. For any ε > 0, we will show that only polynomially many “small” cuts (in
n and 1/ε) are responsible for 1−ε fraction of the total failure probability
FAIL(p). Moreover, these cuts, say E1, . . . Ek, Ei ⊆ E, can be enumerated
in polynomial time.

2. We will construct a polynomial sized DNF formula f whose probability
of being satisfied is precisely the probability that at least one of these
cuts fails.

298 28 Counting Problems

As a result of the first idea, it is sufficient to estimate the probability
that one of the cuts E1, . . . Ek fails. However, because of correlations, this is
nontrivial. The second idea reduces this problem to counting DNF solutions,
for which we have an FPRAS.

Formula f has a Boolean variable xe for each edge e. xe is set to true with
probability p, the failure probability of edge e. Suppose cut Ei = {e1, . . . , ej}.
Construct the clause Di = xe1 ∧ · · · ∧ xej , i.e., the conjunct of all variables
corresponding to edges in this cut. The probability that this clause is satisfied
is precisely the failure probability of cut Ei. Finally, f = D1 ∨ · · · ∨Dk, i.e.,
the disjunct of clauses corresponding to cuts.

28.2.1 Upperbounding the number of near-minimum cuts

The first idea has its roots in the fact that one can place upper bounds on
the number of minimum and near-minimum capacity cuts in an undirected
graph. Let c be the capacity of a minimum cut in G. Recall that all edges in
G are assumed to be of unit capacity, and that G is allowed to have parallel
edges between any two vertices.

Lemma 28.8 The number of minimum cuts in G = (V,E) is bounded by
n(n− 1)/2.

Proof: By contracting an edge (u, v) in a graph we mean merging the vertices
u and v into a single vertex. All edges running between u and v are discarded.
Those running between u or v and some other vertex w will now run between
the merged vertex and w, their number being conserved.

Now consider the following random contraction process. Iteratively, pick
a random edge (u, v) in the current graph and contract it. Terminate when
exactly two vertices are left. Suppose these two vertices correspond to sets S
and V − S, S ⊂ V , of vertices of the starting graph G. Then, the algorithm
outputs the cut (S, S). We will say that this cut survives. Clearly, a cut
survives iff none of its edges is contracted during the algorithm.

Let (C,C) be any minimum cut in G. We will show

Pr[(C,C) survives] ≥ 1(
n
2

) .
This statement yields the lemma via an interesting argument. Let M be the
number of minimum cuts in G. The survival of each of these cuts is a mutually
exclusive event, and the total probability of these events adds up to at most
1. Hence M/(n(n− 1)/2) ≤ 1, thereby giving the desired bound.

Consider an arbitrary iteration in the random contraction process, and
let H be a graph at the beginning of this iteration. Since the process of
contraction cannot decrease the capacity of the minimum cut, the capacity
of each cut in H is at least c. This holds for cuts separating one vertex of H

28.2 Network reliability 299

from the rest. Therefore, the degree of each vertex in H must be at least c.
Hence, H must have at least cm/2 edges, where m is the number of vertices
in H.

Now, the conditional probability that cut (C,C) survives the current it-
eration, given that it has survived so far, is at least (1 − c

cm/2) = (1 − 2/m)
(this is simply the probability that the randomly chosen edge in this iteration
is not picked from the cut (C,C)). The probability that (C,C) survives the
whole algorithm is simply the product of these conditional probabilities. This
gives

Pr[(C,C) survives] ≥
(

1− 2
n

)(
1− 2

n− 1

)
. . .

(
1− 2

3

)
=

1(
n
2

) .
✷

For α ≥ 1, we will say that a cut is an α-min cut if its capacity is at most
αc.

Lemma 28.9 For any α ≥ 1, the number of α-min cuts in G is at most n2α.

Proof: We will prove the lemma for the case that α is a half-integer. The
proof for arbitrary α follows by applying the same ideas to generalized bino-
mial coefficients. Let 2α = k.

Consider the following two-phase process: First, run the random contrac-
tion algorithm until there are k vertices remaining in the graph. Next, pick
a random cut among all 2k−1 cuts in this graph. This will define a cut in the
original graph.

Let (C,C) be any α-min cut in G. We will show that the probability
that it survives the two phase process is at least 1/n2α, thereby proving the
desired bound.

Let H be the graph at the beginning of an arbitrary iteration in the first
phase. As argued in Lemma 28.8, if H has m vertices, it has at least mc/2
edges. Therefore, the conditional probability that (C,C) survives the current
iteration, given that it has survived so far, is at least 1 − αc

mc/2 = 1 − 2α/m.
The probability that (C,C) survives the first phase is at least(

1− 2α
n

)(
1− 2α

n− 1

)
. . .

(
1− 2α

3

)
=

1(
n
k

) .
The conditional probability that (C,C) survives the second phase, given

that it has survived the first, is 1/2k−1. Therefore,

Pr[(C,C) survives both phases] ≥ 1(
n
k

)
2k−1

≥ 1
nk

=
1

n2α .

✷

300 28 Counting Problems

28.2.2 Analysis

Recall that we are considering the case that FAIL(p) ≤ n−4. We can now jus-
tify this choice. The failure probability of a minimum cut is pc ≤ FAIL(p) ≤
n−4. Let pc = n−(2+δ), where δ ≥ 2. Now, by Lemma 28.9, for any α ≥ 1, the
total failure probability of all cuts of capacity αc is at most pαcn2α = n−αδ.
This rapid decrease in the total failure probability of all cuts of capacity αc
will enable us to bound the total failure probability of “large” capacity cuts.

Lemma 28.10 For any α ≥ 1,

Pr[some cut of capacity > αc fails] ≤ n−αδ
(

1 +
2
δ

)
.

Proof: Number all cuts in G by increasing capacity. Let ck and pk denote
the capacity and failure probability of the kth cut in this numbering. Let a
be the number of the first cut of capacity greater than αc. It suffices to show
that

∑
k≥a

pk ≤ n−αδ
(

1 +
2
δ

)
.

We will evaluate this sum in two steps. First, we will consider the first n2α

terms. Each of these terms is at most pαc = n−α(2+δ). Therefore, their sum
is at most n−αδ.

Next, let us bound the sum of the remaining terms. Clearly, this sum
is bounded by

∑
k>n2α pk. By Lemma 28.9, there are at most n2α cuts of

capacity bounded by αc. Therefore, cn2β ≥ βc. Writing k = n2β we get
ck ≥ c ln k/2 lnn, and

pk ≤ (pc)
ln k

2 ln n = k−(1+δ/2).

Therefore,

∑
k>n2α

pk ≤
∫ ∞

n2α

k−(1+δ/2)dk ≤ 2
δ
n−αδ.

This proves the lemma. ✷

Theorem 28.11 There is an FPRAS for estimating network reliability.

Proof: We will first consider the case that each edge in graph G has the
same failure probability, p.

28.2 Network reliability 301

If FAIL(p) > n−4, then we will resort to Monte Carlo sampling. Flip
a coin with bias p for failure of each edge, and check if G is disconnected.
Repeat this experiment O(log n/(ε2FAIL(p))) times, and output the mean
number of times G is disconnected. A straightforward application of Chernoff
bounds shows that the mean lies in [(1−ε)FAIL(p), (1+ε)FAIL(p)] with high
probability.

Next, assume that FAIL(p) ≤ n−4. Now, for any ε > 0, we want to
determine α such that the total failure probability of all cuts of capacity
> αc is bounded by εFAIL(p). By Lemma 28.10, it suffices to find α such
that

n−αδ
(

1 +
2
δ

)
≤ εFAIL(p) ≤ εn−(2+δ).

Solving, we get

α = 1 +
2
δ
− ln(ε/2)

δ lnn
≤ 2− ln(ε/2)

2 lnn
.

By Lemma 28.9, cn2α > αc. For the value of α computed,

Pr[one of the first n2α fails] ≥ (1− ε)FAIL(p).

The first n2α = O(n4/ε) cuts can be enumerated in polynomial time (see
Exercises). We will use these to construct the corresponding DNF formula,
and estimate the probability that it is satisfiable, as described above.

Finally, we show how to “reduce” the case of arbitrary edge failure prob-
abilities to the simpler case analyzed above. Suppose edge e has failure prob-
ability pe. Choose a small parameter θ. Replace edge e with ke = −(ln pe)/θ
parallel edges each with failure probability 1− θ. Then, the probability that
all ke edges fail is

(1− θ)−(ln pe)/θ.

As θ → 0, this failure probability converges to pe. Let H be the graph ob-
tained by doing this transformation on each edge of G. In the limit as θ → 0,
each cut in H has the same failure probability as that in G.

Let us give an efficient implementation of this idea. All we really want is
a listing of the “small” capacity cuts in G. Once this is done, we can apply
the more general DNF counting algorithm developed in Exercise 28.5, where
each variable is set to true with its own probability pe. Observe that changing
θ scales the capacities of cuts in H without changing their relative values.
Thus, it suffices to assign a weight of − ln pe to each edge e of G, and find
“small” capacity cuts in this graph. This completes the proof. ✷

302 28 Counting Problems

28.3 Exercises

28.1 Given an FPRAS for a problem, show that its success probability can
be improved to 1−δ, for any δ > 0, by a multiplicative increase in the running
time of only O(log(1/δ)).
Hint: Run the FPRAS O(log(1/δ)) times and output the median value.

28.2 Suppose we make the definition of an FPRAS more stringent by re-
quiring it to have a fixed additive error α with high probability, i.e.,

Pr[f(x)− α ≤ A(x) ≤ f(x) + α] ≥ 3
4
.

Show that if there were such an algorithm for a #P-complete problem, then
P= NP.

28.3 Show that if there were an FPRAS for counting the number of satisfying
truth assignments to SAT then every problem in NP could be solved in
random polynomial time. How weak an approximate counting algorithm for
SAT suffices to give this consequence? What does this say for the question
of approximately counting the number of solutions to other NP-complete
problems?
Hint: Use solution amplification. Given SAT formula f , define formula
f ′ over k new Boolean variables which is a tautology. Then the number of
solutions of φ = f ∧ f ′ is #f · 2k.

28.4 Given a DNF formula f , let Y be a random variable that on a random
truth assignment τ is 2n if τ satisfies f and 0 otherwise. Show that Y is an
unbiased estimator for #f. How large can the ratio σ(Y)/E[Y] be?

28.5 (Karp and Luby [165]) You are given a DNF formula f on n Boolean
variables, x1, . . . , xn, and probabilities p1, . . . , pn with which these variables
are (independently) set to true. Let D denote the resulting probability distri-
bution over the 2n truth assignments to the Boolean variables, and p denote
the probability that f is satisfied by a truth assignment picked from D. Con-
struct an FPRAS for estimating p.
Hint: Let qi denote the probability that clause Ci is satisfied by a truth
assignment picked from D, and Q =

∑
i qi. Now, consider random vari-

able X that assigns to each satisfying truth assignment τ a probability of
PrD[τ]c(τ)/Q, and define X(τ) = Q/c(τ).

28.6 A uniform generator for an NP problem Π is a randomized polynomial
time algorithm A that given an instance I of a problem, outputs either a
solution to I, or else the special symbol “⊥”, such that

28.3 Exercises 303

• each solution to I is output with the same probability, i.e., there is a number
α ∈ (0, 1] such that

Pr[A outputs s] = α, for each solution s of I, and

• the probability of outputting ⊥, i.e., failing to output a solution, is < 1/2.

Give a uniform generator for picking a random satisfying truth assignment
to a given DNF formula.
Hint: The essential idea behind the construction of random variable X
works.

28.7 (Jerrum, Valiant, and Vazirani [147]) Let Π be an NP problem that
is self-reducible (see Section A.5 and Exercise 1.15). Show that there is an
FPRAS for Π iff there is an almost uniform generator for it. An almost
uniform generator for Π is a randomized polynomial time algorithm A such
that for any µ > 0 and instance I of Π, there is a number α ∈ (0, 1] such
that

• for each solution s of I, Pr[A outputs s] ∈ [(1− µ)α, (1 + µ)α],
• Pr[A fails to output a solution] < 1/2, and
• the running time of A is polynomial in |I| and log(1/µ).

Observe that unlike an FPRAS, which can only achieve inverse polynomial
error, a uniform generator can achieve inverse exponential error (µ), in poly-
nomial time.
Hint: For the forward direction, first construct a uniform generator, as-
suming that the FPRAS makes no error. (Traverse down the self-reducibility
tree for I, with biases determined by estimates on the number of solutions.
Accept leaf with appropriate probability, to achieve uniform generation.) Use
the fact that the error probability of the FPRAS can be made exponentially
small to obtain an almost uniform generator. For the reverse direction, obtain
instance Iα, with |Iα| < |I|, and a good estimate of the ratio of the number
of solutions to I and Iα.

28.8 (Jerrum, Valiant, and Vazirani [147]) This exercise leads to strong
evidence that the problem of estimating the number of simple cycles in a
directed graph is essentially not approximable. Show that if there is an almost
uniform generator for this problem, then there is a randomized polynomial
time algorithm for deciding if a given directed graph has a Hamiltonian cycle.

Hint: Obtain a graph G′ from G that amplifies the number of cycles of each
length. However, it amplifies bigger cycles more than it amplifies smaller
cycles, so that most cycles in G′ are of maximum length and correspond to
the largest cycles in G.

304 28 Counting Problems

28.9 Show that the random contraction algorithm of Lemma 28.8 can be
used to obtain a randomized algorithm for finding a minimum cut in an
undirected graph.

28.10 (Karger and Stein [159]) Obtain a randomized algorithm for enu-
merating all α-min cuts in G using the random contraction algorithm and
Lemma 28.9.

In the next three exercises (from Vazirani and Yannakakis [252]), we will
develop a deterministic algorithm for enumerating in an undirected graph by
increasing weight, with polynomial delay, i.e., the algorithm spends polyno-
mial time between successive outputs.

Assume that graph G = (V,E) has n vertices besides s and t, numbered 1
to n. Every s–t cut in G can be represented as an n bit 0/1 vector. A partially
specified cut, in which the sides of only vertices numbered 1 to k are decided,
is represented as a k bit 0/1 vector. Consider a binary tree T of height n. Its
leaves represent s–t cuts and internal nodes represent partially specified cuts.
All cuts consistent with a partially specified cut lie in the subtree rooted at
it. Clearly, a minimum weight cut in this subtree can be computed with one
max-flow computation.

28.11 Let a be an n − k bit 0/1 vector representing a partially specified
cut, as well as an internal node in T . The subtree, T ′, rooted at this node
is of height k and contains 2k leaves (s–t cuts). Among these 2k cuts, let a′

be a minimum weight cut. Show how the remaining 2k − 1 cuts of T ′ can be
partitioned into k subtrees which are of height 0, 1, . . . , k − 1.

28.12 Using a heap, give an algorithm for enumerating s–t cuts in G by
increasing weight.
Hint: The heap is initialized with a minimum cut in G. At an arbitrary
point, the cuts not enumerated so far can be partitioned into subtrees (see
Exercise 28.11). The heap contains a minimum cut from each subtree.

28.13 Give an algorithm for enumerating all cuts in an undirected graph by
increasing weight with polynomial delay.
Hint: Assume that the graph has a special vertex s, which always goes on
side 0 of the cut, and n other vertices, numbered 1 to n. A cut is specified
by an n bit vector specifying the sides of vertices numbered 1 to n. The
main difference arises in finding a minimum cut in the subtree rooted at the
internal node 0k, k < n. This is done by finding a minimum cut separating
the vertices s, 1, . . . , i from vertex i+1 for k ≤ i < n, and picking the lightest
of these cuts.

28.14 (Karger [156]) Consider the generalization of network reliability to
estimating the probability that G disconnects into r or more components,
where r is a fixed constant. Obtain an FPRAS for this problem.

28.4 Notes 305

28.4 Notes

The counting class #P was defined by Valiant [249]. The FPRAS for counting
DNF solutions is due to Karp and Luby [165], who also gave the definition of
FPRAS (see also Karp, Luby, and Madras [166]). The FPRAS for estimating
network reliability is due to Karger [156].

Most algorithms for approximate counting work by constructing an al-
most uniform generator for the problem and appealing to the equivalence
established in Exercise 28.7. Broder [33] introduced the use of rapidly mixing
Markov chains for almost uniform generation (see also Mihail [205]).

Jerrum and Sinclair [145] gave the first FPRAS using this approach, for
counting the number of perfect matchings in dense bipartite graphs (each
vertex should have a degree ≥ n/2; see also Section 30.3). They also showed
that a crude approximate counter, with polynomial error, can be transformed
into an FPRAS (with inverse polynomial error), by defining an appropri-
ate Markov chain on the self-reducibility tree of an instance. As a result,
#P-complete problems either admit an FPRAS or are essentially not ap-
proximable at all (see Exercise 28.8) For Markov–chain based approximate
counting algorithms, see Jerrum and Sinclair [142], Sinclair [242], and the
references in Section 30.3.

29 Hardness of Approximation

A remarkable achievement of the theory of exact algorithms is that it has
provided a fairly complete characterization1 of the intrinsic complexity of
natural computational problems, modulo some strongly believed conjectures.
Recent impressive developments raise hopes that we will some day have a
comprehensive understanding of the approximability of NP-hard optimiza-
tion problems as well. In this chapter we will give a brief overview of these
developments.

Current hardness results fall into three important classes. For minimiza-
tion problems, the hardness factors for these classes are constant (> 1),
Ω(log n), and nε for a fixed constant ε > 0, where n is the size of the instance.
For maximization problems, the factors are constant (< 1), O(1/ log n), and
1/nε for a fixed ε > 0. In this chapter we will present hardness results for
MAX-3SAT, vertex cover, and Steiner tree in the first class, set cover in the
second class, and clique in the third class. For all these problems, we will
establish hardness for their cardinality versions, i.e., the unit cost case.

29.1 Reductions, gaps, and hardness factors

Let us start by recalling the methodology for establishing hardness results
for exact optimization problems. The main technical core is the Cook–Levin
theorem which establishes the hardness, assuming P �= NP, of distinguishing
between instances of SAT that are satisfiable and those that are not. To show
hardness of computing an optimal solution to, say the cardinality vertex cover
problem, one shows, via a polynomial time reduction from SAT, that it is hard
to distinguish between graphs that have covers of size at most k from graphs
that don’t, where k is provided as part of the input. Since an exact algorithm
can make this distinction, this reduction establishes the non-existence of an
efficient exact algorithm.

The main technical core of hardness of approximation results is the PCP
theorem, which is stated in Section 29.2. For establishing a hardness of ap-
proximation result for, say, the vertex cover problem, this theorem is used to
1 A few (important) exceptions, such as the graph isomorphism problem, remain
uncharacterized.

29.1 Reductions, gaps, and hardness factors 307

show the following polynomial time reduction. It maps an instance φ of SAT
to a graph G = (V,E) such that

• if φ is satisfiable, G has a vertex cover of size ≤ 2
3 |V |, and

• if φ is not satisfiable, the smallest vertex cover in G is of size > α · 2
3 |V |,

where α > 1 is a fixed constant.

Claim 29.1 As a consequence of the reduction stated above, there is no poly-
nomial time algorithm for vertex cover that achieves an approximation guar-
antee of α, assuming P �= NP.

Proof: Essentially, this reduction establishes the hardness, assuming P �=
NP, of distinguishing graphs having a cover of size ≤ 2

3 |V | from those having
a cover of size > α· 23 |V |. An approximation algorithm for vertex cover, having
a guarantee of α or better, will find a cover of size ≤ α · 2

3 |V | when given
a graph G from the first class. Thus, it will be able to distinguish the two
classes of graphs, leading to a contradiction. ✷

The reduction stated above introduces a gap, of factor α, in the optimal
objective function value achieved by the two classes of graphs (if α = 1 then
this is an ordinary polynomial time reduction from SAT to vertex cover).
Let us formally state the central notion of a gap-introducing reduction. The
definition is slightly different for minimization and maximization problems.
For simplicity, let us assume that we are always reducing from SAT.

Let Π be a minimization problem. A gap-introducing reduction from SAT
to Π comes with two parameters, functions f and α. Given an instance φ of
SAT, it outputs, in polynomial time, an instance x of Π, such that

• if φ is satisfiable, OPT(x) ≤ f(x), and
• if φ is not satisfiable, OPT(x) > α(|x|) · f(x).

Notice that f is a function of the instance (such as 2
3 |V | in the example

given above), and α is a function of the size of the instance. Since Π is a
minimization problem, the function α satisfies α(|x|) ≥ 1.

If Π is a maximization problem, we want the reduction to satisfy

• if φ is satisfiable, OPT(x) ≥ f(x), and
• if φ is not satisfiable, OPT(x) < α(|x|) · f(x).

In this case, α(|x|) ≤ 1. The gap, α(|x|), is precisely the hardness factor
established by the gap-introducing reduction for the NP-hard optimization
problem.

Once we have obtained a gap-introducing reduction from SAT (or any
other NP-hard problem) to an optimization problem, say Π1, we can prove
a hardness result for another optimization problem, say Π2, by giving a spe-
cial reduction, called a gap-preserving reduction, from Π1 to Π2. Now there
are four possibilities, depending on whether Π1 and Π2 are minimization or
maximization problems. We give the definition below assuming that Π1 is

308 29 Hardness of Approximation

a minimization problem and Π2 is a maximization problem. The remaining
cases are similar.

A gap-preserving reduction, Γ , from Π1 to Π2 comes with four parame-
ters (functions), f1, α, f2, and β. Given an instance x of Π1, it computes, in
polynomial time, an instance y of Π2 such that

• OPT(x) ≤ f1(x) ⇒ OPT(y) ≥ f2(y),
• OPT(x) > α(|x|)f1(x) ⇒ OPT(y) < β(|y|)f2(y).

Observe that x and y are instances of two different problems, and so it would
be more appropriate to write OPTΠ1(x) and OPTΠ2(y) instead of OPT(x)
and OPT(y), respectively. However, we will avoid this extra notation, since
the context clarifies the problems being talked about. In keeping with the
fact that Π1 is a minimization problem and Π2 is a maximization problem,
α(|x|) ≥ 1 and β(|y|) ≤ 1.

Composing a gap-introducing reduction with a gap-preserving reduction
gives a gap-introducing reduction, provided all the parameters match up. For
example, suppose that in addition to the reduction Γ defined above, we have
obtained a gap-introducing reduction, Γ ′, from SAT to Π1, with parameters
f1 and α. Then, composing Γ ′ with Γ , we get a gap-introducing reduction
from SAT to Π2, with parameters f2 and β. This composed reduction shows
that there is no β(|y|) factor approximation algorithm for Π2, assuming P �=
NP. In each gap-preserving reduction stated below, we will take special care
to ensure that the parameters match up.

Remark 29.2

• The “gap” β can, in general, be bigger or smaller than α. In this sense,
“gap-preserving” is a slight misnomer.

• We do not require any guarantee from reduction Γ if instance x of Π1 falls
in the first gap, i.e., satisfies f1(x) < OPT(x) ≤ α(|x|)f1(x).

• An approximation algorithm for Π2 together with a gap-preserving re-
duction Γ from Π1 to Π2 does not necessarily yield an approximation
algorithm for Π1. Observe the contrast with an approximation factor pre-
serving reduction (see Section A.3.1 for definition). The latter reduction
additionally requires a means of transforming a near-optimal solution to
the transformed instance y of Π2 into a near-optimal solution to the given
instance x of Π1.
On the other hand, Γ together with an appropriate gap-introducing reduc-
tion from SAT to Π1 does suffice for proving a hardness of approximation
result for Π2. Obviously the less stringent requirement on gap-preserving
reductions makes them easier to design.

• We have already presented some gap-introducing reductions, e.g., Theo-
rems 3.6 and 5.7. The reader may wonder why these do not suffice as the
starting point for further hardness results and why the PCP theorem was
needed. The reason is that these reductions simply exploit the freedom to
choose edge costs and not the deep combinatorial structure of the problem.

29.2 The PCP theorem 309

The following figure shows the gap-preserving reductions presented in this
chapter:

❅
❅
❅
❅
❅❅❘❄

�
�

�
�

��✠

❄

❄

❄

PCP theorem

MAX-3SAT

MAX-3SAT(5)

Vertex cover

Steiner tree

Set cover Clique

29.2 The PCP theorem

Probabilistic characterizations of the class NP yield a general technique for
obtaining gap-introducing reductions. The most useful of these character-
izations is captured in the PCP theorem. PCP stands for probabilistically
checkable proof systems.

Recall the usual definition of NP (see Appendix A) as the class of lan-
guages whose yes instances support short (polynomial in the length of the
input) witnesses that can be verified quickly (in polynomial time). Informally,
a probabilistically checkable proof for an NP language encodes the witness
in a special way so that it can be verified probabilistically by examining very
few of its bits.

A probabilistically checkable proof system comes with two parameters,
the number of random bits required by the verifier, and the number of bits of
the witness that the verifier is allowed to examine. In keeping with established
terminology, let us call a witness string the proof. The most useful setting
for these parameters is O(log n) and O(1), respectively. This defines the class
PCP(log n, 1).

The verifier is a polynomial time Turing machine which, besides its input
tape and work tape, has a special tape that provides it with a string of
random bits and another special tape on which it is provided with the proof.
The machine can read any bit of the proof by simply specifying its location.
Of course, the particular locations it examines are a function of the input

310 29 Hardness of Approximation

string and the random string. At the end of its computation, the machine
goes into either an accept state or a reject state.

❄

❄

❄

❄

Verifier

Random bits
r

Proof

Input

x

y

Work tape

V

A language L ∈ PCP(log n, 1) if there is a verifier V , and constants c and
q, such that on input x, V obtains a random string, r, of length c log |x| and
queries q bits of the proof. Furthermore,

• if x ∈ L, then there is a proof y that makes V accept with probability 1,
• if x /∈ L, then for every proof y, V accepts with probability < 1/2,

where the probability is over the random string r. The probability of accepting
in case x /∈ L is called the error probability.

In general, for two functions r(n) and q(n), we can define the class
PCP(r(n), q(n)), under which the verifier obtains O(r(n)) random bits and
queries O(q(n)) bits of the proof. The acceptance criteria for input strings
are the same as above. In this terminology, NP = PCP(0, poly(n)), where
poly(n) =

⋃
k≥0{nk}. In this case, the verifier is not allowed any random bits.

It must deterministically accept strings in the language and reject strings not
in the language, as in the definition of NP. The PCP theorem gives another
characterization of NP.

Theorem 29.3 NP = PCP(log n, 1).

One half of this theorem, that PCP(log n, 1) ⊆ NP, is easy to prove (see
Exercise 29.1). The other half, that NP ⊆ PCP(log n, 1), is a difficult result,
and gives a useful tool for establishing hardness of approximation results. The
currently known proof of this half is too complicated for exposition in this
book. Fortunately, the statement of the theorem is sufficient to derive the
hardness results.

In order to provide the reader with some feel for the PCP theorem, let us
make an observation. It is easy to construct a verifier for 3SAT whose error

29.3 Hardness of MAX-3SAT 311

probability (i.e., probability of accepting unsatisfiable formulae) is ≤ 1−1/m,
where m is the number of clauses in the input 3SAT formula, say φ. The
verifier expects a satisfying truth assignment to φ as the proof. It uses the
O(log n) random bits to pick a random clause of φ. It then reads the truth
assignments for the three variables occurring in this clause. Notice that this is
only a constant number of bits. It accepts iff the truth setting for these three
variables satisfies the clause. Clearly, if φ is satisfiable, there is a proof that
makes the verifier accept with probability 1, and if φ is not satisfiable, on
every proof, the verifier accepts with probability ≤ 1− 1/m. The interesting
and difficult part of the PCP theorem is decreasing the error probability to
< 1/2, even though the verifier is allowed to read only a constant number of
bits of the proof. It involves a complex algebraic construction that ensures
that small parts of the proof depend on every bit of the input.

The PCP theorem directly gives an optimization problem – in particular,
a maximization problem – for which there is no factor 1/2 approximation
algorithm, assuming P �= NP.

Problem 29.4 (Maximize accept probability) Let V be aPCP(log n, 1)
verifier for SAT. On input φ, a SAT formula, find a proof that maximizes the
probability of acceptance of V .

Claim 29.5 Assuming P �= NP, there is no factor 1/2 approximation algo-
rithm for Problem 29.4.

Proof: If φ is satisfiable, then there is a proof that makes V accept with
probability 1, and if φ is not satisfiable, then on every proof, V accepts with
probability < 1/2. Suppose there is a factor 1/2 approximation algorithm for
Problem 29.4. If φ is satisfiable, then this algorithm must provide a proof
on which V ’s acceptance probability is ≥ 1/2. The acceptance probability
can be computed in polynomial time, by simply simulating V for all random
strings of length O(log n). Thus, this approximation algorithm can be used
for deciding SAT in polynomial time, contradicting the assumption P �= NP.
✷

Claim 29.5 directly gives the following corollary. In subsequent sections,
we will use the PCP theorem to obtain hardness results for natural compu-
tational problems. A similar corollary follows in each case.

Corollary 29.6 Assuming P �= NP, there is no PTAS for Problem 29.4.

29.3 Hardness of MAX-3SAT

MAX-3SAT is the restriction of MAX-SAT (see Problem 16.1) to instances in
which each clause has at most three literals. This problem plays a similar role
in hardness of approximation as 3SAT plays in the theory of NP-hardness,

312 29 Hardness of Approximation

as a “seed” problem from which reductions to numerous other problems have
been found. The main result of this section is:

Theorem 29.7 There is a constant εM > 0 for which there is a gap-
introducing reduction from SAT to MAX-3SAT that transforms a Boolean
formula φ to ψ such that

• if φ is satisfiable, OPT(ψ) = m, and
• if φ is not satisfiable, OPT(ψ) < (1− εM)m,

where m is the number of clauses in ψ.

Corollary 29.8 There is no approximation algorithm for MAX-3SAT with
an approximation guarantee of 1− εM , assuming P �= NP, where εM > 0 is
the constant defined in Theorem 29.7.

The exact solution of MAX-3SAT is shown hard under the assumption
P �= NP. It is interesting to note that hardness of approximate solution of
MAX-3SAT is also being established under the same assumption.

For clarity, let us break the proof into two parts. We will first prove
hardness for the following problem.

Problem 29.9 (MAX k-FUNCTION SAT) Given n Boolean variables
x1, . . . , xn and m functions f1, . . . , fm, each of which is a function of k of the
Boolean variables, find a truth assignment to x1, . . . , xn that maximizes the
number of functions satisfied. Here k is assumed to be a fixed constant. Thus,
we have a class of problems, one for each value of k.

Lemma 29.10 There is a constant k for which there is a gap-introducing
reduction from SAT to MAX k-FUNCTION SAT that transforms a Boolean
formula φ to an instance I of MAX k-FUNCTION SAT such that

• if φ is satisfiable, OPT(I) = m, and
• if φ is not satisfiable, OPT(I) < 1

2m,

where m is the number of formulae in I.

Proof: Let V be a PCP(log n, 1) verifier for SAT, with associated param-
eters c and q. Let φ be an instance of SAT of length n. Corresponding to
each string, r, of length c log n (the “random” string), V reads q bits of the
proof. Thus, V reads a total of at most qnc bits of the proof. We will have
a Boolean variable corresponding to each of these bits. Let B be the set of
Boolean variables. Thus, the relevant part of each proof corresponds to a
truth assignment to the variables in B.

We will establish the lemma for k = q. Corresponding to each string r,
we will define a Boolean function, fr. This will be a function of q variables
from B. The acceptance or rejection of V is of course a function of φ, r, and
the q bits of the proof read by V . For fixed φ and r, consider the restriction
of this function to the q bits of the proof. This is the function fr.

29.4 Hardness of MAX-3SAT with bounded occurrence of variables 313

Clearly, there is a polynomial time algorithm which, given input φ, out-
puts the m = nc functions fr. If φ is satisfiable, there is a proof that makes
V accept with probability 1. The corresponding truth assignment to B sat-
isfies all nc functions fr. On the other hand, if φ is not satisfiable, then on
every proof, V accepts with probability < 1/2. Thus, in this case every truth
assignment satisfies < 1

2nc of these functions. The lemma follows. ✷

Proof of Theorem 29.7: Using Lemma 29.10 we transform a SAT formula
φ to an instance of MAX k-FUNCTION SAT. We now show how to obtain
a 3SAT formula from the nc functions.

Each Boolean function fr constructed in Lemma 29.10 can be written
as a SAT formula, say ψr, containing at most 2q clauses. Each clause of ψr
contains at most q literals. Let ψ be the SAT formula obtained by taking the
conjunct of all these formulae, i.e., ψ =

∧
r ψr.

If a truth assignment satisfies formula fr, then it satisfies all clauses of
ψr. On the other hand, if it does not satisfy fr, then it must leave at least one
clause of ψr unsatisfied. Therefore, if φ is not satisfiable, any truth assignment
must leave > 1

2nc clauses of ψ unsatisfied.
Finally, let us transform ψ into a 3SAT formula. This is done using the

standard trick of introducing new variables to obtain small clauses from a
big clause. Consider clause C = (x1 ∨ x2 ∨ . . . ∨ xk), with k > 3. Introduce
k − 2 new Boolean variables, y1, . . . , yk−2, and consider the formula

f = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ . . . ∧ (yk−2 ∨ xk−1 ∨ xk).

Let τ be any truth assignment to x1, . . . , xk. If τ satisfies C, then it can be
extended to a truth assignment satisfying all clauses of f . On the other hand,
if τ does not satisfy C, then for every way of setting y1, . . . , yk−2, at least
one of the clauses of f remains unsatisfied.

We apply this construction to every clause of ψ containing more than 3 lit-
erals. Let ψ′ be the resulting 3SAT formula. It contains at most nc2q(q − 2)
clauses. If φ is satisfiable, then there is a truth assignment satisfying all
clauses of ψ′. If φ is not satisfiable, > 1

2nc of the clauses remain unsatis-
fied, under every truth assignment. Setting εM = 1/(2q+1(q − 2)) gives the
theorem. ✷

29.4 Hardness of MAX-3SAT with bounded occurrence
of variables

For each fixed k, define MAX-3SAT(k) to be the restriction of MAX-3SAT
to Boolean formulae in which each variable occurs at most k times. This
problem leads to reductions to some key optimization problems.

314 29 Hardness of Approximation

Theorem 29.11 There is a gap preserving reduction from MAX-3SAT to
MAX-3SAT(29) that transforms a Boolean formula φ to ψ such that

• if OPT(φ) = m, then OPT(ψ) = m′, and
• if OPT(φ) < (1− εM)m, then OPT(ψ) < (1− εb)m′,

where m and m′ are the number of clauses in φ and ψ, εM is the constant
determined in Theorem 29.7, and εb = εM/43.

Proof: The proof critically uses expander graphs. Recall, from Section 20.3,
that graph G = (V,E) is an expander if every vertex has the same degree,
and for any nonempty subset S ⊂ V ,

|E(S, S)| > min(|S|, |S|),

where E(S, S) denotes the set of edges in the cut (S, S), i.e., edges that have
one endpoint in S and the other in S. Let us assume that such graphs are
efficiently constructible in the following sense. There is an algorithm A and a
constant N0 such that for each N ≥ N0, A constructs a degree 14 expander
graph on N vertices in time polynomial in N (Remark 29.12 clarifies this
point).

Expanders enable us to construct the following device whose purpose is to
ensure that in any optimal truth assignment, a given set of Boolean variables
must have consistent assignment, i.e., all true or all false. Let k ≥ N0, and
let Gx be a degree 14 expander graph on k vertices. Label the vertices with
distinct Boolean variables x1, . . . , xk. We will construct a CNF formula ψx
on these Boolean variables. Corresponding to each edge (xi, xj) of Gx, we
will include the clauses (xi ∨ xj) and (xj ∨ xi) in ψx. A truth assignment
to x1, . . . , xk is said to be consistent if either all the variables are set to
true or all are set to false. An inconsistent truth assignment partitions the
vertices of Gx into two sets, say S and S. Assume w.l.o.g. that S is the
smaller set. Now, corresponding to each edge in the cut (S, S), ψx will have
an unsatisfied clause. Therefore, the number of unsatisfied clauses, |E(S, S)|,
is at least |S|+ 1. We will use this fact critically.

Next, we describe the reduction. We may assume w.l.o.g. that every vari-
able occurs in φ at least N0 times. If not, we can replicate each clause N0
times without changing the approximability properties of the formula in any
essential way.

Let B denote the set of Boolean variables occurring in φ. For each variable
x ∈ B, we will do the following. Suppose x occurs k ≥ N0 times in φ. Let
Vx = {x1, . . . , xk} be a set of completely new Boolean variables. Let Gx be a
degree 14 expander graph on k vertices. Label its vertices with variables from
Vx and obtain formula ψx as described above. Finally, replace each occurrence
of x in φ by a distinct variable from Vx. After this process is carried out for
each variable x ∈ B, every occurrence of a variable in φ is replaced by a
distinct variable from the set of new variables

29.4 Hardness of MAX-3SAT with bounded occurrence of variables 315

V =
⋃
x∈B

Vx.

Let φ′ be the resulting formula. In addition, corresponding to each variable
x ∈ B, a formula ψx has been constructed.

Finally, let

ψ = φ′ ∧ (
∧
x∈B

ψx).

Observe that for each x ∈ B, each variable of Vx occurs exactly 29 times
in ψ – once in φ′, and 28 times in ψx. Therefore, ψ is an instance of MAX-
3SAT(29). We will say that the clauses of φ′ are Type I clauses, and the
remaining clauses of ψ are Type II clauses.

Now, the important claim is that an optimal truth assignment for ψ must
satisfy all Type II clauses, and therefore must be consistent for each set
Vx, x ∈ B. Suppose that this is not the case. Let τ be an optimal truth
assignment that is not consistent for Vx, for some x ∈ B. τ partitions the
vertices of Gx into two sets, say S and S, with S being the smaller set. Now,
flip the truth assignment to variables in S, keeping the rest of the assignment
the same as τ . As a result, some Type I clauses that were satisfied under
τ may now be unsatisfied. Each of these must contain a variable of S, and
so their number is at most |S|. On the other hand we get at least |S| + 1
new satisfied clauses corresponding to the edges in the cut (S, S). Thus, the
flipped assignment satisfies more clauses than τ , contradicting the optimality
of τ .

Let m and m′ be the number of clauses in φ and ψ. The total number of
occurrences of all variables in φ is at most 3m. Each occurrence participates
in 28 Type II two-literal clauses, giving a total of at most 42m Type II clauses.
In addition, ψ has m Type I clauses. Therefore, m′ ≤ 43m.

If φ is satisfiable, then so is ψ. Next, consider the case that OPT(φ) <
(1 − εM)m, i.e., > εMm clauses of φ remain unsatisfied under any truth
assignment. If so, by the above claim, > εMm ≥ εMm′/43 of the clauses of
ψ must remain unsatisfied. The theorem follows. ✷

Remark 29.12 The assumption about the efficient construction of expander
graphs is slightly untrue. It is known that for each N ≥ N0, an expander of
size ≤ N(1+o(1)) can be constructed efficiently (see Section 29.9). The reader
can verify that this does not change the status of Theorem 29.11.

Exercise 29.4 extends Theorem 29.11 to establishing hardness for MAX-
3SAT(5).

316 29 Hardness of Approximation

29.5 Hardness of vertex cover and Steiner tree

In this section, we will apply the machinery developed above to some graph
theoretic problems. For integer d ≥ 1, let VC(d) denote the restriction of the
cardinality vertex cover problem to instances in which each vertex has degree
at most d.

Theorem 29.13 There is a gap preserving reduction from MAX-3SAT(29)
to VC(30) that transforms a Boolean formula φ to a graph G = (V,E) such
that

• if OPT(φ) = m, then OPT(G) ≤ 2
3 |V |, and

• if OPT(φ) < (1− εb)m, then OPT(G) > (1 + εv) 2
3 |V |,

where m is the number of clauses in φ, εb is the constant determined in
Theorem 29.11, and εv = εb/2.

Proof: Assume w.l.o.g. that each clause of φ has exactly 3 literals (this can
be easily accomplished by repeating the literals within a clause, if necessary).
We will use the standard transformation. Corresponding to each clause of
φ, G has 3 vertices. Each of these vertices is labeled with one literal of the
clause. Thus, |V | = 3m. G has two types of edges (see the illustration below):

• for each clause, G has 3 edges connecting its 3 vertices, and
• for each u, v ∈ V , if the literals labeling u and v are negations of each

other, then (u, v) is an edge in G.

Each vertex of G has two edges of the first type and at most 28 edges of the
second type. Hence, G has degree at most 30.

We claim that the size of a maximum independent set in G is precisely
OPT(φ). Consider an optimal truth assignment and pick one vertex, corre-
sponding to a satisfied literal, from each satisfied clause. Clearly, the picked
vertices form an independent set. Conversely, consider an independent set I in
G, and set the literals corresponding to its vertices to be true. Any extension
of this truth setting to all variables must satisfy at least |I| clauses.

The complement of a maximum independent set in G is a minimum vertex
cover. Therefore, if OPT(φ) = m then OPT(G) = 2m. If OPT(φ) < (1−εb)m,
then OPT(G) > (2 + εb)m. The theorem follows. ✷

As an illustration, consider the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
The graph produced by the reduction given in Theorem 29.13 is given below:

29.5 Hardness of vertex cover and Steiner tree 317

�✎

✍ ✌

� �

����

✔
✔
✔
✔
✔
✔
✔✔ ❚

❚
❚

❚
❚
❚
❚❚ ✔

✔
✔

✔
✔

✔
✔✔ ❚

❚
❚

❚
❚

❚
❚❚

x1

x2 x2

x1

x3 x3

Theorem 29.14 There is a gap preserving reduction from VC(30) to the
Steiner tree problem. It transforms an instance G = (V,E) of VC(30) to an
instance H = (R,S, cost) of Steiner tree, where R and S are the required and
Steiner vertices of H, and cost is a metric on R ∪ S. It satisfies:

• if OPT(G) ≤ 2
3 |V |, then OPT(H) ≤ |R|+ 2

3 |S| − 1, and
• if OPT(G) > (1 + εv) 2

3 |V |, then OPT(H) > (1 + εs)(|R|+ 2
3 |S| − 1),

where εs = 4εv/97, and εv is the constant determined in Theorem 29.13.

Proof: Graph H = (R,S, cost) will be such that G has a vertex cover of size
c iff H has a Steiner tree of cost |R|+ c− 1. H will have a required vertex re
corresponding to each edge e ∈ E and a Steiner vertex sv corresponding to
each vertex v ∈ V . The edge costs are as follows. An edge between a pair of
Steiner vertices is of cost 1, and an edge between a pair of required vertices
is of cost 2. An edge (re, sv) is of cost 1 if edge e is incident at vertex v in G,
and it is of cost 2 otherwise.

Let us show that G has a vertex cover of size c iff H has a Steiner tree of
cost |R|+c−1. For the forward direction, let Sc be the set of Steiner vertices
in H corresponding to the c vertices in the cover. Observe that there is a tree
in H covering R ∪ Sc using cost 1 edges only (since every edge e ∈ E must
be incident at a vertex in the cover). This Steiner tree has cost |R|+ c− 1.

For the reverse direction, let T be a Steiner tree in H of cost |R|+ c− 1.
We will show below that T can be transformed into a Steiner tree of the same
cost that uses edges of cost 1 only. If so, the latter tree must contain exactly c
Steiner vertices. Moreover, every required vertex of H must have a unit cost
edge to one of these Steiner vertices. Therefore, the corresponding c vertices
of G form a cover.

Let (u, v) be an edge of cost 2 in T . We may assume w.l.o.g. that u
and v are both required. (If u is Steiner, remove (u, v) from T , getting two
components. Throw in an edge from v to a required vertex to connect the
two sides, and get a Steiner tree of the same cost as T .) Let eu and ev be
the edges, in G, corresponding to these vertices. Since G is connected, there
is a path, p, from one of the endpoints of eu to one of the endpoints of ev
in G. Now, removing (u, v) from T gives two connected components. Let the

318 29 Hardness of Approximation

set of required vertices in these two sets be R1 and R2. Clearly, u and v
lie in different sets, so path p must have two adjacent edges, say (a, b) and
(b, c) such that their corresponding vertices, say w and w′, lie in R1 and R2,
respectively. Let the Steiner vertex, in H, corresponding to b be sb. Now,
throwing in the edges (sb, w) and (sb, w′) must connect the two components.
Observe that these two edges are of unit cost.

Now, if OPT(G) ≤ 2
3 |V |, then OPT(H) > |R|+ 2

3 |S|−1, and if OPT(G) >
(1+ εv) 2

3 |V |, then OPT(H) > |R|+(1+ εv) 2
3 |S| − 1. The theorem follows. ✷

The reduction is illustrated below. Graph G is an instance of the ver-
tex cover problem. The highlighted vertices form a cover. Graph H shows
the Steiner tree corresponding to this cover in the reduced graph. Required
vertices have been marked with squares, and the three Steiner vertices corre-
sponding to the cover have been marked with circles (the remaining Steiner
vertices have been omitted for clarity). The edge between two Steiner vertices
in the tree is dotted to distinguish it from the remaining edges, which connect
required and Steiner vertices.

✉

✉

✉

✉

✉

✉

✚
✚
✚
✚
✚✚

✚
✚
✚
✚
✚✚

............................

G H

29.6 Hardness of clique

The best approximation algorithms known for some problems, including
clique, are extremely weak – to the extent that the solution produced by
the best known algorithm is only very slightly better than picking a trivial
feasible solution. Recent hardness results have been invaluable in explaining
why this is so: these problems are inherently inapproximable (essentially). In
this section, we will establish this for clique:

Problem 29.15 (Clique) Given an undirected graph G = (V,E) with
nonnegative weights on vertices, find a clique of maximum weight. A clique
in G is a subset of vertices, S ⊆ V , such that for each pair u, v ∈ S, (u, v) ∈ E.
Its weight is the sum of weights of its vertices.

Consider the cardinality version of this problem, i.e., when all vertex
weights are unit. In this section we will show that there is a constant εq > 0,
such that there is no 1/(nεq) factor approximation algorithm for this problem,
assuming P �= NP. Let us first prove the following weaker result.

29.6 Hardness of clique 319

Lemma 29.16 For fixed constants b and q, there is a gap-introducing reduc-
tion from SAT to clique that transforms a Boolean formula φ of size n to a
graph G = (V,E), where |V | = 2qnb, such that

• if φ is satisfiable, OPT(G) ≥ nb, and
• if φ is not satisfiable, OPT(G) < 1

2nb.

Proof: Let F be a PCP(log n, 1) verifier for SAT that requires b log n ran-
dom bits and queries q bits of the proof. We will transform a SAT instance,
φ, of size n to a graph G = (V,E) as follows. For each choice of a binary
string, r, of b log n bits, and each truth assignment, τ , to q Boolean variables,
there is a vertex vr,τ in G. Thus, |V | = 2qnb.

Let Q(r) represent the q positions in the proof that F queries when it
is given string r as the “random” string. We will say that vertex vr,τ is
accepting if F accepts when it is given random string r and when it reads τ
in the Q(r) positions of the proof; it is rejecting otherwise. Vertices vr1,τ1 and
vr2,τ2 are consistent if τ1 and τ2 agree at each position at which Q(r1) and
Q(r2) overlap. Clearly, a necessary condition for consistency is that r1 �= r2.
Two distinct vertices vr1,τ1 and vr2,τ2 are connected by an edge in G iff they
are consistent and they are both accepting. Vertex vr,τ is consistent with
proof p if positions Q(r) of p contain τ .

If φ is satisfiable, there is a proof, p, on which F accepts for each choice,
r, of the random string. For each r, let p(r) be the truth setting assigned by
proof p to positions Q(r). Now, the vertices {vr,p(r) | |r| = b log n} form a
clique in G of size nb.

Next, suppose that φ is not satisfiable, and let C be a clique in G. Since
the vertices of C are pairwise consistent, there is a proof, p, that is consistent
with all vertices of C. Therefore, the probability of acceptance of F on proof
p is at least |C|/nb (notice that the vertices of C must correspond to distinct
random strings). Since the probability of acceptance of any proof is < 1/2
the largest clique in G must be of size < 1

2nb. ✷

As a consequence of Lemma 29.16, there is no factor 1/2 approximation
algorithm for clique assuming P �= NP. Observe that the hardness factor
established is precisely the bound on the error probability of the probabilisti-
cally checkable proof for SAT. By the usual method of simulating the verifier a
constant number of times, this can be made 1/k for any constant k, leading to
a similar hardness result for clique. In order to achieve the claimed hardness,
the error probability needs to be made inverse polynomial. This motivates
generalizing the definition of PCP as follows. Let us define two additional
parameters, c and s, called completeness and soundness, respectively. A lan-
guage L ∈ PCPc,s[r(n), q(n)] if there is a verifier V , which on input x of
length n, obtains a random string of length O(r(n)), queries O(q(n)) bits of
the proof, and satisfies:

• if x ∈ L, there is a proof y that makes V accept with probability ≥ c,

320 29 Hardness of Approximation

• if x /∈ L, then for every proof y, V accepts with probability < s.

Thus, the previously defined class PCP[r(n), q(n)] = PCP1, 12
[r(n), q(n)]. In

general, c and s may be functions of n.
We would like to obtain a PCP characterization of NP which has inverse

polynomial soundness. An obvious way of reducing soundness is to simulate
a PCP[log n, 1] verifier multiple number of times and accept iff the verifier
accepts each time. Simulating k times will reduce soundness to 1/2k; how-
ever, this will increase the number of random bits needed to O(k log n) and
the number of query bits to O(k). Observe that the number of vertices in
the graph constructed in Lemma 29.16 is 2O(r(n)+q(n)). To achieve inverse
polynomial soundness, k needs to be Ω(log n). For this value of k, the num-
ber of bits queried is O(log n), which is not a problem. However, the number
of random bits needed is O(log2 n), which leads to a superpolynomial sized
graph.

The following clever idea overcomes this difficulty. We will use a constant
degree expander graph to generate O(log n) strings of b log n bits each, using
only O(log n) truly random bits. The verifier will be simulated using these
O(log n) strings as the “random” strings. Clearly, these are not truly random
strings. Properties of expanders help show that they are “almost random” –
the probability of error still drops exponentially in the number of times the
verifier is simulated.

Let H be a constant degree expander on nb vertices, each vertex having
a unique b log n bit label. A random walk on H of length O(log n) can be
constructed using only O(log n) bits, b log n bits to pick the starting vertex
at random and a constant number of bits to pick each successive vertex.
(Observe that the random walk is started in the stationary distribution, which
is uniform since the graph is regular.) The precise property of expanders we
will need is the following.

Theorem 29.17 Let S be any set of vertices of H of size < (nb)/2. There
is a constant k such that

Pr[all vertices of a k log n length random walk lie in S] <
1
n

.

For intuitive justification for Theorem 29.17, observe that a constant frac-
tion of the edges incident at vertices of S have their other end points in S –
these help the walk escape from S. The following figure shows a walk on H
that does not lie in S:

29.6 Hardness of clique 321

 S

Theorem 29.18 NP = PCP1, 1n
[log n, log n]

Proof: We will prove the difficult half,

PCP1, 12
[log n, 1] ⊆ PCP1, 1n

[log n, log n],

and leave the rest as Exercise 29.5. Let L ∈ PCP1, 12
[log n, 1]. Let F be a

verifier for L which requires b log n random bits and queries q bits of the
proof, where b and q are constants.

Next, we give a PCP1, 1n
[log n, log n] verifier for L, F ′, which constructs

the expander graph H defined above. It then constructs a random walk of
length k log n on H, using O(log n) random bits. Both constructions can
be accomplished in polynomial time. The label of each vertex on this path
specifies a b log n bit string. It uses these k log n + 1 strings as the “random”
strings on which it simulates verifier F . F ′ accepts iff F accepts on all k log n+
1 runs.

Consider string x ∈ L, and let p be a proof that makes verifier F accept x
with probability 1. Clearly, F ′, given proof p, also accepts x with probability
1. Hence the completeness of the new proof system is 1.

Next, consider string x /∈ L, and let p be an arbitrary proof supplied to F ′.
When given proof p, verifier F accepts on < (nb)/2 random strings of length
b log n. Let S denote the corresponding set of vertices of H, |S| < (nb)/2. Now,
F ′ accepts x iff the random walk remains entirely in S. Since the probability
of this event is < 1/n, the soundness of F ′ is 1/n. Finally observe that F ′

requires only O(log n) random bits and queries O(log n) bits of the proof. ✷

322 29 Hardness of Approximation

Theorem 29.19 For fixed constants b and q, there is a gap-introducing re-
duction from SAT to clique that transforms a Boolean formula φ of size n to
a graph G = (V,E), where |V | = nb+q, such that

• if φ is satisfiable, OPT(G) ≥ nb, and
• if φ is not satisfiable, OPT(G) < nb−1.

Proof: Let F be a PCP1, 1n
[log n, log n] verifier for SAT that requires b log n

random bits and queries q log n bits of the proof. The transformation of SAT
instance φ to graph G is exactly as in Lemma 29.16. The only difference
is that the increased number of bits queried results in a larger number of
vertices.

The correctness of the construction also along the lines of Lemma 29.16.
If φ is satisfiable, let p be a good proof, and pick the nb vertices of G that are
consistent with p, one for each choice of the random string. These vertices
will form a clique in G. Furthermore, any clique C in G gives rise to a proof
that is accepted by F with probability ≥ |C|/nb. Since the soundness of F is
1/n, if φ is not satisfiable, the largest clique in G is of size < nb−1. ✷

Corollary 29.20 There is no 1/(nεq) factor approximation algorithm for
the cardinality clique problem, assuming P �= NP, where εq = 1/(b + q), for
constants b and q defined in Theorem 29.19.

29.7 Hardness of set cover

As stated in Chapter 2, the simple greedy algorithm for the set cover problem,
which is perhaps the first algorithmic idea one would attempt, has remained
essentially the best algorithm. Since set cover is perhaps the single most
important problem in the theory of approximation algorithms, a lot of effort
was expended on obtaining an improved algorithm.

In this section, we will present the remarkable result that the approxima-
tion factor of this algorithm is tight up to a constant multiplicative factor.
Improved hardness results show that it is tight up to lower order terms as
well (see Section 29.9). This should put to rest nagging doubts about the true
approximability of this central problem.

29.7.1 The two-prover one-round characterization of NP

Observe that for the purpose of showing hardness of MAX-3SAT and clique
(Theorems 29.7 and 29.19), we did not require a detailed description of the
kinds of queries made by the verifier – we only required a bound on the
number of queries made. In contrast, this time we do need a description,
and moreover, we want to first establish that a particularly simple verifier

29.7 Hardness of set cover 323

suffices. For this purpose, we will introduce a new model for probabilistically
checkable proofs, the two-prover one-round proof system. This model is best
understood by thinking of the proof system as a game between the prover
and the verifier. The prover is trying to cheat – it is trying to convince the
verifier that a “no” instance for language L is actually in L. Is there a verifier
that can ensure that the probability of getting cheated is < 1/2 for every
“no” instance?

In the two-prover model, the verifier is allowed to query two non-
communicating provers, denoted P1 and P2. Since the verifier can cross-check
the provers’ answers, the provers’ ability to cheat gets restricted in this model.
In turn, we will impose restrictions on the verifier as well, and thereby obtain
a new characterization of NP. Under a one-round proof system, the verifier
is allowed only one round of communication with each prover. The simplest
way of formalizing this is as follows. We will assume that the two proofs are
written in two alphabets, say Σ1 and Σ2. In general, the sizes of these al-
phabets may be unbounded and may depend on the size of the input. The
verifier is allowed to query one position in each of the two proofs.

The two-prover one-round model comes with three parameters: complete-
ness, soundness and the number of random bits provided to the verifier, de-
noted by c, s and r(n), respectively. This defines the class 2P1Rc,s(r(n)). A
language L is in 2P1Rc,s(r(n)) if there is a polynomial time bounded verifier
V that receives O(r(n)) truly random bits and satisfies:

• for every input x ∈ L, there is a pair of proofs y1 ∈ Σ∗
1 and y2 ∈ Σ∗

2 that
makes V accept with probability ≥ c,

• for every input x /∈ L and every pair of proofs y1 ∈ Σ∗
1 and y2 ∈ Σ∗

2 , V
accepts with probability < s.

The PCP theorem implies, and in fact is equivalent to, the fact that there
is a gap-introducing reduction from SAT to MAX-3SAT(5) (see Theorem
29.7 and Exercises 29.3 and 29.4). We will use this to show:

Theorem 29.21 There is a constant εP > 0 such that
NP = 2P1R1,1−εP

(log(n)).

Proof: We will establish the difficult half, i.e., NP ⊆ 2P1R1,1−εP
(log(n)),

and leave the rest as Exercise 29.7. Clearly, it is sufficient to show that SAT
∈ 2P1R1,1−εP

(log(n)).
As a result of Theorem 29.7 and Exercise 29.4, there is gap-introducing

reduction from SAT to MAX-3SAT(5)2. More precisely, there is a constant
ε5 > 0 for which there is a reduction Γ from SAT to MAX-3SAT(5) that
transforms a Boolean formula φ to ψ such that

• if φ is satisfiable, OPT(ψ) = m, and

2 The bounded occurrence version of MAX-3SAT is not essential for this theorem;
however, we will require it in the main reduction.

324 29 Hardness of Approximation

• if φ is not satisfiable, OPT(ψ) < (1− ε5)m,

where m is the number of clauses in ψ.
The two-prover one-round verifier, V , for SAT works as follows. Given a

SAT formula φ, it uses the above stated reduction to obtain a MAX-3SAT(5)
instance ψ. It assumes that P1 contains an optimal truth assignment, τ , for ψ
and P2 contains, for each clause, the assignment to its three Boolean variables
under τ (hence, |Σ1| = 2 and |Σ2| = 23). It uses the O(log n) random bits to
pick a random clause, C, from ψ, and further, a random Boolean variable, x,
occurring in C. V obtains the truth assignments to x and the three variables
in C by querying P1 and P2, respectively. It accepts iff C is satisfied and the
two proofs agree on their assignment for x.

If φ is satisfiable, then so is ψ. Clearly, there are proofs y1 and y2 such
that V accepts with probability 1.

Next assume that φ is not satisfiable. Any truth assignment to ψ must
leave strictly more than ε5 fraction of the clauses unsatisfied. Consider any
pair of proofs (y1, y2). Interpret y1 as a truth assignment, say τ . The random
clause, C, picked by V is not satisfied by τ with probability > ε5. If so, and
if the assignment for C contained in y2 is satisfying, then y1 and y2 must
be inconsistent. In the latter case, the verifier catches this with probability
≥ 1/3. Hence overall, V must reject with probability > ε5/3. ✷

Remark 29.22 Using standard techniques (see Exercise 29.8), Γ can be
modified to ensure that the instance of MAX-3SAT(5) produced satisfies the
following uniformity conditions: each Boolean variable occurs in exactly 5
clauses and each clause contains 3 distinct variables (negated or unnegated).
This modification changes the constant ε5 to some other constant, say ε′

5 > 0.
These uniformity conditions will be needed in the main reduction.

Remark 29.23 As a result of the uniformity conditions, if ψ has n variables,
then it has 5n/3 clauses. Therefore, the two proofs are of length n and 5n/3,
respectively. For carrying out the main reduction, it will be important to
ensure that the two proofs are of equal length. This can be easily achieved by
repeating the first proof 5 times and the second proof 3 times. The verifier
will query a random copy of each proof. It is easy to verify that Theorem
29.21 still holds (even though the “copies” may be different).

29.7.2 The gadget

The following set system will be a basic gadget in the main reduction:
(U,C1, . . . , Cm, C1, . . . , Cm), where U is the universal set and C1, . . . , Cm
are subsets of U . Clearly, U can be covered by picking a set Ci and its com-
plement Ci. Such a cover will be called a good cover. A cover that does not
include a set and its complement will be called a bad cover. The following
theorem, which can be proven using the probabilistic method (see Exercise
29.9), shows the existence of such set systems for which the sizes of good and

29.7 Hardness of set cover 325

bad covers are widely different. Moreover, they can be constructed efficiently,
with high probability.

Theorem 29.24 There exists a polynomial p(., .) such that there is a ran-
domized algorithm which generates, for each m and l, a set system

(U,C1, . . . , Cm, C1, . . . , Cm),

with |U | = p(m, 2l). With probability > 1/2 the gadget produced satisfies that
every bad cover is of size > l. Moreover, the running time of the algorithm
is polynomial in |U |.

A good cover is well coordinated – it involves picking a set Ci and its
complement. Acceptance in the two-prover one-round proof system also in-
volves coordination – on random string r, the verifier queries the two proofs
and accepts iff the answers are coordinated. The choice of this proof system,
for establishing hardness of set cover, should be more convincing in light of
this observation.

29.7.3 Reducing error probability by parallel repetition

Before presenting the reduction, we would like improve the soundness of the
two-prover one-round proof system for SAT. The usual way of accomplishing
this is parallel repetition: The verifier picks k clauses randomly and indepen-
dently, and a random Boolean variable from each of the clauses. It queries
P1 on the k variables and P2 on the k clauses, and accepts iff all answers
are accepting. One would expect that probability that the provers manage to
cheat drops to < (1− εP)k.

Surprisingly enough, this is not true. Since each prover is allowed to look
at all k questions before providing its k answers, it may be able to coordi-
nate its answers and thereby cheat with a higher probability. Example 29.25
illustrates this in a simple setting. If the provers are required to answer each
question before being given the next question, the probability of error drops
in the usual fashion; however, this requires k rounds of communication and
falls outside the two-prover one-round model.

Example 29.25 Consider the following setting in which the two non-
communicating provers are attempting to agree on a random bit. The verifier
gives random, independent bits r1 and r2 to P1 and P2, respectively. The pro-
tocol succeeds if the two provers manage to commit to one of the two bits,
i.e., either both provers output (1, r1) or both provers output (2, r2); the first
element of a pair says whose bit the provers are outputting and the second
element is the bit itself. Since P1 does not know r2 and P2 does not know r1,
the probability of their succeeding is 1/2.

Now consider parallel repetitions of this protocol. The verifier gives two
bits, r1 and s1, to P1 and two bits, r2 and s2, to P2. The four bits are random

326 29 Hardness of Approximation

and independent. The provers succeed iff they can commit to one of the r’s
and one of the s’s.

One would expect the probability of success to be 1/4. However, by clev-
erly coordinating answers, the provers can make it 1/2 as follows. The answers
of P1 are (1, r1) and (2, r1), and those of P2 are (1, s2) and (2, s2). The provers
succeed iff r1 = s2, which happens with probability 1/2. ✷

Despite this difficulty, one can still prove that the probability of error does
drop exponentially with k. However, the proof of this useful fact is not easy.

Theorem 29.26 Let the error probability of a two-prover one-round proof
system be δ < 1. Then the error probability on k parallel repetitions is at most
δdk, where d is a constant that depends only on the length of the answers of
the original proof system.

29.7.4 The reduction

We will prove the following.

Theorem 29.27 There is a constant c > 0 for which there is a random-
ized gap-introducing reduction Γ , requiring time nO(log log n), from SAT to
the cardinality set cover problem that transforms a Boolean formula φ to a
set system S over a universal set of size nO(log log n) such that

• if φ is satisfiable, OPT(S) = 2nk, and
• if φ is not satisfiable, Pr[OPT(G) > cnkk log n] > 1/2,

where n is the length of each of the two proofs for SAT under the two-prover
one-round model (see Remark 29.23); n is polynomial in the size of φ. The
parameter k is O(log log n).

Remark 29.28 This is slight abuse of notation, since gap-introducing re-
ductions were defined to run in polynomial time.

Proof: Let V be the two-prover one-round verifier for SAT, described in
Theorem 29.21. Assume further that the MAX-3SAT(5) formula produced
by V satisfies the uniformity conditions stated in Remark 29.22 and that
the two proofs queried by V are of equal length, say n, as stated in Remark
29.23. Denote by ψ the MAX-3SAT(5) formula produced by V when given
SAT formula φ.

Let V ′ be a two-prover one-round verifier that executes k parallel repeti-
tions of V , as described in Section 29.7.3. Now, each of the proofs is of length
nk. Each position of P1 contains a truth assignment to k Boolean variables
(not necessarily distinct) and each position of P2 contains a truth assignment
to the 3k Boolean variables occurring in k clauses. Thus, proofs P1 and P2
are written in alphabets Σ1 and Σ2 whose sizes are 2k and 23k, respectively.
k will be fixed to be O(log log n) for reasons clarified below.

29.7 Hardness of set cover 327

Verifier V ′ uses random bits provided to it to pick k random clauses of
ψ, and a random Boolean variable from each of these k clauses, thereby
specifying a position in P1 and a position in P2. These involve picking from
one of nk and 3k choices, respectively. Therefore, the total number of random
strings is (3n)k. Denote by Q1(r) and Q2(r) the positions in P1 and P2,
respectively, specified by random string r.

Suppose the answers in positions Q1(r) and Q2(r) are a and b, respec-
tively. Recall that V ′ accepts on random string r iff b satisfies all k clauses
picked, and a and b assign the same truth values to the k chosen variables.
Given r and the answer in Q2(r), say b, the “acceptable” answer in Q1(r) is
uniquely specified. Let projection function π(r, b) denote this answer.

✛ ✲

✻

❄

✛ ✲

✻

❄
j = Q2(r)i = Q1(r)

nk positions

k bits

nk positions

a

3k bitsb

P1 P2

The parameters m and l for the gadget are fixed as follows. We will set
m = |Σ1| = 2k, and l = O(k log n) = O(log n log log n). Let (U,C1, . . . , C2k ,
C1, . . . , C2k) be the gadget with these parameters. Thus, corresponding to
each answer a ∈ Σ1, we have a unique set Ca. As stated in Theorem 29.24,
|U | = p(2k, 2l) = nO(log log n), and the gadget can be constructed probabilis-
tically in time polynomial in |U |.

The gadget will be constructed once, and as stated in Theorem 29.24,
will satisfy the chosen parameters with probability > 1/2. For the rest of
the proof, assume that it does. We will make (3n)k copies of the gadget over
disjoint universal sets. Each copy corresponds to a random string. Denote the
copy corresponding to random string r to be (Ur, Cr

1 , . . . , Cr
2k , C

r

1, . . . , C
r

2k).
The reduction Γ transforms φ to a set cover instance S as follows. The

universal set

U =
⋃
r

Ur,

where the union is over all (3n)k random strings. Clearly, |U| = |U |(3n)k =
nO(log log n). The subsets of U specified by S are of two kinds. First, corre-
sponding to each position i in P1 and answer a ∈ Σ1, there is a set

Si,a =
⋃

r:Q1(r)=i

Cr
a,

328 29 Hardness of Approximation

where the union is over all random strings r such that Q1(r) = i. Second,
corresponding to each position j in P2 and answer b ∈ Σ2, there is a set
Sj,b. If b does not satisfy all k clauses of ψ, specified by position Q2(r), then
Sj,b = ∅. Otherwise,

Sj,b =
⋃

r:Q2(r)=j

C
r

π(r,b),

where the union is over all random strings r such that Q2(r) = j.
Let r be a random string, and let Q1(r) = i and Q2(r) = j. Then, the

only sets in S that contain elements of Ur are:

• Si,a, for a ∈ Σ1, and
• Sj,b, for b ∈ Σ2 such that b satisfies the k clauses specified by position j in

P2.

Moreover, each set of the first type contains exactly one set from Cr
1 , . . . , Cr

2k

and each set of the second type contains exactly one set from C
r

1, . . . , C
r

2k .
Let r be a random string, and let Q1(r) = i and Q2(r) = j. Observe that

Si,a ∪ Sj,b covers Ur iff π(r, b) = a and b satisfies the k clauses specified by
position j in P2. Let C be a cover for U . If C contains such a pair of sets then
we will say that C contains a good cover for Ur. If C does not contain a good
cover for Ur, then it must contain > l sets of the form Si,a, Sj,b, a ∈ Σ1, b ∈ Σ2
in order to cover Ur. In this case, we will say that C contains a bad cover for
Ur.

Suppose φ is satisfiable. Then there is a pair of proofs (y1, y2) on which
the verifier accepts with probability 1. Let us pick a cover C as follows. Cor-
responding to each position i in P1 and j in P2 pick sets Si,a and Sj,b, where
a and b are the answers for these queries in y1 and y2, respectively. Hence,
|C| = 2nk. It is easy to see that C contains a good cover for each set Ur.

Next suppose that φ is not satisfiable. Now, V ′ will reject any pair of
proofs with high probability. We have assumed that the gadget found satisfies
the chosen parameters; this happens with probability > 1/2. Let C denote
an optimal cover for U . Is C forced to contain a bad cover for Ur, for most
random strings r? Clearly, C is allowed to pick sets corresponding to portions
of many different proofs. Using this added capability, can we not construct a
cover that is only slightly larger than 2nk? A set from S helps cover elements
from several different universes Ur, making the rest of the argument more
involved.

Below we will give a procedure for constructing, from C, a pair of proofs,
(y1, y2), in such a way that if |C| is small, then V ′ must accept this pair with
high probability. Hence, we will derive the desired lower bound on |C|.

Consider the set of answers picked by C for each position of the two
proofs. For each position i in P1, define A(i) = {a | Si,a ∈ C}, and for
each position j in P2, define A(j) = {b | Sj,b ∈ C}. Construct proofs y1

29.8 Exercises 329

and y2 by picking for each position i in P1 and j in P2 a random element
of A(i) and A(j), respectively. If any of the answer sets is empty, pick an
arbitrary answer for that position. Define B1 = {r | |A(Q1(r))| > l/2},
B2 = {r | |A(Q2(r))| > l/2} and G = B1 ∪B2.

Thus, G is the set of random strings r for which C picks at most l/2
answers each for Q1(r) and Q2(r). Hence, C contains a good cover for Ur,
say Si,a ∪ Sj,b, where a ∈ A(Q1(r)) and b ∈ A(Q2(r)). The pair of proofs,
(y1, y2), contain a and b in positions Q1(r) and Q2(r), respectively, with
probability ≥ (2

l)
2. Hence V ′, when given proofs (y1, y2), accepts on random

string r with at least this probability.
Let fG denote the fraction of random strings contained in G. Then, using

Theorem 29.26,

fG

(
2
l

)2

≤ Pr[V ′accepts φ when given proofs (y1, y2)] ≤ δdk.

Hence, fG ≤ δdkl2/4. Since l2 is O(log4 n), by picking k = O(log log n) we
can ensure that fG < 1/2. As a result, B1 ∪ B2 contains at least half the
random strings, and therefore one of these sets contains at least a quarter.
Denote this set by Bi.

Because of the uniformity property (Remark 29.22), if r is chosen at
random, then Q1(r) is a random position in P1 and Q2(r) is a random position
in P2 (although they will be correlated). Furthermore, r has probability > 1/4
of being in Bi. Therefore, the answer sets of > 1/4 of the positions of Bi are
of cardinality > l/2. Hence the size of the cover > lnk/8 = Ω(nkk log n). ✷

As a consequence of Theorem 29.27, inapproximability of set cover mod-
ulo NP not being in a one-sided-error complexity class with running time
nO(log log n) follows directly. Standard techniques from complexity theory (see
Exercise 1.18) lead to the following slightly stronger result.

Corollary 29.29 There is a constant b such that if there is a b log n fac-
tor approximation algorithm for the cardinality set cover problem, where
n is the size of the universal set of the set cover instance, then NP ⊆
ZTIME(nO(log log n)) (see Section A.4 for definition).

29.8 Exercises

29.1 Show that PCP(log n, 1) ⊆ NP.
Hint: Let L ∈ PCP(log n, 1). The NP machine for accepting L guesses the
proof, simulates the verifier for L on all O(log n) length random strings, and
accepts iff the verifier accepts on all the random strings.

330 29 Hardness of Approximation

29.2 Show (see Appendix A for definitions):

1. PCP(0, 0) = PCP(0, log n) = P.
2. PCP(poly(n), 0) = co-RP, where poly(n) =

⋃
k≥0 nk.

3. PCP(log n, 1) = PCP(log n,poly).
Hint: NP ⊆ PCP(log n, 1) ⊆ PCP(log n,poly) ⊆ NP.

29.3 Show the converse of Theorem 29.7, i.e., if there is a gap-introducing
reduction from SAT to MAX-3SAT, then NP ⊆ PCP(log n, 1).
Hint: Reduce the given SAT formula φ to an instance ψ of MAX-3SAT.
The verifier expects, as proof, an optimal truth assignment to ψ. This gives
an error probability of 1 − εM . Repeat to decrease the error probability to
< 1/2.

29.4 Give a gap-preserving reduction from MAX-3SAT(29) to MAX-
3SAT(5), with appropriate parameters, to show hardness for the latter prob-
lem.
Hint: The reduction is similar, though easier, than that in Theorem 29.11.
Instead of using an expander graph, use a cycle. Now, an inconsistent assign-
ment can gain as many as 14 clauses corresponding to each old variable x.
However, it must leave at least two clauses, corresponding to edges of the
cycle of x, unsatisfied.

29.5 Complete the proof of Theorem 29.18.

29.6 (Hastad [122]) An important consideration, while obtaining a PCP
characterization of NP, is reducing the number of bits of the proof that the
verifier needs to query. The following remarkable result reduces it to just 3.

Theorem 29.30 For every ε > 0,

NP = PCP1−ε, 12+ε[log n, 1].

Moreover, there is a particularly simple PCP verifier for SAT. It uses the
O(log n) random bits to compute three positions in the proof, say i, j and k,
and a bit b, and accepts iff

y(i) + y(j) + y(k) ≡ b (mod 2).

Here y(i) is the ith bit in the proof y.

1. Consider the restriction of Problem 16.12 (Exercise 16.7), linear equa-
tions over GF[2], in which each equation has exactly 3 variables. Use
the characterization stated in Theorem 29.30 to give an appropriate gap-
introducing reduction from SAT to this problem which shows that if, for
any ε > 0, there is a 2 − ε factor approximation algorithm for the latter
problem then P = NP.

29.8 Exercises 331

2. Give an appropriate gap-preserving reduction from linear equations over
GF[2] to MAX-3SAT which shows that if, for any ε > 0, there is a 8/7−ε
factor approximation algorithm for MAX-3SAT then P = NP.
Hint: The equation xi + xj + xk ≡ 0 (mod 2) is transformed into the
clauses

(xi ∨ xj ∨ xk) ∧ (xi ∨ xj ∨ xk) ∧ (xi ∨ xj ∨ xk) ∧ (xi ∨ xj ∨ xk).

29.7 Complete the proof of Theorem 29.21, i.e., show that
2P1R1,1−εP

(log(n)) ⊆ NP.

29.8 Prove the uniformity conditions stated in Remark 29.22.
Hint: Use the standard technique of introducing new Boolean variables.

29.9 Prove Theorem 29.24 using the probabilistic method.
Hint: p(m, 2l) = O(m22l) suffices. Pick each set Ci by including each element
of U in it randomly and independently with probability 1/2.

29.10 (Feige [80]) The following stronger hardness result can be established
for set cover:

Theorem 29.31 For any constant δ > 0, if there is a (1 − δ) lnn fac-
tor approximation algorithm for the cardinality set cover problem, where
n is the size of the universal set of the set cover instance, then NP ⊆
DTIME(nO(log log n)), where DTIME(t) is the class of problems for which
there is a deterministic algorithm running in time O(t).

Consider the maximum coverage problem, Problem 2.18 in Exercise 2.15.
Using Theorem 29.31 show that if there is an ε > 0 for which there is a
(1 − 1/e + ε) factor approximation algorithm for the maximum coverage
problem, then NP ⊆ DTIME(nO(log log n)).
Hint: Use the maximum coverage algorithm to obtain a (1 − δ) lnn factor
algorithm for set cover, for some δ > 0, as follows: Guess k, the optimal
number of sets needed for the given instance. Run the maximum coverage
algorithm, with parameter k, iteratively, until a cover is found. In each itera-
tion, a (1− 1/e+ ε) fraction of the uncovered elements is covered. Therefore,
the number of iterations, l, satisfies, (1/e− ε)l = 1/n.

29.11 (Jain, Mahdian, and Saberi [138]) Using Theorem 29.31 show that
if there is an ε > 0 for which there is a (1 + 2/e − ε) factor approx-
imation algorithm for the metric k-median problem, Problem 25.1, then
NP ⊆ DTIME(nO(log log n)).

332 29 Hardness of Approximation

29.9 Notes

The first hardness of approximation result based on probabilistically check-
able proofs was due to Feige, Goldwasser, Lovász, Safra, and Szegedy [82].
This work motivated the discovery of the PCP theorem, which additionally
builds on work on interactive proof systems (Babai [18] and Goldwasser, Mi-
cali, and Rackoff [109]) and program checking (Blum and Kannan [28] and
Blum, Luby, and Rubinfeld [29]), and is due to Arora and Safra [14], and
Arora, Lund, Motwani, Sudan, and Szegedy [14, 12]. Theorem 29.30, which
yields optimal inapproximability results for several problems, is due to Hastad
[122].

Before this development, the pioneering work of Papadimitriou and Yan-
nakakis [218] had established evidence of inapproximability of several natural
problems using their notion of Max-SNP-completeness. Gap preserving re-
ductions are weaker than their L-reductions. Consequently, the ideas behind
their reductions carry over directly to the new development, as in the reduc-
tions given in Theorems 29.11 and 29.13. Indeed, one of the motivations for
the PCP theorem was that establishing an inapproximability result for MAX
SAT would directly yield inapproximability results for all Max-SNP-hard
problems. Theorem 29.14 is from Bern and Plassmann [25].

The construction of expander graphs is due to Lubotzky, Phillips, and
Sarnak [197]. Theorem 29.17 is due to Impagliazzo and Zuckerman [135].
Theorem 29.19 on hardness of clique follows from [82] and [14, 12]. The cur-
rent best hardness result for clique, due to Hastad [121], states that it cannot
be approximated within a factor of n1−ε for any ε > 0, unless NP = ZPP.
This is quite close to the best approximation algorithm, due to Boppana and
Holldórsson [30], achieving a guarantee of O(n/(log2 n)).

Lund and Yannakakis [199] gave the first hardness result for set cover,
showing that it cannot be approximated within a factor of log n/2 unless
NP ⊆ ZTIME(nO(polylog n)). The improved result, presented in Theorem
29.31, is due to Feige [80]. This enhancement comes about by using a k prover
proof system. A deterministic construction of the set system gadget of The-
orem 29.24, due to Naor, Schulman, and Srinivasan [211], allows replacing
ZTIME by DTIME in the complexity assumption. The two-prover one-
round proof system was defined by Ben-or, Goldwasser, Kilian, and Wigder-
son [24]. Theorem 29.26 is due to Raz [231].

Karloff and Zwick [162] give an algorithm for MAX-3SAT that achieves
an approximation guarantee of 8/7 when restricted to satisfiable formulae.
This complements the hardness result stated in Exercise 29.6.

For further information on this topic, see the survey by Arora and Lund
[11]. For an up-to-date status of the best positive and negative results known
for numerous NP-hard optimization problems, see the excellent compendium
maintained online at
http://www.nada.kth.se/˜viggo/problemlist/compendium.html

29.9 Notes 333

The compendium also appears in Ausiello, Crescenzi, Gambosi, Kann, Mar-
chetti-Spaccamela, and Protasi [17].

30 Open Problems

This chapter is centered around problems and issues currently in vogue in
the field of approximation algorithms. Important new issues are bound to
arise in the future. With each of these problems two questions arise – that of
obtaining the best approximation guarantee and a matching hardness result1

30.1 Problems having constant factor algorithms

Since a large number of important open problems in the field today involve
improving the guarantee for problems for which we already know constant
factor algorithms, we found it convenient to present them in a separate sec-
tion. Of course, we are not looking for small improvements using incremental
means. A good model is Goemans and Williamson’s improvement to the
MAX-CUT problem, from factor 1/2 to 0.878, which introduced semidefi-
nite programming into the repertoire of techniques in this field. Most of the
problems listed below have the potential of extending known methods in
significant ways and introducing important new ideas.

Vertex cover, Problem 1.1: Improve on factor 2 (see algorithms in Chap-
ters 1, 2, 14, and 15). Semidefinite programming may be a possible avenue,
see, e.g., the attempt by Goemans and Kleinberg [103].

Set cover, Problem 2.1: This question generalizes the previous one. Con-
sider the restriction of the set cover problem to instances in which the
frequency of each element is bounded by a fixed constant f . Improve on
factor f (see algorithms in Chapters 2, 14, and 15). The best hardness
result known is f1/19, assuming P �= NP, due to Trevisan [247].

Acyclic subgraph, Problem 1.9: Improve on factor 1/2 (see Exercise
1.1). Semidefinite programming may be applicable.

Metric TSP, Problem 3.5: As stated in Exercise 23.13, the solution pro-
duced by Christofides’ algorithm (Algorithm 3.10) is within a factor of

1 For an up-to-date status of the best positive and negative results known for
numerous NP-hard optimization problems, see the excellent compendium at
http://www.nada.kth.se/˜viggo/problemlist/compendium.html

30.1 Problems having constant factor algorithms 335

3/2 of the subtour elimination LP-relaxation for this problem. However,
the worst integrality gap example known is (essentially) 4/3. Can a 4/3
factor algorithm be obtained using this relaxation?
Christofides’ algorithm consists of two steps: obtaining an MST and
patching up its odd degree vertices. The above stated result follows by
bounding the cost of each of these steps individually. It might be a good
idea to first look for a “one–shot” factor 3/2 algorithm which compares
the entire solution to the LP-relaxation. The primal–dual schema may
hold the key.

Steiner tree, Problem 3.1: The best approximation guarantee known is
essentially 5/3 (see Exercise 22.12). A promising avenue for obtaining
an improved guarantee is to use the bidirected cut relaxation (22.7).
This relaxation is exact for the minimum spanning tree problem. For the
Steiner tree problem, the worst integrality gap known is (essentially) 8/7,
due to Goemans (see Exercise 22.11). The best upper bound known on
the integrality gap is 3/2 for quasi-bipartite graphs (graphs that do not
contain edges connecting pairs of Steiner vertices), due to Rajagopalan
and Vazirani [226]. Determine the integrality gap of this relaxation and
obtain an algorithm achieving this guarantee2.
Recall that in contrast, LP-relaxation (22.2) has an integrality gap of
(essentially) 2, not only for this problem, but also for its special case,
the minimum spanning tree problem, and its generalization, the Steiner
network problem.

Steiner network, Problem 23.1: Chapter 23 gives a factor 2 algorithm.
However, it uses LP-rounding and has a prohibitive running time. Obtain
a factor 2 combinatorial algorithm for this problem. A corollary of Algo-
rithm 23.7 is that the integrality gap of LP-relaxation (23.2) is bounded
by 2. Therefore, this relaxation can be used as a lower bound for obtain-
ing a factor 2 combinatorial algorithm. The primal–dual schema appears
to be the most promising avenue. A starting point may be determining
if the following is true:
For each instance of the Steiner forest problem (and more generally, the
Steiner network problem) there is an integral primal solution x and dual
feasible solution y such that each edge picked by x is tight w.r.t. the dual
y and each raised dual S has degree ≤ 2 (≤ 2f(S)). Observe that the
dual found by Algorithm 22.3 can have arbitrarily high degree.

Multiway cut, Problem 4.1: A 1.5 factor is presented in Chapter 19. As
stated, this can be improved to 1.3438. However, the worst integrality gap
example known for LP-relaxation (19.1) is (essentially) 8/7. Determine
the integrality gap of this relaxation, and obtain an algorithm achieving

2 A more general issue along these lines is to clarify the mysterious connection
between the integrality gap of an LP-relaxation and the approximation factor
achievable using it.

336 30 Open Problems

this guarantee. A different relaxation is presented in Exercise 19.7. How
are the two relaxations related? Are they equivalent in that any feasible
solution to one be converted to a solution of the other of the same cost?

Subset feedback vertex set, Problem 19.15: The best factor known is
8, via a fairly complicated algorithm (see Exercise 19.13). Is a factor 2
algorithm possible, matching several of the other related problems stated
in Exercise 19.13?

30.2 Other optimization problems

Shortest vector, Problem 27.1: Obtain a polynomial factor algorithm
for this problem. As shown in Chapter 27, the dual lattice helps give
a factor n co-NP certificate for this problem. Is the dual lattice of fur-
ther algorithmic use? The best hardness result known for this problem,
of factor

√
2−ε, for any ε > 0, assuming RP �= NP, is due to Micciancio

[204].

Sparsest cut, Problem 21.2: The best approximation factor known is
O(log n) (see Chapter 21). However, no hardness of approximation re-
sults have been established for this problem – as far as we know a PTAS
not yet ruled out. Is there a constant factor algorithm or a PTAS for this
problem?

Minimum b-balanced cut and minimum bisection cut, Problem
21.27: An O(log2 n) factor algorithm for both these problems was given
by Feige and Krauthgamer [83]. As in the case of sparsest cut, a PTAS
is not yet ruled out for these problems. Is there a constant factor algo-
rithm or a PTAS for these problems? When restricted to planar graphs,
the minimum b-balanced cut problem, for b ≤ 1/3, can be approximated
within a factor of 2, see Garg, Saran, and Vazirani [95].

Minimum multicut, 18.1: An O(log n) factor algorithm is given in Chap-
ter 20. A long standing open problem is whether there is a constant factor
deterministic algorithm for this problem.

Asymmetric TSP, Problem 3.15: The best factor known is O(log n) (see
Exercise 3.6). Is there a constant factor algorithm for this problem?

Vertex-connectivity network design: This variant of the Steiner net-
work problem (Problem 23.1) asks for a minimum cost subgraph con-
taining ru,v vertex-disjoint paths, instead of edge-disjoint paths, for each
pair of vertices u, v ∈ V . No nontrivial approximation algorithms are
known for this variant. For the special case when ru,v = k for each pair
of vertices u, v ∈ V and the edge costs obey the triangle inequality, a
(2+ 2(k−1)

n) factor algorithm is given by Khuller and Raghavachari [170].
A problem of intermediate difficulty is the element-connectivity network

30.2 Other optimization problems 337

design problem, in which vertices are partitioned into two sets: terminals
and non-terminals. Only edges and non-terminals, referred to as elements,
can fail. Only pairs of terminals have connectivity requirements, specify-
ing the number of element-disjoint paths required. An algorithm with an
approximation guarantee of factor 2Hk, where k is the largest require-
ment, is given by Jain, Măndoiu, Vazirani, and Williamson [139].

Maximum integer multicommodity flow, Problem 18.3: Example
18.8 shows that the natural LP-relaxation has an integrality gap of Ω(n).
It is easy to get around this difficulty while still retaining the essence of
the original problem by asking for a maximum half-integral flow. Is there
an O(log n) factor algorithm for this latter problem?

Metric uncapacitated facility location and k-median, Problems 24.1
and 25.1: Determine the integrality gaps of the LP-relaxations (24.2)
and (25.2).

Capacitated facility location problem, Exercise 24.8: As stated in Ex-
ercise 24.8 the modification of LP (24.2) to this problem has unbounded
integrality gap. Is there some other lower bounding method that leads to
a good approximation algorithm?

Directed multicut and sparsest cut: In Chapters 20 and 21 we consid-
ered two generalizations of the undirected maximum flow problem and
derived approximation algorithms for the corresponding cut problems,
multicut and sparsest cut. Not much is known at present about analo-
gous problems in directed graphs.

Directed Steiner tree, Problem 3.14: As shown in Exercise 3.3 this prob-
lem is unlikely to have a better approximation guarantee than O(log n). Is
a guarantee of O(log n) possible? The best guarantee known is nε for any
fixed ε > 0, due to Charikar et. al. [37]. Generalizations of this problem
to higher connectivity requirements, analogous to the Steiner network
problem, also need to be studied.

Directed feedback edge (vertex) set: Given a directed graph G =
(V,E), a feedback edge (vertex) set is a set of edges (vertices) whose
removal leaves an acyclic graph. The problem is to find the minimum
cardinality such set. More generally, consider the weighted version in
which the edges (vertices) have assigned weights, and we want to find
the minimum weight such set. It is easy to see that the edge and vertex
versions are inter-reducible via approximation factor preserving reduc-
tions. An O(log n log log n) factor approximation algorithm is known for
the weighted version, due to Seymour [238]. Can this be improved to
O(log n) or even a constant factor?

Cover time: Given an undirected graph G = (V,E), the cover time starting
at vertex v ∈ V , C(v) is the expected number of steps taken by a random

338 30 Open Problems

walk on G, which starts at v and visits all vertices. The cover time of
G is maxv∈V C(v). Clearly, a randomized algorithm can estimate the
cover time to any desired accuracy by empirically simulating the random
walk many times and taking the average. Kahn, Kim, Lovász, and Vu
[151] have given an O((log log n)2) factor deterministic algorithm for this
problem. Is a constant factor deterministic algorithm possible?

30.3 Counting problems

For the problems presented below (other than graphs with given degree se-
quence and triangulations), the decision version is in P, the counting version
is #P-complete, and the complexity of approximately counting the number
of solutions is unresolved. The complexity of counting the number of graphs
with given degree sequence and triangulations is open, though conjectured
to be #P-complete.

Perfect matchings in general graphs: When restricted to planar graphs,
this problem is polynomial time solvable using the classic algorithm of
Kastelyn [168]. This result extends to K3,3-free graphs (graphs that do
not contain a subgraph homeomorphic to K3,3) as well, see Little [191]
and Vazirani [251]. A FPRAS is known for the restriction of this problem
to bipartite graphs, which is the same as the problem of evaluating a
0/1 permanent, due to Jerrum, Sinclair, and Vigoda [143] (more gener-
ally, this work gives a FPRAS for evaluating the permanent of a square
matrix with nonnegative integer entries).

Volume of a convex body: Given a convex body in Rn via an oracle, the
problem is to estimate its volume. A number of other counting problems
can be reduced to this fundamental problem. The first FPRAS for this
problem was given by Dyer, Frieze, and Kannan [67]. Although poly-
nomial, the running time of this algorithm was exorbitant. It required
O∗(n23) oracle calls – the “soft-O” notation of O∗ suppresses factors of
log n as well as ε, the error bound. The current best algorithm, due to
Kannan, Lovász, and Simonovits [155] requires O∗(n5) oracle calls and
O∗(n7) arithmetic operations. Can the running time be further improved?

Acyclic orientations: Count the number of acyclic orientations of a given
undirected graph G. An orientation of the edges of G is acyclic if the
resulting directed graph is acyclic. Several Markov chains on the set of
acyclic orientations are known that asymptotically converge to the uni-
form distribution; however, none of them is known to be rapidly mixing.
For instance, say that two orientations are adjacent if one can be obtained
from the other by flipping directions of the edges incident at a source or
a sink, where a source has all outgoing edges and a sink has all incoming
edges. Do a random walk on this graph.

30.3 Counting problems 339

Forests: A forest in an undirected graph is a set of edges that contain no
cycles. A maximal forest is a spanning tree (assume the graph is con-
nected). Interestingly enough, the problem of counting the number of
spanning trees in a graph is in P – this being one of the very few count-
ing problems known to be polynomial time solvable. This follows as a
consequence of the classic matrix tree theorem of Kirchhoff, see [194]. It
is worth remarking that elegant polynomial time algorithms are known for
generating a random spanning tree in an undirected graph using rapidly
mixing Markov chains, due to Aldous [3], Broder [34], and Wilson [259].
On the other hand, the complexity of approximately counting forests in
arbitrary graphs is open. The case of dense graphs (each vertex having
degree at least αn, for 0 < α < 1) is handled by Annan [8]. Forests and
spanning trees are the independent sets and bases, respectively, of the
graphic matroid of the given graph.

Bases of a matroid: Given an arbitrary matroid via an independence or-
acle, count the number of bases. Define the basis exchange graph of a
matroid as follows. Its vertices are all bases. Two bases are adjacent iff
their symmetric difference is two elements. The Markov chain defined by
a random walk on the basis exchange graph is conjectured to be rapidly
mixing by Dagum, Luby, Mihail, and Vazirani [56]. If so, a FPRAS for
approximately counting the number of bases will follow. Examples of ma-
troids for which this conjecture has been positively resolved are graphic
matroids (see previous problem) and their generalization, balanced ma-
troids. For the latter result, see Feder and Mihail [78]. A positive res-
olution of this question will also resolve the question of approximately
counting forests (since forests of any particular size are bases of a trun-
cation of the graphic matroid).

Network reliability: Many versions of the network reliability problem have
found practical applications and have been studied in the past. Two ba-
sic versions for undirected graphs with edge failure probabilities are s–t
reliability, which asks for the probability that special vertices s and t get
disconnected, and global reliability, which asks for the probability that
any part of the graph gets disconnected. One can define two analogous
problems in directed graphs as well. Of these four problems, only undi-
rected global reliability is settled – a FPRAS for this version is presented
in Chapter 28. In addition, for each of these four cases one can also ask
for the probability that s–t or the entire graph remain connected. This
version is open even for the undirected global case.

Euler tours: Count the number of Euler tours of a given undirected graph
(a connected graph is Eulerian iff all vertices have even degrees). Inter-
estingly enough, there is a polynomial time algorithm for the analogous
problem for directed graphs – again following from Kirchhoff’s Theorem.

340 30 Open Problems

Trees: Given an undirected graph G, count the number of subgraphs of G
that are trees.

Antichains in a partial order: See Exercise 1.7 for the definition. For the
related problem of counting the number of total orders consistent with a
partial order, a FPRAS is known, due to Matthews [202], Karzanov and
Khachian [167], and Bubley and Dyer [35].

Graphs with given degree sequence: Given n nonnegative integers d1,
. . . , dn, which represent the degrees of the n vertices, v1, . . . , vn, of a
simple graph, count the number of such graphs. A related problem is to
count the number of connected graphs having this degree sequence. In
both cases, the question of existence of one such graph can be solved
in polynomial time using a matching algorithm. If G is restricted to be
a bipartite graph, with the bipartition specified, then a FPRAS follows
from that for 0/1 permanents [143].

Contingency tables: Given the row sums and column sums of an m ×
n matrix with nonnegative integer entries, count the number of such
matrices. A FPRAS is known if the row sums and column sums are all
sufficiently large, being at least (m + n)mn, due to Dyer, Kannan, and
Mount [64]. Morris [208] improves this to the case where each row sum is
Ω(n3/2m log m) and each column sum is Ω(m3/2n log n). If the matrices
are constrained to be 0/1, this is same as the degree sequence problem
restricted to bipartite graphs, for which a FPRAS follows from that for
0/1 permanents [143].

Triangulations: Compute the number of triangulations of n points on the
plane, i.e., the number of ways of putting down non–intersecting line seg-
ments connecting pairs of points so that all internal faces are triangles.
Consider the graph G on all possible triangulations whose edges are de-
fined as follows: Remove an edge in a triangulation t that is not on the
infinite face. If the resulting quadrilateral is convex, let t′ be the trian-
gulation obtained by adding an edge connecting the other two points of
this quadrilateral. Then, G has an edge connecting t and t′. A random
walk on this graph is conjectured to be rapidly mixing. If the n points
form the vertices of a convex n-gon, then the number of triangulations is
known to be the Catalan number Cn−2, and hence polynomial time com-
putable. For this special case, the Markov chain defined above is known
to be rapidly mixing, see McShine and Tetali [203].

Stable marriages: An instance of the stable marriage problem consists of
n boys and n girls, together with an ordered list of the preferences of each
boy and each girl (each boy orders all n girls and each girl orders all n
boys). A marriage is a perfect matching of the boys and girls. Boy b and
girl g who are not married to each other are said to form a rogue couple
if b prefers g to the girl he is married to and g prefers b to the boy she

30.3 Counting problems 341

is married to. The marriage is stable if there are no rogue couples. The
complexity of approximately counting the number of stable marriages
is unresolved. For numerous structural properties of the set of stable
marriages, see Gusfield and Irving [119].

Colorings of a graph: Consider an undirected graph G = (V,E) with
maximum degree ∆. Jerrum [144] gave a FPRAS for counting the number
of valid k-colorings of G for any k > 2∆, and Vigoda [254] extended this
to any k > 11∆/6. Can this be improved to counting the number of valid
k-colorings of G for any k ≥ ∆ + 2? (If the number of colors is ≤ ∆ + 1
then the natural Markov chain, that at each step picks a random vertex
and recolors it with a random consistent color, may not be connected.)
This quantity finds applications in statistical physics.

Hamiltonian cycles: If each vertex of an undirected graph G has degree at
least n/2 then G must have a Hamiltonian cycles (see Dirac’s condition
in [194]). If the minimum degree is (1/2+ε)n, for ε > 0, Dyer, Frieze, and
Jerrum [65] have given a FPRAS for this problem. Can this be extended
to ε = 0, i.e., graphs having minimum degree n/2?

Independent sets: For graphs having ∆ = 4, a FPRAS was given by Luby
and Vigoda [198], where ∆ denotes the maximum degree of the graph.
Dyer, Frieze, and Jerrum [66] show that the problem is not approximable
for ∆ ≥ 25, assuming RP �= NP. They also give an argument to show
that the Markov chain Monte Carlo is unlikely to succeed for ∆ ≥ 6.
Besides the question of ∆ = 5, this leaves the question of determining
whether other methods will work for 6 ≤ ∆ ≤ 24 or whether these cases
are also inapproximable.

Tutte polynomial: Several of the problems stated above are special cases
of evaluating the Tutte polynomial of the given graph G = (V,E) at a
particular point of the (x, y)-plane. For A ⊆ E, define the rank of A,
denoted r(A), to be |V | − k(A), where k(A) is the number of connected
components in the graph having vertex set V and edge set A. The Tutte
polynomial of G at point (x, y) is

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

Some of the natural quantities captured by this polynomial are:
• At (1, 1), T counts the number of spanning trees in G.
• At (2, 1), T counts the number of forests in G.
• At (1, 2), T counts the number of connected subgraphs of G.
• At (2, 0), T counts the number of acyclic orientations of G.
• At (0, 2), T counts the number of orientations of G that form a strongly

connected digraph.

342 30 Open Problems

• The chromatic polynomial of G is given by

P (G,λ) = (−1)r(E)λk(E)T (G; 1− λ, 0),

where P (G,λ) is the number of colorings of G using λ colors.
• If the failure probability of each edge is p, then the probability that G

remains connected is given by

R(G; p) = q|E|−r(E)pr(E)T (G; 1, 1/(1− p)).

Vertigan and Welsh [253] have shown that other than a few special points
and two special hyperbolae (see next problem for definition), the exact
evaluation of the Tutte polynomial is #P-hard. The question of designing
FPRAS’s is wide open. Say that a graph is α-dense if each vertex has
degree ≥ αn, where 0 < α < 1. Annan [7] and Alon, Frieze, and Welsh
[5] have given FPRAS’s for α-dense graphs for the cases y = 1, x ≥ 1 and
y > 1, x ≥ 1, respectively.

Partition functions of the Ising and Potts models: The hyperbolae
Hα defined by

Hα = {(x, y) | (x− 1)(y − 1) = α}

play a special role in the context of the Tutte polynomial. In particu-
lar, along H2, T gives the partition function of the Ising model for G,
and along HQ, for integer Q ≥ 2, T gives the partition function of the
Potts model for G. Both these quantities find use in statistical physics;
see Welsh [256] for precise definitions and further details (the points on
each hyperbola are parametrized by “temperature” and Q represents the
number of “color” classes). Jerrum and Sinclair [146] gave a FPRAS for
estimating, at any temperature, the partition function of the Ising model
of a graph, and Randall and Wilson [228] extended this to a polynomial
time sampling procedure. However, because of large exponents in the
running times, these algorithms are not practical. The Swendsen-Wang
process [245] provides a natural and practically used Markov chain for
estimating these quantities. This leads to the question of determining,
formally, whether this chain is rapidly mixing. A negative result was pro-
vided by Gore and Jerrum [112] who show that this chain is not rapidly
mixing for the complete graph, Kn, for Q ≥ 3. Positive results for certain
classes of graphs were provided by Cooper and Frieze [53]. Is this chain
rapidly mixing for the partition function of the Ising model for an arbi-
trary graph? Is there some other way of estimating the partition function
of the Potts model for an arbitrary graph?

A An Overview of Complexity Theory
for the Algorithm Designer

A.1 Certificates and the class NP

A decision problem is one whose answer is either “yes” or “no”. Two examples
are:

SAT: Given a Boolean formula in conjunctive normal form, f , is there is a
satisfying truth assignment for f?

Cardinality vertex cover: Given an undirected graph G and integer k, does
G have a vertex cover of size ≤ k?

For any positive integer k, we will denote by kSAT the restriction of SAT
to instances in which each clause contains at most k literals.

It will be convenient to view a decision problem as a language, i.e., a subset
of {0, 1}∗. The language consists of all strings that encode “yes” instances of
the decision problem. A language L ∈ NP if there is a polynomial p and a
polynomial time bounded Turing machine M , called the verifier, such that
for each string x ∈ {0, 1}∗:

• if x ∈ L, then there is a string y (the certificate) of polynomially bounded
length, i.e., |y| ≤ p(|x|), such that M(x, y) accepts, and

• if x /∈ L, then for any string y, such that |y| ≤ p(|x|), M(x, y) rejects.

❄

❄
Input and work tape

x

y

CertificateM

344 An overview of complexity theory

String y that helps ascertain that x is a “yes” instance will be called a
Yes certificate. We will also refer to y as a proof or a solution; in the context
of randomized computation, it is also referred to as a witness. Thus, NP is
the class of languages that have “short, quickly verifiable” Yes certificates.

For example, the verifier for cardinality vertex cover assumes that y spec-
ifies a subset of the vertices. It checks whether this subset is indeed a vertex
cover and is of the desired size bound. (Observe that no claim has been made
about the time needed to actually find such a certificate.) It is also easy to see
that the class NP defined above is precisely the class of languages that are
decidable by nondeterministic polynomial time Turing machines (see Section
A.6 for references), hence the name.

A language L belongs to the class co-NP iff L ∈ NP. Thus, co-NP is
the class of languages that have “short, quickly verifiable” No certificates. For
instance, let L be the language consisting of all prime numbers. This language
allows No certificates: a factorization for number n is proof that n /∈ L. Hence
L ∈ co-NP. Interestingly enough, L ∈ NP as well (see Exercise 1.13), though
it is not known to belong to P.

A.2 Reductions and NP-completeness

Next, let us introduce the crucial notion of a polynomial time reduction. Let
L1 and L2 be two languages in NP. We will say that L1 reduces to L2, and
write L1 4 L2, if there is a polynomial time Turing machine T which given
a string x ∈ {0, 1}∗, outputs string y such that x ∈ L1 iff y ∈ L2. In general,
T does not have to decide whether x is a “yes” or a “no” instance in order
to output y. Clearly, if L1 4 L2 and L2 is polynomial time decidable, then
so is L1.

A language L is NP-hard if for every language L′ ∈ NP, L′ 4 L. A
language L is NP-complete if L ∈ NP, and L is NP-hard. An NP-complete
language L is a hardest language in NP, in the sense that a polynomial time
algorithm for L implies a polynomial time algorithm for every language in
NP, i.e., it implies P = NP.

The central theorem of complexity theory gives a proof of NP-hardness
for a natural problem, namely SAT. The idea of the proof is as follows. Let
L be an arbitrary language in NP. Let M be a nondeterministic polynomial
time Turing machine that decides L, and let p be the polynomial bounding the
running time of M . The proof involves showing that there is a deterministic
polynomial time Turing machine T , that “knows” M and p, and given a
string x ∈ {0, 1}∗, outputs a SAT formula f such that each satisfying truth
assignment of f encodes an accepting computation of M on input x. Thus,
f is satisfiable iff there is an accepting computation of M on input x, i.e., iff
x ∈ L.

Once one problem, namely SAT, has been shown to be NP-hard, the
hardness of other natural problems can be established by simply giving poly-

A.3 NP-optimization problems and approximation algorithms 345

nomial time reductions from SAT to these problems (see Exercise 1.11). Per-
haps the most impressive feature of the theory of NP-completeness is the
ease with which the latter task can be accomplished in most cases, so that
with relatively little work, a lot of crucial information is obtained. Other than
a handful of (important) problems, most natural problems occurring in NP
have been classified as being either in P or being NP-complete. Indeed, it
is remarkable to note that other basic complexity classes, defined using no-
tions of time, space and nondeterminism, also tend to have natural complete
problems (under suitably defined reducibilities).

Establishing NP-hardness for vertex cover involves giving a polynomial
time algorithm that, given a SAT formula f , outputs an instance (G, k) such
that G has a vertex cover of size ≤ k iff f is satisfiable. As a corollary, we get
that under the assumption P �= NP, there is no polynomial time algorithm
that can distinguish “yes” instances of vertex cover from “no” instances. As
stated above, this also shows that if P �= NP, there is no polynomial time
algorithm for solving vertex cover exactly.

Considering the large and very diverse collection of NP-complete prob-
lems, none of which has yielded to a polynomial time algorithm for so many
years, it is widely believed that P �= NP, i.e., that there is no polynomial
time algorithm for deciding an NP-complete language.

The P �= NP conjecture has a deep philosophical point to it. The con-
jecture asserts that the task of finding a proof for a mathematical statement
is qualitatively harder than the task of simply verifying the correctness of a
given proof for the statement. To see this, observe that the language

L = {(S, 1n) | statement S has a proof of length ≤ n}

is in NP, assuming any reasonable axiomatic system.

A.3 NP-optimization problems and approximation
algorithms

Combinatorial optimization problems are problems of picking the “best” so-
lution from a finite set. An NP-optimization problem, Π, consists of:

• A set of valid instances, DΠ , recognizable in polynomial time. We will
assume that all numbers specified in an input are rationals, since our model
of computation cannot handle infinite precision arithmetic. The size of an
instance I ∈ DΠ , denoted by |I|, is defined as the number of bits needed
to write I under the assumption that all numbers occurring in the instance
are written in binary.

• Each instance I ∈ DΠ has a set of feasible solutions, SΠ(I). We require that
SΠ(I) �= ∅, and that every solution s ∈ SΠ(I) is of length polynomially
bounded in |I|. Furthermore, there is polynomial time algorithm that, given
a pair (I, s), decides whether s ∈ SΠ(I).

346 An overview of complexity theory

• There is a polynomial time computable objective function, objΠ , that as-
signs a nonnegative rational number to each pair (I, s), where I is an in-
stance and s is a feasible solution for I. The objective function is frequently
given a physical interpretation, such as cost, length, weight, etc.

• Finally, Π is specified to be either a minimization problem or a maximiza-
tion problem.

The restriction of Π to unit cost instances will be called the cardinality
version of Π.

An optimal solution for an instance of a minimization (maximization)
problem is a feasible solution that achieves the smallest (largest) objective
function value. OPTΠ(I) will denote the objective function value of an opti-
mal solution to instance I. We will shorten this to OPT when it is clear that
we are referring to a generic instance of the particular problem being studied.

With every NP-optimization problem, one can naturally associate a de-
cision problem by giving a bound on the optimal solution. Thus, the decision
version of NP-optimization problem Π consist of pairs (I,B), where I is an
instance of Π and B is a rational number. If π is a minimization (maximiza-
tion) problem, then the answer to the decision version is “yes” iff there is a
feasible solution to I of cost ≤ B (≥ B). If so, we will say that (I,B) is a
“yes” instance; we will call it a “no” instance otherwise. For example, the
decision version of cardinality vertex cover is stated in Section A.1.

Clearly, a polynomial time algorithm for Π can help solve the decision
version – by computing the cost of an optimal solution and comparing it with
B. Conversely, hardness established for the decision version carries over to Π.
Indeed hardness for an NP-optimization problem is established by showing
that its decision version is NP-hard. With a slight abuse of notation, we will
also say that the optimization version is NP-hard.

An approximation algorithm produces a feasible solution that is “close”
to the optimal one, and is time efficient. The formal definition differs for
minimization and maximization problems. Let Π be a minimization (max-
imization) problem, and let δ be a function, δ : Z+ → Q+, with δ ≥ 1
(δ ≤ 1). An algorithm A is said to be a factor δ approximation algorithm
for Π if, on each instance I, A produces a feasible solution s for I such that
fΠ(I, s) ≤ δ(|I|) ·OPT(I) (fΠ(I, s) ≥ δ(|I|) ·OPT(I)), and the running time
of A is bounded by a fixed polynomial in |I|. Clearly, the closer δ is to 1, the
better is the approximation algorithm.

On occasion we will relax this definition and will allow A to be random-
ized, i.e., it will be allowed to use the flips of a fair coin. Assume we have
a minimization problem. Then we will say that A is a factor δ randomized
approximation algorithm for Π if, on each instance I, A produces a feasible
solution s for I such that

Pr[fΠ(I, s) ≤ δ(|I|) ·OPT(I)] ≥ 1
2
,

A.4 Randomized complexity classes 347

where the probability is over the coin flips. The running time of A is still
required to be polynomial in |I|. The definition for a maximization problem
is analogous.

Remark A.1 Even though δ has been defined to be a function of the size
of the input, we will sometimes pick δ to be a function of a more convenient
parameter. For instance, for the set cover problem (Chapter 2), we will pick
this parameter to be the number of elements in the ground set.

A.3.1 Approximation factor preserving reductions

Typically, polynomial time reductions map optimal solutions to optimal so-
lutions; however, they do not preserve near-optimality of solutions. Indeed,
all NP-complete problems are equally hard from the viewpoint of obtain-
ing exact solutions. However, from the viewpoint of obtaining near-optimal
solutions, they exhibit the rich set of possibilities alluded to earlier.

In this book we will encounter pairs of problems which may look quite
different superficially, but whose approximability properties are closely linked
(e.g., see Exercise 19.13). Let us define a suitable reducibility in order to
formally establish such connections. Several reductions have been defined
that preserve constant factor approximability. The reducibility stated below
is a stringent version of these, and actually preserves the constant itself.
Pair of problems that are linked in this manner are either both minimization
problems or both maximization problems.

Let Π1 and Π2 be two minimization problems (the definition for two
maximization problems is quite similar). An approximation factor preserving
reduction from Π1 to Π2 consists of two polynomial time algorithms, f and
g, such that

• for any instance I1 of Π1, I2 = f(I1) is an instance of Π2 such that
OPTΠ2(I2) ≤ OPTΠ1(I1), and

• for any solution t of I2, s = g(I1, t) is a solution of I1 such that

objΠ1
(I1, s) ≤ objΠ2

(I2, t).

It is easy to see that this reduction, together with an α factor algorithm
for Π2, gives an α factor algorithm for Π1 (see Exercise 1.16).

A.4 Randomized complexity classes

Certain NP languages1 are characterized by the fact that they possess an
abundance of Yes certificates, which renders them essentially tractable, as-
suming availability of a source of random bits. Such languages belong to the
1 The definitions of this section will be useful in Chapter 29.

348 An overview of complexity theory

class RP, short for Randomized Polynomial Time. A language L ∈ RP if
there is a polynomial p and a polynomial time bounded Turing machine M
such that for each string x ∈ {0, 1}∗:

• if x ∈ L, then M(x, y) accepts for at least half the strings y of length p(|x|),
and

• if x /∈ L, then for any string y of length p(|x|), M(x, y) rejects.

Clearly, P ⊆ RP ⊆ NP. Suppose language L ∈ RP. On input x, we will
pick a random string, y, of length p(|x|) and will run M(x, y). Clearly, the
entire computation takes polynomial time. We may erroneously reject x even
though x ∈ L. However, the probability of this is at most 1/2. Let us call
this the error probability. By the usual trick of making repeated independent
runs, we can reduce the error probability to inverse exponential in the number
of runs.

A language L belongs to the class co-RP iff L ∈ RP. Such a language
has an abundance of No certificates. The corresponding machine may make
an error on inputs x /∈ L. Finally, let us define ZPP, short for Zero-error
Probabilistic Polynomial Time, to be the class of languages for which there is
a randomized Turing machine (i.e., a Turing machine equipped with a source
of random bits) that always terminates with the correct answer and whose
expected running time is polynomial. It is easy to see (Exercise 1.17) that

L ∈ ZPP iff L ∈ (RP ∩ co-RP).

DTIME(t) denotes the class of problems for which there is a deter-
ministic algorithm running in time O(t). Thus, P = DTIME(poly(n)),
where poly(n) =

⋃
k≥0 nk. ZTIME(t) denotes the class of problems for

which there is a randomized algorithm running in expected time O(t). Thus,
ZPP = ZTIME(poly(n)).

A.5 Self-reducibility

Most known problems in NP exhibit an interesting property, called self-
reducibility, which yields a polynomial time algorithm for finding a solution
(a Yes certificate), given an oracle for the decision version. A slightly more
elaborate version of this property yields an exact polynomial time algorithm
for an NP-optimization problem, again given an oracle for the decision ver-
sion. In a sense this shows that the difficult core of NP and NP-optimization
problems is their decision versions (see Section 16.2 and Exercise 28.7 for
other fundamental uses of self-reducibility).

Perhaps the simplest setting to describe self-reducibility is SAT. Let φ be
a SAT formula on n Boolean variables x1, . . . , xn. We will represent a truth
assignment to these n variables as n-bit 0/1 vectors (True = 1 and False
= 0). Let S be the set of satisfying truth assignments, i.e., solutions, to φ.

A.5 Self-reducibility 349

The important point is that for the setting of x1 to 0 (1), we can find, in
polynomial time, a formula φ0 (φ1) on the remaining n − 1 variables whose
solutions, S0 (S1), are precisely solutions of φ having x1 = 0 (x1 = 1).

Example A.2 Suppose φ = (x1∨x2∨x3)∧(x1∨x2∨x4). Then φ0 = (x2∨x3)
and φ1 = (x2 ∨ x4) ✷

Using this property, an oracle for the decision version of SAT can be
used to find a solution to φ, assuming it is satisfiable, as follows. First check
whether φ0 is satisfiable. If so, set x0 = 0, and find any solution to φ0.
Otherwise, set x1 = 1 (in this case φ1 must be satisfiable), and find a solution
to φ1. In each case the problem has been reduced to a smaller one, and we
will be done in n iterations.

The following representation will be particularly useful. Let T be a binary
tree of depth n whose leaves are all n-bit 0/1 strings, representing truth
assignments to the n variables. Leaves that are solutions to φ are marked
special. The root of T is labeled with φ and its internal nodes are labeled
with formulae whose solutions are in one-to-one correspondence with the
marked leaves in the subtree rooted at this node. Thus, the 0th child of the
root is labeled with φ0 and the 1st child is labeled with φ1. Tree T is called
the self-reducibility tree for instance φ.

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

� �

�

✑
✑
✑
✑
✑✑

◗
◗

◗
◗

◗◗

0n . . . 01n−1 10n−1 . . . 1n

φ

φ0 φ1

We will formalize the notion of self-reducibility forNP-optimization prob-
lems. Formalizing this notion for NP problems is an easier task and is left
as Exercise 1.15.

First, let us illustrate self-reducibility for cardinality vertex cover. Observe
that an oracle for the decision version enables us to compute the size of the
optimal cover, OPT(G), by binary search on k. To actually find an optimal
cover, remove a vertex v together with its incident edges to obtain graph
G′, and compute OPT(G′). Clearly, v is in an optimal cover iff OPT(G′) =
OPT(G)−1. Furthermore, if v is in an optimal cover, then any optimal cover
in G′, together with v, is an optimal cover in G. Otherwise, any optimal cover

350 An overview of complexity theory

for G must contain all neighbors, say N(v), of v (in order to cover all edges
incident at v). Let G′′ be the graph obtained by removing v and N(v) from
G. Any optimal cover in G′′, together with N(v), is an optimal cover in G.
Thus, in both cases, we are left with the problem of finding an optimal cover
in a smaller graph, G′ or G′′. Continuing this way, an optimal cover in G can
be found in polynomial time.

The above-stated reduction from the cardinality vertex cover problem to
its decision version works because we could demonstrate polynomial time
algorithms for

• obtaining the smaller graphs, G′ and G′′,
• computing the size of the best cover in G, consistent with the atomic

decision, and
• constructing an optimal cover in G, given an optimal cover in the smaller

instance.

The exact manner in which self-reducibility manifests itself is quite dif-
ferent for different problems. Below we state a fairly general definition that
covers a large number of problems. In the interest of conveying the main idea
behind this important concept, we will provide an intuitive, though easily
formalizable, definition.

We will assume that solutions to an instance I of NP-optimization prob-
lem Π have granularity, i.e., consist of smaller pieces called atoms that are
meaningful in the context of the problem. For instance, for cardinality vertex
cover, the atoms consist of specifying whether or not a certain vertex is in the
cover. Clearly, for vertex cover this can be done using O(log n) bits. Indeed,
all problems considered in this book have granularity O(log n). Let us assume
this for problem Π.

✲

✲

✲A
I

α

I ′
✲

✲

✲

✲

f s

I

α

s′

We will say that problem Π is self-reducible if there is a polynomial time
algorithm, A, and polynomial time computable functions, f(·, ·, ·) and g(·, ·, ·),
satisfying the following conditions.

• Given instance I and an atom α of a solution to I, A outputs an instance
Iα. We require that |Iα| < |I|. Let S(I | α) represent the set of feasible
solutions to I that are consistent with atom α. We require that the feasible
solutions of Iα, S(Iα), are in one-to-one correspondence with S(I | α).
This correspondence is given by the polynomial time computable function
f(·, ·, ·) as follows.

A.6 Notes 351

f(I, α, ·) : S(Iα) → S(I | α).

• The correspondence f(I, α, ·) preserves order in the objective function val-
ues of solutions. Thus, if s′

1 and s′
2 are two feasible solutions of Iα with

objΠ(Iα, s′
1) ≤ objΠ(Iα, s′

2), and f(I, α, s′
1) = s1 and f(I, α, s′

2) = s2, then
objΠ(I, s1) ≤ objΠ(I, s2).

• Given the cost of an optimal solution to Iα, the cost of the best solution
in S(I | α) can be computed efficiently, and is given by g(I, α,OPT(Iα)).

Theorem A.3 Let Π be an NP-optimization problem that is self-reducible.
There is a polynomial time (exact) algorithm for Π, given an oracle, O, for
the decision version of Π.

Proof: As remarked earlier, via a suitable binary search we can use O to
compute the cost of the optimal solution to an instance in polynomial time.

We will derive polynomial time algorithm R for solving Π exactly. Assume
that A, f , and g are defined as above for the self-reducibility of Π. Let I be
an instance of Π. R first finds one atom of an optimal solution to I. An
atom, say β, satisfies this condition iff g(I, β,OPT(Iβ)) = OPT(I), where
Iβ = A(I, β). Since atoms are only O(log n) bits long, finding such an atom
involves simply searching the polynomially many possibilities. Let α be the
atom found, and let Iα = A(I, α). R then recursively computes an optimal
solution, say s′, to Iα. Finally, it outputs f(I, α, s′), which is guaranteed to
be an optimal solution to I. Since |Iα| < |I|, the recursion also takes only
polynomial time. ✷

Remark A.4 The number of strings of length O(log n) that algorithm R
needs to examine for finding a good atom depends on the specific problem.
For instance, in the case of cardinality vertex cover we picked an arbitrary
vertex, say v, and considered only two atoms, that v is or isn’t in the cover.

A.6 Notes

The definition of an NP-optimization problem is due to Krentel [178].
Approximation factor preserving reductions are a stringent version of L-
reducibility from Papadimitriou and Yannakakis [218]. Self-reducibility was
first defined by Schnorr [234]. See Khuller and Vazirani [171] for a problem
that is not self-reducible, assuming P �= NP. For further information on
NP-completeness and complexity theory see Garey and Johnson [93] and
Papadimitriou [216].

B Basic Facts from Probability Theory

Let us recall some useful facts from probability theory. We assume that the
reader has already had a detailed exposure to this material (see Section B.4
for references).

B.1 Expectation and moments

Two quantities provide much information about a random variable: the mean,
also called expectation, and variance. A key property of the expectation,
which often simplifies its evaluation, is called linearity of expectation. It states
that if X,X1, . . . , Xn are random variables such that X = c1X1 + . . .+cnXn,
where c1, . . . , cn are constants, then

E[X] = c1E[X1] + . . . + cnE[Xn].

(In particular, the expectation of a sum of random variables is the sum of
their expectations.) The usefulness of this property arises from the fact that
no assumption is made about independence between the random variables
X1, . . . , Xn. Often a complex random variable can be written as the sum of
indicator random variables (i.e., random variables taking on 0/1 values only),
thereby simplifying the evaluation of its expectation.

The variance of random variable X measures the spread of X from its
mean, and is defined as

V [X] = E[(X −E[X])2] = E[X2]−E[X]2.

Its positive square root is called the standard deviation. The mean and stan-
dard deviation of X are denoted by µ(X) and σ(X), respectively.

For k ∈ N, the kth moment and kth central moment of X are defined to
be E[Xk] and E[(X −E[X])k], respectively. Thus the variance is the second
central moment.

In general, the expectation of the product of random variables is not the
product of expectations. An important exception is when the random vari-
ables are independent. Thus, if X and Y are independent random variables,
then E[XY] = E[X]E[Y]. This immediately implies that the variance of the
sum of independent random variables is the sum of their variances, i.e., for
independent random variables X and Y , V [X + Y] = V [X] + V [Y].

B.2 Deviations from the mean 353

B.2 Deviations from the mean

If X is a nonnegative random variable with a known expectation, then
Markov’s Inequality helps bound the probability of deviations from the mean
as follows. For t ∈ R+,

Pr[X ≥ t] ≤ E[X]
t

.

This obvious inequality finds surprisingly many uses. For instance, it helps
in obtaining a high probability statement from a bound on the expectation
(e.g., see Section 14.2).

If the variance of a random variable is small, then large deviations from the
mean are improbable. This intuitive statement is formalized by Chebyshev’s
inequality which states that for any random variable X and a ∈ R+,

Pr[|X −E[X]| ≥ a] ≤
(

σ(X)
a

)2

.

See Lemma 28.5 for an application.
Poisson trials are repeated independent trials, each of which has two pos-

sible outcomes, called success and failure. In general, the success probability
is allowed to change with the trials. They are called Bernoulli trials if the
success probability is the same for each trial.

The Chernoff bounds, which provide bounds on the tail probabilities of
Poisson trials, are very useful in analyzing algorithms. Let us represent n Pois-
son trials by indicator random variables X1, . . . , Xn, with 1 and 0 representing
success and failure, respectively. Let Pr[Xi = 1] = pi, where 0 < pi < 1 for
1 ≤ i ≤ n. Let random variable X = X1 + . . .+Xn and µ = E[X] =

∑n
i=1 pi.

For the bound on the lower tail assume 0 < δ ≤ 1. Then,

Pr[X < (1− δ)µ] < e(−µδ2/2).

The expression for the upper tail is more involved: for any δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
.

It can be simplified by considering two ranges for δ. For δ > 2e− 1,

Pr[X > (1 + δ)µ] < 2−(1+δ)µ,

and for δ ≤ 2e− 1,

Pr[X > (1 + δ)µ] < e−µδ2/4.

354 B Basic Facts from Probability Theory

B.3 Basic distributions

Three distributions, of great universality, are defined below. The probability
distribution of the number of successes in Bernoulli trials is called the bino-
mial distribution. Consider n Bernoulli trials with probability of success p.
The probability of k successes, for 0 ≤ k ≤ n, is given by

B(k;n, p) =
(

n

k

)
pk(1− p)n−k.

The Poisson distribution with parameter λ > 0 is as follows. For each
nonnegative integer k, the probability of exactly k successes is defined to be

p(k;λ) = e−λλk

k!
.

The limit of the binomial distribution B(k;n, p) as n → ∞ and np → λ, a
constant, is the Poisson distribution p(k;λ). Indeed, in many applications one
comes across Bernoulli trials in which n is large, p is small, and the product
λ = np is moderate. In these situations, p(k;np) is a good approximation to
B(k;n, p).

The normal density function with mean µ and standard deviation σ is

n(x) =
1

σ
√

2π
e− (x−µ)2

2σ2 ,

and the normal distribution function is its integral,

N(x) =
1

σ
√

2π

∫ x

−∞
e− (y−µ)2

2σ2 dy.

The normal distribution also approximates the binomial distribution. Let us
state this for the case p = 1/2. Let n be even, n = 2ν, say. For −ν ≤ k ≤ ν,
define

ak = a−k = B(ν + k; 2ν, 1/2).

In the limit as ν → ∞ and k varies in the range 0 < k <
√

ν, ak can be

approximated by hn(kh), where h =
√

2
ν = 2√

n
.

B.4 Notes

For further information see the books by Feller [85], Motwani and Raghavan
[209], Spencer [243], and Alon and Spencer [6].

References

1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation
algorithm for the generalized Steiner network problem on networks. SIAM
Journal on Computing, 24:440–456, 1995. (Cited on pp. 130, 212)

2. M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized
reductions. In Proc. 30th ACM Symposium on the Theory of Computing,
pages 10–19, 1998. (Cited on p. 293)

3. D. Aldous. The random walk construction for spanning trees and uniform la-
beled trees. SIAM Journal on Discrete Mathematics, 3:450–465, 1990. (Cited
on p. 339)

4. F. Alizadeh. Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5:13–51,
1995. (Cited on p. 268)

5. N. Alon, A. Frieze, and D. Welsh. Polynomial time randomised approximation
schemes for Tutte-Grothendieck invariants: the dense case. Random Structures
and Algorithms, 6:459–478, 1995. (Cited on p. 342)

6. N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons, New
York, NY, 2000. (Cited on pp. 139, 354)

7. J. D. Annan. The complexities of the coefficients of the Tutte polynomial.
Discrete Applied Mathematics, 57:93–103, 1995. (Cited on p. 342)

8. J.D. Annan. A randomized approximation algorithm for counting the number
of forests in dense graphs. Combinatorics, Probability and Computing, 3:273–
283, 1994. (Cited on p. 339)

9. S. Arora. Polynomial time approximation scheme for Euclidean TSP and other
geometric problems. In Proc. 37th IEEE Annual Symposium on Foundations
of Computer Science, pages 2–11, 1996. (Cited on p. 89)

10. S. Arora. Nearly linear time approximation scheme for Euclidean TSP and
other geometric problems. In Proc. 38th IEEE Annual Symposium on Foun-
dations of Computer Science, pages 554–563, 1997. (Cited on p. 89)

11. S. Arora and C. Lund. Hardness of approximations. In D.S. Hochbaum,
editor, Approximation Algorithms for NP-Hard Problems, pages 46–93. PWS
Publishing, Boston, MA, 1997. (Cited on p. 332)

12. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and intractability of approximation problems. In Proc. 33rd IEEE Annual
Symposium on Foundations of Computer Science, pages 13–22, 1992. (Cited
on p. 332)

13. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-
medians and related problems. In Proc. 30th ACM Symposium on the Theory
of Computing, pages 106–113, 1998. (Cited on p. 89)

356 References

14. S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization
of NP. In Proc. 33rd IEEE Annual Symposium on Foundations of Computer
Science, pages 2–13, 1992. (Cited on p. 332)

15. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pan-
dit. Local search heuristics for k-median and facility location problems. In
Proc. 33rd ACM Symposium on the Theory of Computing, 2001. (Cited on
pp. 253, 254)

16. Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theo-
rem and approximation algorithms. SIAM Journal on Computing, 27:291–301,
1998. (Cited on p. 197)

17. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation. Combinatorial Optimization
Problems and their Approximability Properties. Springer-Verlag, Berlin, 1999.
(Cited on pp. 11, 333)

18. L. Babai. Trading group theory for randomness. In Proc. 17th ACM Sympo-
sium on the Theory of Computing, pages 421–429, 1985. (Cited on p. 332)

19. V. Bafna, P. Berman, and T. Fujito. Constant ratio approximations of the
weighted feedback vertex set problem for undirected graphs. In Algorithms
and Computation, 6th International Symposium, ISAAC, volume 1004 of Lec-
ture Notes in Computer Science, pages 142–151. Springer-Verlag, Berlin, 1995.
(Cited on p. 60)

20. R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for
the weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.
(Cited on p. 130)

21. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. In Proc. 37th IEEE Annual Symposium on Foundations of Com-
puter Science, pages 184–193, 1996. (Cited on p. 254)

22. C. Bazgan, M. Santha, and Z. Tuza. Efficient approximation algorithms for the
subset-sum problem. In Proc. 25th International Colloquium on Automata,
Languages, and Programming, volume 1443 of Lecture Notes in Computer
Science, pages 387–396. Springer-Verlag, Berlin, 1998. (Cited on p. 72)

23. A. Becker and D. Geiger. Approximation algorithms for the loop cutset prob-
lem. In Proc. 10th Conference on Uncertainty in Artificial Intelligence, pages
60–68, 1994. (Cited on p. 60)

24. M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interac-
tive proofs: How to remove intractability. In Proc. 20th ACM Symposium on
the Theory of Computing, pages 113–131, 1988. (Cited on p. 332)

25. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2.
Information Processing Letters, 32:171–176, 1989. (Cited on p. 332)

26. S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph lay-
out problems. Journal of Computer and System Sciences, 28:300–343, 1984.
(Cited on p. 197)

27. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation
of shortest superstring. Journal of the ACM, 41:630–647, 1994. (Cited on
p. 67)

28. M. Blum and S. Kannan. Designing programs that check their work. In Proc.
21st ACM Symposium on the Theory of Computing, pages 86–97, 1989. (Cited
on p. 332)

References 357

29. M. Blum, M. Luby, and R. Rubinfeld. Testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47:549–595,
1993. (Cited on p. 332)

30. R. Boppana and M.M. Halldórsson. Approximating maximum independent
sets by excluding subgraphs. BIT, 32:180–196, 1992. (Cited on p. 332)

31. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge, UK, 1998. (Cited on p. 78)

32. J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert spaces.
Israeli J. Math., 52:46–52, 1985. (Cited on p. 197)

33. A.Z. Broder. How hard is it to marry at random? In Proc. 18th ACM Sym-
posium on the Theory of Computing, pages 50–58, 1986. (Cited on p. 305)

34. A.Z. Broder. Generating random spanning trees. In Proc. 30th IEEE Annual
Symposium on Foundations of Computer Science, pages 442–447, 1989. (Cited
on p. 339)

35. R. Bubley and M. Dyer. Faster random generation of linear extensions. Dis-
crete Mathematics, 201:81–88, 1999. (Cited on p. 340)

36. G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algo-
rithm for multiway cut. In Proc. 30th ACM Symposium on the Theory of
Computing, pages 48–52, 1998. (Cited on p. 167)

37. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li.
Approximation algorithms for directed Steiner tree problems. In Proc. 9th
ACM-SIAM Annual Symposium on Discrete Algorithms, pages 192–200, 1998.
(Cited on p. 337)

38. M. Charikar and S. Guha. Improved combinatorial algorithms for the facility
location and k-median problems. In Proc. 40th IEEE Annual Symposium on
Foundations of Computer Science, pages 378–388, 1999. (Cited on p. 254)

39. M. Charikar, S. Guha, É. Tardos, and D.B. Shmoys. A constant-factor approx-
imation algorithm for the k-median problem. In Proc. 31st ACM Symposium
on the Theory of Computing, pages 1–10, 1999. (Cited on p. 254)

40. M. Charikar, S. Khuller, D.M. Mount, and G. Narshimhan. Algorithms for
facility location problems with outliers. In Proc. 12th ACM-SIAM Annual
Symposium on Discrete Algorithms, pages 642–651, 2001. (Cited on p. 240)

41. M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai, and
A. Tomkins. Minimizing wirelength in zero and bounded skew clock trees.
In Proc. 10th ACM-SIAM Annual Symposium on Discrete Algorithms, pages
177–184, 1999. (Cited on p. 37)

42. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. In Proc. 37th IEEE Annual Symposium
on Foundations of Computer Science, pages 292–301, 1996. (Cited on
pp. 226, 227, 231)

43. B. Chor and M. Sudan. A geometric approach to betweenness. SIAM Journal
on Discrete Mathematics, 11:511–523, 1998. (Cited on p. 267)

44. E.-A. Choukhmane. Une heuristique pour le problème de l’arbre de Steiner.
RAIRO Rech. Opér., 12:207–212, 1978. (Cited on p. 37)

45. N. Christofides. Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical report, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976. (Cited on p. 37)

46. F. Chudak, M.X. Goemans, D. Hochbaum, and D.P. Williamson. A primal–
dual interpretation of two 2-approximation algorithms for the feedback vertex

358 References

set problem in undirected graphs. Operations Research Letters, 22:111–118,
1998. (Cited on pp. 60, 129)

47. F. Chudak, T. Roughgarden, and D.P. Williamson. Approximate k-MSTs
and k-Steiner trees via the primal–dual method and Lagrangian relaxation.
Manuscript, 2000. (Cited on p. 252)

48. V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of
Operations Research, 4:233–235, 1979. (Cited on pp. 26, 118)

49. V. Chvátal. Linear Programming. W.H. Freeman and Co., New York, NY,
1983. (Cited on p. 107)

50. E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms
for bin backing: a survey. In D.S. Hochbaum, editor, Approximation Algo-
rithms for NP-Hard Problems, pages 46–93. PWS Publishing, Boston, MA,
1997. (Cited on p. 78)

51. S.A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd
ACM Symposium on the Theory of Computing, pages 151–158, 1971. (Cited
on p. 10)

52. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combi-
natorial Optimization. John Wiley & Sons, New York, NY, 1998. (Cited on
p. 107)

53. C. Cooper and A. Frieze. Mixing properties of the Swendsen-Wang process on
classes of graphs. Random Structures Algorithms, 15:242–261, 1999. (Cited
on p. 342)

54. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. Second edition. MIT Press and McGraw-Hill, 2001. (Cited on
p. 11)

55. R. Courant and H. Robbins. What Is Mathematics? Oxford University Press,
New York, NY, 1941. (Cited on p. 37)

56. P. Dagum, M. Luby, M. Mihail, and U.V. Vazirani. Polytopes, permanents
and graphs with large factors. In Proc. 29th IEEE Annual Symposium on
Foundations of Computer Science, pages 412–421, 1988. (Cited on p. 339)

57. E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864–894, 1994. (Cited on p. 46)

58. G.B. Dantzig. Linear Programming and Extensions. Reprint of the 1968
corrected edition. Princeton University Press, Princeton, NJ, 1998. (Cited on
p. 107)

59. G.B. Dantzig, L.R. Ford, and D.R. Fulkerson. Solution of a large-scale
traveling-salesman problem. Operations Research, 2:393–410, 1954. (Cited
on p. 231)

60. G.B. Dantzig, L.R. Ford, and D.R. Fulkerson. A primal–dual algorithm for
linear programs. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities
and Related Systems, pages 171–181. Princeton University Press, Princeton,
NJ, 1956. (Cited on p. 129)

61. G. Dobson. Worst-case analysis of greedy heuristics for integer programming
with non-negative data. Mathematics of Operations Research, 7:515–531, 1982.
(Cited on p. 118)

62. P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay. Clustering in
large graphs and matrices. In Proc. 10th ACM-SIAM Annual Symposium on
Discrete Algorithms, pages 291–299, 1999. (Cited on p. 254)

References 359

63. D.Z. Du and F.K. Hwang. Gilbert-Pollack conjecture on Steiner ratio is true.
Algorithmica, 7:121–135, 1992. (Cited on p. 37)

64. M. Dyer, R. Kannan, and J. Mount. Sampling contingency tables. Random
Structures and Algorithms, 10:487–506, 1997. (Cited on p. 340)

65. M.E. Dyer, A. Frieze, and M.R. Jerrum. Approximately counting hamilton
cycles in dense graphs. SIAM Journal on Computing, 27:1262–1272, 1998.
(Cited on p. 341)

66. M.E. Dyer, A. Frieze, and M.R. Jerrum. On counting independent sets in
sparse graphs. In Proc. 40th IEEE Annual Symposium on Foundations of
Computer Science, pages 210–217, 1999. (Cited on p. 341)

67. M.E. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. Journal of the ACM, 38:1–17,
1991. (Cited on p. 338)

68. J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards. Section B, 69:125–130, 1965.
(Cited on p. 104)

69. J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965. (Cited on pp. 10, 11)

70. J. Edmonds. Optimum branchings. Journal of Research of the National Bu-
reau of Standards. Section B, 71:233–240, 1967. (Cited on p. 212)

71. J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming,
1:127–136, 1971. (Cited on p. 105)

72. J. Edmonds. Matroid intersection. Annals of Discrete Mathematics, 4:185–
204, 1979. (Cited on p. 228)

73. P. Erdős. Gráfok páros körüljárású részgráfjairól (On bipartite subgraphs of
graphs, in Hungarian). Mat. Lapok, 18:283–288, 1967. (Cited on p. 10)

74. P. Erdős and J.L. Selfridge. On a combinatorial game. Journal of Combina-
torial Theory, Series A, 14:298–301, 1973. (Cited on p. 139)

75. G. Even, J. Naor, B. Schieber, and S. Rao. Divide-and-conquer approximation
algorithms via spreading metrics. Journal of the ACM, 47:585–616, 2000.
(Cited on p. 178)

76. G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum sub-
set feedback sets in undirected graphs with applications. In Proc. 4th Israel
Symposium on Theory of Computing and Systems, pages 78–88, 1996. (Cited
on p. 167)

77. G. Even, J. Naor, and L. Zosin. An 8-approximation algorithm for the sub-
set feedback vertex set problem. In Proc. 37th IEEE Annual Symposium on
Foundations of Computer Science, pages 310–319, 1996. (Cited on p. 167)

78. T. Feder and M. Mihail. Balanced matroids. In Proc. 24th ACM Symposium
on the Theory of Computing, pages 26–38, 1992. (Cited on p. 339)

79. U. Feige. Approximating the bandwidth via volume respecting embeddings.
In Proc. 30th ACM Symposium on the Theory of Computing, pages 90–99,
1998. (Cited on p. 196)

80. U. Feige. A treshold of lnn for approximating set cover. Journal of the ACM,
45:634–652, 1998. (Cited on pp. 26, 331, 332)

81. U. Feige and M.X. Goemans. Approximating the value of two prover proof
systems, with applications to MAX-CUT and MAX DICUT. In Proc. 3rd
Israel Symposium on Theory of Computing and Systems, pages 182–189, 1995.
(Cited on p. 269)

360 References

82. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating
clique is almost NP-complete. In Proc. 32nd IEEE Annual Symposium on
Foundations of Computer Science, pages 2–12, 1991. (Cited on p. 332)

83. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the min-
imum bisection. In Proc. 41st IEEE Annual Symposium on Foundations of
Computer Science, pages 105–115, 2000. (Cited on pp. 197, 336)

84. U. Feige and G. Schechtman. On the optimality of the random hyperplane
rounding technique for MAX-CUT. In Proc. 33rd ACM Symposium on the
Theory of Computing, 2001. (Cited on p. 268)

85. W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley & Sons, New York, NY, 1950. (Cited on p. 354)

86. W. Fernandez de la Vega and G.S. Lueker. Bin packing can be solved within
1 + ε in linear time. Combinatorica, 1:349–355, 1981. (Cited on p. 78)

87. A. Freund and H. Karloff. A lower bound of 8/(7 + 1
k−1) on the integrality ra-

tio of the Calinescu–Karloff–Rabani relaxation for multiway cut. Information
Processing Letters, 75:43–50, 2000. (Cited on p. 167)

88. A. Frieze. On the Lagarias–Odlyzko algorithm for the subset sum problem.
SIAM Journal on Computing, 15:536–539, 1986. (Cited on p. 291)

89. A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks,
12:23–39, 1982. (Cited on p. 34)

90. A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-
CUT and MAX BISECTION. Algorithmica, 18:67–81, 1997. (Cited on p. 269)

91. M.R. Garey, R.L. Graham, and J.D. Ullman. An analysis of some packing
algorithms. In Combinatorial Algorithms (Courant Computer Science Sympo-
sium, No. 9), pages 39–47, 1972. (Cited on p. 10)

92. M.R. Garey and D.S. Johnson. Strong NP-completeness results: motivation,
examples, and implications. Journal of the ACM, 25:499–508, 1978. (Cited
on p. 73)

93. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., New York, NY, 1979.
(Cited on pp. 11, 351)

94. N. Garg. A 3-approximation for the minimum tree spanning k vertices. In
Proc. 37th IEEE Annual Symposium on Foundations of Computer Science,
pages 302–309, 1996. (Cited on p. 252)

95. N. Garg, H. Saran, and V.V. Vazirani. Finding separator cuts in planar graphs
within twice the optimal. SIAM Journal on Computing, 29:159–179, 1999.
(Cited on p. 336)

96. N. Garg, V.V. Vazirani, and M. Yannakakis. Multiway cuts in directed and
node weighted graphs. In Proc. 21st International Colloquium on Automata,
Languages, and Programming, volume 820 of Lecture Notes in Computer Sci-
ence, pages 487–498. Springer-Verlag, Berlin, 1994. (Cited on p. 167)

97. N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25:235–251, 1996. (Cited on p. 179)

98. N. Garg, V.V. Vazirani, and M. Yannakakis. Primal–dual approximation al-
gorithms for integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.
(Cited on pp. 152, 153, 154)

99. C.F. Gauss. Disquisitiones Arithmeticae. English edition translated by A.A.
Clarke. Springer-Verlag, New York, NY, 1986. (Cited on p. 292)

References 361

100. E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16:1–29, 1968. (Cited on p. 37)

101. M.X. Goemans and D.J. Bertsimas. Survivable networks, linear program-
ming relaxations and the parsimonious property. Mathematical Programming,
60:145–166, 1993. (Cited on p. 228)

102. M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, É. Tardos, and D.P.
Williamson. Improved approximation algorithms for network design problems.
In Proc. 5th ACM-SIAM Annual Symposium on Discrete Algorithms, pages
223–232, 1994. (Cited on p. 225)

103. M.X. Goemans and J. Kleinberg. The Lovász theta function and a semidefinite
programming relaxation of vertex cover. SIAM Journal on Discrete Mathe-
matics, 11:196–204, 1998. (Cited on p. 334)

104. M.X. Goemans and D.P. Williamson. New 3
4 -approximation algorithms for

the maximum satisfiability problem. SIAM Journal on Discrete Mathematics,
7:656–666, 1994. (Cited on pp. 138, 139)

105. M.X. Goemans and D.P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24:296–317, 1995.
(Cited on pp. 130, 208, 212)

106. M.X. Goemans and D.P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42:1115–1145, 1995. (Cited on pp. 267, 268)

107. M.X. Goemans and D.P. Williamson. The primal–dual method for approxi-
mation algorithms and its applications to network design problems. In D.S.
Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages
144–191. PWS Publishing, Boston, MA, 1997. (Cited on pp. 130, 212)

108. O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating short-
est lattice vectors is not harder than approximating closest lattice vectors.
Information Processing Letters, 71, 1999. (Cited on p. 292)

109. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of in-
teractive proofs. SIAM Journal on Computing, 18:186–208, 1989. (Cited on
p. 332)

110. R.E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of the
SIAM, 9:551–570, 1961. (Cited on p. 46)

111. T.F. Gonzalez. Clustering to minimize the maximum inter-cluster distance.
Theoretical Computer Science, 38:293–306, 1985. (Cited on p. 52)

112. V. Gore and M. Jerrum. The Swendsen-Wang process does not always mix
rapidly. In Proc. 29th ACM Symposium on the Theory of Computing, pages
674–681, 1997. (Cited on p. 342)

113. R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563–1581, 1966. (Cited on pp. 10, 83)

114. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal
on Applied Mathematics, 17:416–429, 1969. (Cited on p. 83)

115. M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation scheme
for planar graph TSP. In Proc. 36th IEEE Annual Symposium on Foundations
of Computer Science, pages 640–646, 1995. (Cited on p. 89)

116. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.
(Cited on p. 107)

362 References

117. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Second edition. Springer-Verlag, Berlin, 1993. (Cited
on p. 107)

118. V. Guruswami, S. Khanna, R. Rajaraman, B. Sheperd, and M. Yannakakis.
Near-optimal hardness results and approximation algorithms for edge-disjoint
and related problems. In Proc. 31st ACM Symposium on the Theory of Com-
puting, pages 19–28, 1999. (Cited on p. 154)

119. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, Cambridge, MA, 1989. (Cited on p. 341)

120. L.A. Hall. Approximation algorithms for scheduling. In D.S. Hochbaum,
editor, Approximation Algorithms for NP-Hard Problems, pages 1–45. PWS
Publishing, Boston, MA, 1997. (Cited on p. 145)

121. J. Hastad. Clique is hard to approximate within n1−ε. In Proc. 37th IEEE An-
nual Symposium on Foundations of Computer Science, pages 627–636, 1996.
(Cited on p. 332)

122. J. Hastad. Some optimal inapproximability results. In Proc. 29th ACM Sym-
posium on the Theory of Computing, pages 1–10, 1997. (Cited on pp. 330, 332)

123. M. Held and R.M. Karp. The traveling-salesman and minimum cost spanning
trees. Operations Research, 18:1138–1162, 1970. (Cited on p. 230)

124. D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical
Programming, 22:148–162, 1982. (Cited on p. 242)

125. D.S. Hochbaum. Approximation algorithms for the set covering and vertex
cover problems. SIAM Journal on Computing, 11:555–556, 1982. (Cited on
pp. 25, 124)

126. D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems.
PWS Publishing, Boston, MA, 1997. (Cited on p. 11)

127. D.S. Hochbaum and D.B. Shmoys. A unified approach to approximation al-
gorithms for bottleneck problems. Journal of the ACM, 33:533–550, 1986.
(Cited on p. 53)

128. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34:144–162, 1987. (Cited on p. 83)

129. D.S. Hochbaum and D.B. Shmoys. A polynomial approximation scheme for
machine scheduling on uniform processors: using the dual approximation ap-
proach. SIAM Journal on Computing, 17:539–551, 1988. (Cited on p. 145)

130. J.A. Hoogeveen. Analysis of Christofides’ heuristic: some paths are more
difficult than cycles. Operations Research Letters, 10:291–295, 1991. (Cited
on p. 34)

131. E. Horowitz and S.K. Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM, 23:317–327, 1976. (Cited on
p. 83)

132. W.L. Hsu and G.L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1:209–216, 1979. (Cited on p. 53)

133. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem,
volume 53 of Annals of Discrete Mathematics. North-Holland, Amsterdam,
Netherlands, 1992. (Cited on p. 37)

134. O.H. Ibarra and C.E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22:463–468, 1975. (Cited
on p. 73)

References 363

135. R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc.
30st IEEE Annual Symposium on Foundations of Computer Science, pages
248–253, 1989. (Cited on p. 332)

136. A. Iwainsky, E. Canuto, O. Taraszow, and A. Villa. Network decomposition
for the optimization of connection structures. Networks, 16:205–235, 1986.
(Cited on p. 37)

137. K. Jain. A factor 2 approximation algorithm for the generalized Steiner net-
work problem. Combinatorica, 1:39–60, 2001. (Cited on p. 231)

138. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility
location problems. Manuscript, 2001. (Cited on pp. 242, 254, 331)

139. K. Jain, I. I. Măndoiu, V.V. Vazirani, and D. P. Williamson. Primal–dual
schema based approximation algorithms for the element connectivity problem.
In Proc. 10th ACM-SIAM Annual Symposium on Discrete Algorithms, pages
484–489, 1999. (Cited on p. 337)

140. K. Jain and V.V. Vazirani. An approximation algorithm for the fault tolerant
metric facility location problem. In Proc. 3rd International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, volume
1913 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.
(Cited on p. 240)

141. K. Jain and V.V. Vazirani. Approximation algorithms for the metric facil-
ity location and k-median problems using the primal–dual schema and La-
grangian relaxation. Journal of the ACM, 48:274–296, 2001. (Cited on
pp. 242, 253, 254)

142. M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an ap-
proach to approximate counting. In D.S. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, pages 482–520. PWS Publishing, Boston,
MA, 1997. (Cited on p. 305)

143. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with non-negative entries. Electronic
Colloquium on Computational Complexity, pages TR00–079, 2000. (Cited on
pp. 338, 340)

144. M.R. Jerrum. A very simple algorithm for estimating the number of k-
colorings of a low-degree graph. Random Structures and Algorithms, 7, 1995.
(Cited on p. 341)

145. M.R. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal
on Computing, 18:1149–1178, 1989. (Cited on p. 305)

146. M.R. Jerrum and A. Sinclair. Polynomial time approximation algorithms for
the Ising model. SIAM Journal on Computing, 22:1087–1116, 1993. (Cited
on p. 342)

147. M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theoretical Computer Science,
43:169–188, 1986. (Cited on p. 303)

148. T. Jiang, M. Li, and D. Du. A note on shortest common superstrings with
flipping. Information Processing Letters, 44:195–199, 1992. (Cited on p. 67)

149. D.S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts
Institute of Technology, Department of Mathematics, Cambridge, MA, 1973.
(Cited on p. 77)

150. D.S. Johnson. Approximation algorithms for combinatorial problems. Journal
of Computer and System Sciences, 9:256–278, 1974. (Cited on pp. 10, 26, 139)

364 References

151. J. Kahn, J.H. Kim, L. Lovász, and V.H. Vu. The cover time, the blanket
time, and the Matthews bound. In Proc. 41st IEEE Annual Symposium on
Foundations of Computer Science, pages 467–475, 2000. (Cited on p. 338)

152. M. Kaib and C.-P. Schnorr. The generalized Gauss reduction algorithm. Jour-
nal of Algorithms, 21(3):565–578, 1996. (Cited on p. 288)

153. R. Kannan. Algorithmic geometry of numbers. In Annual Review of Computer
Science, Vol. 2, pages 231–267. Annual Reviews, Palo Alto, CA, 1987. (Cited
on p. 293)

154. R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(3):415–440, 1987. (Cited on p. 293)

155. R. Kannan, L. Lovász, and M. Simonovits. Random walks and an o∗(n5)
volume algorithm for convex bodies. Random Structures and Algorithms, 11:1–
50, 1997. (Cited on p. 338)

156. D. Karger. A randomized fully polynomial time approximation scheme for
the all-terminal network reliability problem. SIAM Journal on Computing,
29:492–514, 1999. (Cited on pp. 304, 305)

157. D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. In Proc. 29th ACM
Symposium on the Theory of Computing, pages 668–678, 1999. (Cited on
p. 167)

158. D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM, 45:246–265, 1998. (Cited on
pp. 267, 269)

159. D. Karger and C. Stein. A new approach to the minimum cut problem. Journal
of the ACM, 43(4):601–640, 1996. (Cited on p. 304)

160. H. Karloff. Linear Programming. Birkhäuser, Boston, MA, 1991. (Cited on
p. 107)

161. H. Karloff. How good is the Goemans-Williamson MAX CUT algorithm.
SIAM Journal on Computing, 29:336–350, 1999. (Cited on p. 268)

162. H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX-3SAT?
In Proc. 38th IEEE Annual Symposium on Foundations of Computer Science,
pages 406–415, 1997. (Cited on p. 332)

163. N. Karmakar and R.M. Karp. An efficient approximation scheme for the one-
dimensional bin packing problem. In Proc. 23rd IEEE Annual Symposium on
Foundations of Computer Science, pages 312–320, 1982. (Cited on p. 78)

164. R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and
J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, NY, 1972. (Cited on p. 10)

165. R.M. Karp and M. Luby. Monte Carlo algorithms for enumeration and reli-
ability problems. In Proc. 24th IEEE Annual Symposium on Foundations of
Computer Science, pages 56–64, 1983. (Cited on pp. 302, 305)

166. R.M. Karp, M. Luby, and N. Madras. Monte Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10:429–448, 1989. (Cited
on p. 305)

167. A. Karzanov and L. Khachiyan. On the conductance of order Markov chains.
Technical Report DCS 268, Rutgers University, 1990. (Cited on p. 340)

168. P.W. Kasteleyn. Graph theory and crystal physics. In F. Harary, editor,
Graph Theory and Theoretical Physics, pages 43–110. Academic Press, New
York, NY, 1967. (Cited on p. 338)

References 365

169. S. Khuller, R. Pless, and Y.J. Sussmann. Fault tolerant k-center problems.
Theoretical Computer Science, 242:237–245, 2000. (Cited on pp. 52, 53)

170. S. Khuller and B. Raghavachari. Improved approximation algorithms for uni-
form connectivity problems. Journal of Algorithms, 21:434–450, 1996. (Cited
on p. 336)

171. S. Khuller and V.V. Vazirani. Planar graph colourability is not self-reducible,
assuming P �= NP . Theoretical Computer Science, 88(1):183–190, 1991.
(Cited on p. 351)

172. S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM, 42, 2:214–235, 1994. (Cited on p. 228)

173. P. Klein, S. Rao, A. Agrawal, and R. Ravi. An approximate max-flow min-cut
relation for undirected multicommodity flow, with applications. Combinator-
ica, 15:187–202, 1995. (Cited on pp. 179, 197)

174. D.E. Knuth. The Art of Computer Programming. Vol. 2. Seminumerical Al-
gorithms. Second edition. Addison-Wesley, Reading, MA, 1981. (Cited on
p. 266)

175. A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Annalen,
6:366–389, 1873. (Cited on p. 290)

176. M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a local search heuris-
tic for facility location problems. In Proc. 9th ACM-SIAM Annual Symposium
on Discrete Algorithms, pages 1–10, 1998. (Cited on p. 253)

177. L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees.
Acta Informatica, 15:141–145, 1981. (Cited on p. 37)

178. M.W. Krentel. The complexity of optimization problems. Journal of Computer
and System Sciences, 36:490–509, 1988. (Cited on p. 351)

179. H.W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955. (Cited on p. 129)

180. J. Lagarias. Worst case complexity bounds for algorithms in the the theory
of integral quadratic forms. Journal of Algorithms, 1:142–186, 1980. (Cited
on p. 292)

181. J. Lagarias, H.W. Lenstra, Jr., and C.-P. Schnorr. Korkin–Zolotarev bases
and successive minima of a lattice and its reciprocal lattice. Combinatorica,
10:333–348, 1990. (Cited on p. 293)

182. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM, 46:787–
832, 1999. (Cited on p. 197)

183. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:513–534, 1982. (Cited on p. 292)

184. J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming, 46:259–
271, 1990. (Cited on p. 145)

185. H.W. Lenstra, Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983. (Cited on p. 78)

186. L.A. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115–
116, 1973. English translation in Problems of Information Transmission 9:265–
266. (Cited on p. 10)

187. M. Li. Towards a DNA sequencing theory. In Proc. 31st IEEE Annual Sym-
posium on Foundations of Computer Science, pages 125–134, 1990. (Cited
on p. 26)

366 References

188. J. H. Lin and J. S. Vitter. Approximation algorithms for geometric median
problems. Information Processing Letters, 44:245–249, 1992. (Cited on p. 251)

189. J. H. Lin and J. S. Vitter. ε-approximation with minimum packing constraint
violation. In Proc. 24th ACM Symposium on the Theory of Computing, pages
771–782, 1992. (Cited on p. 254)

190. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15:215–245, 1995. (Cited on
pp. 196, 197, 266)

191. C.H.C. Little. An extension of Kasteleyn’s method of enumerating 1-factors
of planar graphs. In D. Holton, editor, Proc. 2nd Australian Conference on
Combinatorial Mathematics, volume 403 of Lecture Notes in Computer Sci-
ence, pages 63–72. Springer-Verlag, Berlin, 1974. (Cited on p. 338)

192. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975. (Cited on pp. 11, 26, 118)

193. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-
NSF Regional Conference Series in Applied Mathematics, 50. SIAM, Philadel-
phia, PA, 1986. (Cited on p. 291)

194. L. Lovász. Combinatorial Problems and Exercises. Second edition. North-
Holland, Amsterdam–New York, 1993. (Cited on pp. 107, 339, 341)

195. L. Lovász and M.D. Plummer. Matching Theory. North-Holland, Amsterdam–
New York, 1986. (Cited on pp. 8, 11, 107)

196. L. Lovász and A. Schrijver. Cones of matrices and set functions, and 0-1
optimization. SIAM Journal on Optimization, 1:166–190, 1990. (Cited on
p. 269)

197. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1988. (Cited on p. 332)

198. M. Luby and E. Vigoda. Approximately counting up to four. In Proc. 29th
ACM Symposium on the Theory of Computing, pages 682–687, 1997. (Cited
on p. 341)

199. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41:960–981, 1994. (Cited on pp. 26, 332)

200. S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based
approximation algoirthms. In Proc. 36th IEEE Annual Symposium on Foun-
dations of Computer Science, pages 162–169, 1995. (Cited on p. 268)

201. M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. A greedy facility lo-
cation algorithm analyzed using dual fitting. In Proc. 4th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems,
volume 2129 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2001. (Cited on pp. 241, 242)

202. P. Matthews. Generating random linear extensions of a partial order. The
Annals of Probability, 19:1367–1392, 1991. (Cited on p. 340)

203. L. McShine and P. Tetali. On the mixing time of the triangulation walk
and other Catalan structures. Randomization methods in Algorithm Design,
DIMACS-AMS, 43:147–160, 1998. (Cited on p. 340)

204. D. Micciancio. The shortest vector in a lattice is hard to approximate to
within some constant. In Proc. 39th IEEE Annual Symposium on Foundations
of Computer Science, pages 92–98, 1998. (Cited on p. 336)

205. M. Mihail. On coupling and the approximation of the permanent. Information
Processing Letters, 30:91–95, 1989. (Cited on p. 305)

References 367

206. M. Mihail. Set cover with requirements and costs evolving over time. In
International Workshop on Randomization, Approximation and Combinato-
rial Optimization, volume 1671 of Lecture Notes in Computer Science, pages
63–72. Springer-Verlag, Berlin, 1999. (Cited on p. 117)

207. J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions:
a simple polynomial-time approximation scheme for geometric TSP, k-MST,
and related problems. SIAM Journal on Computing, 28:1298–1309, 1999.
(Cited on p. 89)

208. B. Morris. Improved bounds for sampling contingency tables. In Interna-
tional Workshop on Randomization, Approximation and Combinatorial Opti-
mization, volume 1671 of Lecture Notes in Computer Science, pages 121–129.
Springer-Verlag, Berlin, 1999. (Cited on p. 340)

209. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, UK, 1995. (Cited on p. 354)

210. J. Naor and L. Zosin. A 2-approximation algorithm for the directed multi-
way cut problem. In Proc. 38th IEEE Annual Symposium on Foundations of
Computer Science, pages 548–553, 1997. (Cited on p. 167)

211. M. Naor, L. Schulman, and A. Srinivasan. Splitters and near-optimal de-
randomization. In Proc. 36th IEEE Annual Symposium on Foundations of
Computer Science, pages 182–191, 1995. (Cited on p. 332)

212. G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, New York, NY, 1988. (Cited on p. 107)

213. G.L. Nemhauser and L.E. Trotter. Vertex packings: structural properties and
algorithms. Mathematical Programming, 8:232–248, 1975. (Cited on p. 124)

214. Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in Convex
Programming. SIAM, Philadelphia, PA, 1994. (Cited on p. 268)

215. M.L. Overton. On minimizing the maximum eigenvalue of a symmetric matrix.
SIAM J. on Matrix Analysis and Appl., 13:256–268, 1992. (Cited on p. 268)

216. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
MA, 1994. (Cited on p. 351)

217. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982. (Cited on
pp. 11, 107)

218. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425–440,
1991. (Cited on pp. 332, 351)

219. C.H. Papadimitriou and M. Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18:1–11, 1993.
(Cited on p. 34)

220. M. Pinsker. On the complexity of a concentrator. In Proc. 7th Annual Tele-
traffic Conference, pages 318/1–318/4, 1973. (Cited on p. 179)

221. J. Plesńık. A bound for the Steiner tree problem in graphs. Math. Slovaca,
31:155–163, 1981. (Cited on p. 37)

222. V.R. Pratt. Every prime has a succinct certificate. SIAM Journal on Com-
puting, 4:214–220, 1975. (Cited on p. 9)

223. H. J. Prömel and A. Steger. RNC-approximation algorithms for the Steiner
problem. In Proc. Symposium on Theoretical Aspects of Computer Science,
volume 1200 of Lecture Notes in Computer Science, pages 559–570. Springer-
Verlag, Berlin, 1997. (Cited on p. 212)

368 References

224. M.O. Rabin. Probabilistic algorithms. In J.F. Traub, editor, Algorithms and
Complexity, Recent Results and New Directions, pages 21–39. Academic Press,
New York, NY, 1976. (Cited on p. 11)

225. P. Raghavan. Probabilistic construction of deterministic algorithms: approxi-
mating packing integer programs. Journal of Computer and System Sciences,
37:130–143, 1988. (Cited on p. 139)

226. S. Rajagopalan and V.V. Vazirani. On the bidirected cut relaxation for the
metric Steiner tree problem. In Proc. 10th ACM-SIAM Annual Symposium
on Discrete Algorithms, pages 742–751, 1999. (Cited on pp. 211, 335)

227. S. Rajagopalan and V.V. Vazirani. Primal–dual RNC approximation algo-
rithms for set cover and covering integer programs. SIAM Journal on Com-
puting, 28:526–541, 1999. (Cited on p. 118)

228. D. Randall and D.B. Wilson. Sampling spin configurations of an Ising system.
In Proc. 10th ACM-SIAM Annual Symposium on Discrete Algorithms, pages
S959–960, 1999. (Cited on p. 342)

229. S. Rao and W.D. Smith. Approximating geometrical graphs via “spanners”
and “banyans”. In Proc. 30th ACM Symposium on the Theory of Computing,
pages 540–550, 1998. (Cited on p. 89)

230. S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor. The rectilinear Steiner
arborescence problem. Algorithmica, 7:277–288, 1992. (Cited on p. 35)

231. R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27:763–
803, 1998. (Cited on p. 332)

232. S.K. Sahni and T.F. Gonzalez. P-complete approximation problems. Journal
of the ACM, 23:555–565, 1976. (Cited on p. 37)

233. H. Saran and V.V. Vazirani. Finding k-cuts within twice the optimal. SIAM
Journal on Computing, 24:101–108, 1995. (Cited on p. 46)

234. C.P. Schnorr. Optimal algorithms for self-reducible problems. In Proc. 3rd
International Colloquium on Automata, Languages, and Programming, pages
322–337, 1976. (Cited on p. 351)

235. C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoretical Computer Science, 53:201–224, 1987. (Cited on p. 292)

236. P. Schreiber. On the history of the so-called Steiner Weber problem. Wiss.
Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 35, 3, 1986.
(Cited on p. 37)

237. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
New York, NY, 1986. (Cited on p. 107)

238. P.D. Seymour. Packing directed circuits fractionally. Combinatorica, 15:281–
288, 1995. (Cited on p. 337)

239. D.B. Shmoys, É. Tardos, and K.I. Aardal. Approximation algorithms for
facility location problems. In Proc. 29th ACM Symposium on the Theory of
Computing, pages 265–274, 1997. (Cited on p. 242)

240. D.B. Shmoys and D.P. Williamson. Analyzing the Held-Karp TSP bound:
a monotonicity property with applications. Information Processing Letters,
35:281–285, 1990. (Cited on p. 231)

241. A. Sinclair. Improved bounds for mixing rates of Markov chains and multi-
commodity flow. Combinatorics, Probability and Computing, 1:351–370, 1992.
(Cited on p. 197)

242. A. Sinclair. Algorithms for Random Generation and Counting: a Markov
Chain Approach. Birkhäuser, Boston, MA, 1993. (Cited on p. 305)

References 369

243. J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia,
PA, 1987. (Cited on pp. 139, 354)

244. A. Srinivasan. Improved approximations of packing and covering problems.
In Proc. 27th ACM Symposium on the Theory of Computing, pages 268–276,
1995. (Cited on p. 124)

245. R.H. Swendsen and J.S. Wang. Non-universal critical dynamics in Monte
Carlo simulations. Physics Review Letters, 58:86–90, 1987. (Cited on p. 342)

246. R.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia,
PA, 1983. (Cited on p. 11)

247. L. Trevisan. Non-approximability results for optimization problems on
bounded degree instance. In Proc. 33rd ACM Symposium on the Theory of
Computing, 2001. (Cited on p. 334)

248. J.D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971. (Cited on p. 78)

249. L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8:189–201, 1979. (Cited on p. 305)

250. L. Vandeberghe and S. Boyd. Semidefinite programming. SIAM Review,
38:49–95, 1996. (Cited on p. 268)

251. V.V. Vazirani. NC algorithms for computing the number of perfect match-
ings in K3,3-free graphs and related problems. Information and Computation,
80:152–164, 1989. (Cited on p. 338)

252. V.V. Vazirani and M. Yannakakis. Suboptimal cuts: their enumeration, weight
and number. In Proc. 19th International Colloquium on Automata, Languages,
and Programming, volume 623 of Lecture Notes in Computer Science, pages
366–377. Springer-Verlag, Berlin, 1992. (Cited on p. 304)

253. D.L. Vertigan and D.J.A. Welsh. The computational complexity of the Tutte
plane. Combinatorics, Probability and Computing, 1:181–187, 1992. (Cited
on p. 342)

254. E. Vigoda. Improved bounds for sampling colorings. In Proc. 40th IEEE
Annual Symposium on Foundations of Computer Science, pages 51–59, 1999.
(Cited on p. 341)

255. V.G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.
Analiz., 3:25–30, 1964 (in Russian). (Cited on p. 10)

256. D.J.A. Welsh. Knots, Colourings and Counting. Cambridge University Press,
Cambridge, UK, 1993. (Cited on p. 342)

257. A. Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM, 30:729–735, 1983. (Cited on p. 23)

258. D.P. Williamson, M.X. Goemans, M. Mihail, and V.V. Vazirani. A primal–
dual approximation algorithm for generalized Steiner network problems. Com-
binatorica, 15:435–454, 1995. (Cited on pp. 130, 224)

259. D. B. Wilson. Generating random spanning trees more quickly than the cover
time. In Proc. 30th ACM Symposium on the Theory of Computing, pages
296–303, 1996. (Cited on p. 339)

260. L.A. Wolsey. Heuristic analysis, linear programming and branch and bound.
Mathematical Programming Study, 13:121–134, 1980. (Cited on pp. 231, 268)

261. M. Yannakakis. On the approximation of maximum satisfiability. Journal of
Algorithms, 3:475–502, 1994. (Cited on p. 139)

262. A.Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner
problem. Algorithmica, 9:463–470, 1993. (Cited on p. 212)

370 References

263. A.Z. Zelikovsky and I. I. Măndoiu. Practical approximation algorithms for
zero- and bounded-skew trees. In Proc. 12th ACM-SIAM Annual Symposium
on Discrete Algorithms, pages 407–416, 2001. (Cited on p. 37)

Problem Index

2CNF≡ clause deletion 176, 179

Acyclic subgraph 7, 334
Antichain cover 8

Bandwidth minimization 196
Betweenness 267
Bin covering 77
Bin packing 74, 74–78, 80, 124
– with fixed number of object sizes 81

Chain cover 8
Clique 9, 306, 309, 318–322
Closest vector 292
Clustering 243
– �22 253, 254
– metric k-cluster 52
Counting problems 294–305
– acyclic orientations 338
– antichains 340
– bases of a matroid 339
– colorings of a graph 341
– contingency tables 340
– DNF solutions 295, 305
– – weighted version 302
– Euler tours 339
– forests 339
– graphs with given degree sequence
340

– Hamiltonian cycles 341
– independent sets 341
– perfect matchings 305, 338
– simple cycles in a directed graph
303

– stable marriages 340
– trees 340
– triangulations 340
– volume of a convex body 338

Cover time 337
Covering integer programs 112, 116,
118

Cycle cover 35, 62

Dominating set 48, 50, 52

Edge coloring 10
Edge expansion 192
Enumerating cuts 304

Feedback edge set
– directed 337
– subset 166, 166, 167
Feedback vertex set 25, 54, 54–60,
129, 166

– directed 337
– subset 166, 166, 167, 336

Graph bipartization by edge deletion
178

Hamiltonian cycle 30, 303

Independent set 48, 51–53
– maximal 239

Knapsack 68, 68–73

Linear equations over GF[2] 138

Matching 3, 104
– b-matching 152, 227
– bipartite 129
– – maximum weight 129
– maximal 3, 8
– – minimum cardinality 8
– maximum 3, 5, 9, 124, 152, 153
– minimum weight 107
– perfect 105, 142, 143

372 Problem Index

– – minimum weight 32, 35, 62, 105,
230

Matroid intersection 228
Matroid parity 212, 212
MAX k-CUT 23, 138, 267, 269
Maximum antichain 8
Maximum coverage 25
Maximum cut (MAX-CUT) 10, 22,
138, 255, 255, 256, 260–263, 267, 268,
334

– directed 23, 138, 267, 269
Maximum flow 38, 97, 97–100, 168
Maximum satisfiability (MAX-SAT)
9, 131, 131–139, 263, 306

– MAX k-FUNCTION SAT 312
– MAX-2SAT 131, 263, 268
– MAX-3SAT 131, 309, 311–315, 322,
323, 326, 330, 331

– – with bounded occurrence of
variables 313–316, 330

Metric k-center 47, 47–50, 53
– fault-tolerant 52
– weighted 50, 50–52
Metric k-median 243, 243–254, 337
Metric k-MST 252
Metric facility location
– capacitated 240, 337
– fault tolerant 240
– metric uncapacitated 242
– prize-collecting 240
– uncapacitated 232, 232–239, 242,
337

Minimum k-connected subgraph
– edge 228
– vertex 226
Minimum k-cut 38, 40–44
Minimum bisection 193, 196, 197, 336
Minimum chain cover 8
Minimum cut 38, 298
– b-balanced 193, 193–194, 196, 197,
336

– s–t 38, 98, 97–100, 146
Minimum cut linear arrangement

194, 194–195, 197
Minimum length linear arrangement

178
Minimum makespan scheduling 9, 10,

79, 79–83, 140

– uniform parallel machines 140, 145
Minimum spanning tree (MST)
28–31, 105, 206, 207, 212

Multicommodity flow 97, 147, 163
– demands 168, 180, 180–197
– directed 165
– integer 148, 153, 154, 337
– – in trees 146–154
– – in trees of height one 152
– – in unit capacity trees 153
– sum 168, 168–176, 179
– uniform 192, 197
Multicut 146, 153, 168–179, 336
– directed 337
– in trees 146–154, 166
– in trees of height one 152
Multiway cut 38, 38–40, 155–167, 335
– bidirected integer program formula-
tion 164

– directed 165, 166, 167
– fractional 156
– node 160, 160–163, 166

Network design
– element connectivity 337
– vertex connectivity 336
Network reliability 297, 304, 305, 339
– s–t reliability 339
– global 339

Point-to-point connection 208

Satisfiability (SAT) 9, 330, 343, 344
– 3SAT 310, 343
Scheduling on unrelated parallel
machines 140, 140–145

Semidefinite programming 258,
255–269

Set cover VIII, 11, 15, 15–26, 34,
108–122, 124–130, 239, 251, 306, 309,
322–329, 334

– constrained set multicover 112, 116,
118

– multiset multicover 112, 116, 117,
123

– set multicover 24, 112, 116, 123
– with concave costs 117
Shortest superstring 9, 20, 19–22, 26,
61–67

– variants 25, 67

Problem Index 373

Shortest vector 273, 273–293, 336
Sparsest cut 180, 180–197, 336, 337
Steiner arborescence
– rectilinear 35
Steiner forest 198, 198–213
Steiner network 213, 213–231, 335
Steiner tree 27, 27–30, 33, 37, 198,
213, 306, 309, 335

– directed 34, 337
– Euclidean 89
– prize-collecting 208, 252
Subset sum 291
Subset-sum ratio problem 72
Survivable network design see Steiner
network and network design

Traveling salesman problem (TSP)
30, 229, 231

– asymmetric 34, 336
– Euclidean 84, 84–89
– metric 30–33, 37, 229, 231, 334
– – lengths one and two 34
– – variants 34
Tutte polynomial 341

Vertex coloring 23
– k-coloring 267, 269
Vertex cover 1, 15, 17–19, 23, 24, 104,
122–124, 129, 146, 152, 166, 306, 307,
309, 334

– cardinality 1, 2–5, 8, 152

Zero-skew tree
– rectilinear 36, 37

Subject Index

α-min cut 304
#P 294, 305
1-tree 230

Active set 200, 209
Approximation algorithm 2, 345–347
– approximation factor 346
– randomized 346
Approximation scheme 68
– fully polynomial randomized
(FPRAS) 295, 295, 297, 300, 302,
303, 305, 338–340

– fully polynomial time (FPTAS) 68,
69–70, 72, 77, 83

– polynomial time (PTAS) 68, 80–89,
140, 145, 311, 336

– – asymptotic 75, 74–78
Arborescence 228
Arithmetic-geometric mean inequality
135

Basis of a lattice 274
– Gauss reduced 281, 290
– KZ reduced 290
– Lovasz reduced 283
– weakly reduced 283, 290
Bernoulli trials 190, 353

Catalan numbers 86, 340
Certificate
– co-NP 336
– Yes/No 5–7, 93, 96, 294, 343–344,
348

– – approximate 274, 288
Chebyshev’s inequality 297, 353
Chernoff bounds 9, 190, 353
Christofides’ algorithm 37, 229, 334
Chromatic polynomial 342

co-NP 344
co-RP 10, 330, 348
Complementary slackness conditions

97, 100, 105, 125, 149, 161, 178, 199,
233

– relaxed 126, 129, 130, 146, 149, 199,
234

Compression 64
Concave function 135
Convex combination 258, 259
Convex set 259
Cost-effectiveness of a set 16, 113
Counting problems VII, 294–305,
338–342

– #P-complete VII, 294, 294, 305,
338

Covering LP 109
Crossing sets 215, 219
Cut packing 183–191
– approximate 184
Cut requirement function 213
Cycle space 54
– cyclomatic number 54
Cyclomatic weighted graphs 54–57

Decision problem 343
– NP-complete 344
– well-characterized 6, 5–7, 10, 93
– Yes/No certificate
– – approximate 7
Deficiency of a set 226
Demand graph 182
Derandomization 132–134, 138,
248–250, 268

Determinant of a lattice 274
Dilworth’s theorem 8
Divide-and-conquer algorithm 179,
193

376 Subject Index

DTIME 331, 332, 348
Dual fitting 101, 108–118, 241
Dual growing
– synchronized 198
Dual lattice 284, 284–288
Dynamic programming 69, 81, 153

Edge expansion 192
Edge-disjoint s–t paths 103, 336
Eigenvalue 257
Eigenvector 257
Ellipsoid algorithm 170, 214, 255, 259
Euclid’s algorithm 273, 276–278
Euler tour 28, 32
Eulerian graph 28, 31
Expander graph 175, 179, 192, 320,
332

Expander graphs 314
Extreme point solution 100, 102–104,
119, 122, 141–145, 214, 219–221

First-fit algorithm 74, 77
Flow-equivalent tree 44
Forward delete 153
Frequency of an element 15, 119
Function
– degree-weighted 17
– proper 208
Fundamental cycle 54

Game
– two-person zero-sum 106
Gauss’ algorithm 273, 276–278, 288
Gomory–Hu tree 40, 44, 46
Gram–Schmidt lower bound 287, 288
Gram–Schmidt orthogonalization

278, 278–280, 282, 285
Greedy algorithm 8, 16–17, 24, 44, 60,
64, 72, 108, 138, 241

Half-integrality 119, 122–124, 153,
160–163, 165, 213–221

Hall’s theorem 144
Hamiltonian cycle 29, 214
Hardness of approximation VIII,
306–333

Hungarian method 129

Integrality gap 102, 101–103, 111,
129, 137, 151, 164, 167, 207, 210, 211,
218, 229, 254, 262, 335, 337

Integrality ratio see Integrality gap
Interactive proof systems 332
Ising model 342
Isolating cut 38

Kirchhoff’s theorem 339
Konig-Egervary theorem 5, 104
Kruskal’s algorithm 105, 206

Lagrangian relaxation 250–252
Laminar family of sets 219
Layering 17–19, 25, 57, 60, 129
Linearity of expectation 136, 352
Local search 23, 253
Lower bounding OPT 2, 17, 31, 32, 39,
47, 62, 79, 89, 108, 206, 278–280

Lowest common ancestor 149
LP-duality
– theorem 6, 95, 93–97, 100, 106, 107,
148, 183

– – weak 96, 148, 169
– theory 6, 17, 29, 97, 101, 108, 147

Mader’s theorem 227, 231
Markov chain 192, 338, 339
– conductance 192–193, 197
– Markov chain Monte Carlo method
VIII, 294

– rapidly mixing 305, 339, 340
– stationary probability distribution
192

– Swendsen-Wang process 342
– transition matrix 192
Markov’s inequality 88, 353
Matroid 339
– balanced 339
– basis exchange graph 339
– graphic 339
– independent sets 212
Max-flow min-cut theorem 97, 103,
168, 207

– approximate version for demands
multicommodity flow 191

– approximate version for uniform
multicommodity flow 197

MAX-SNP-completeness 332

Subject Index 377

Maximum weight spanning tree 44
Menger’s theorem 103
Method of conditional expectation
131–134, 138, 139, 248

Metric 183–191
– �1-embedding 183–191
– – β-distortion 185
– – isometric 185, 186
– �2-embedding 196
– �22-embedding
– – isometric 195
– – optimal distortion 197, 266
– �p 185
Min–max relation 5–7, 11, 97–100, 168
– approximate 7, 151
Minkovski’s theorem 287
Moments of a random variable 352
– central 352
Monte Carlo sampling 297, 301

Near-minimum cuts 298–299
Next-fit algorithm 77
Norm 185
– �p 185
NP 343

Odd set cover 6
Optimization problem 2, 345, 351
– NP-complete 10
– NP-hard 68, 344
– strongly NP-hard 71
Orthogonality defect 275, 279
Overlap graph 66

P �=NP conjecture VII, 10, 68, 71, 345
Packing LP 110
Parametric pruning 47–52, 140–141,
252

Parsimonious property 229, 230
Partial ordering 8
PCP theorem VIII, 306, 308–311, 323,
332

Petersen graph 6, 214
Poisson trials 353
Positive semidefinite matrix 257,
257–258

Potts model 342
Prefix graph 62

Primal–dual schema VII, 101,
125–130, 149–152, 235–236, 335

– with synchronization 199–204
Primitive root 9
Primitive vector 275, 285, 286, 290
Principal submatrix 265
Probabilistic argument 179
Probabilistic method 324
Probabilistically checkable proof system
(PCP) 309, 332

– completeness 319
– parallel repetition 325–326
– soundness 319
– two-prover one round 322–324, 332
Probability distribution
– binomial 354
– normal 261, 266, 354
– Poisson 354
– spherically symmetric 261
Probability theory 352–354
Pseudo-approximation algorithm
193–195, 197

Pseudo-forest 143
Pseudo-polynomial time algorithm

69, 69, 71–73
Pseudo-tree 143

Quadratic forms 292
Quadratic program 255
– strict 255, 255–257, 267, 268

Random contraction algorithm 298,
304

Random walk 320, 338–340
Reduction
– L- 332, 351
– approximation factor preserving
24, 27, 34, 60, 152, 160, 166, 196, 242,
347, 351

– gap-introducing 307
– gap-preserving 307
– polynomial time 344
– randomized 293
Region growing 171–175
Relaxation
– convex 269
– exact 102
– – for maximum weight bipartite

matching 129

378 Subject Index

– – for MST 212, 230
– LP- VII, 39, 99, 100–106, 109, 111,
113, 119, 120, 122, 124, 125, 134, 147,
153, 155–157, 160, 164, 165, 179, 199,
206, 209, 211, 213–221, 224, 229–231,
233, 240, 244, 251, 335, 337

– – bidirected cut relaxation for Steiner
tree 210, 335

– – subtour elimination relaxation for
TSP 229, 229–231

Reverse delete 149, 210
– dynamic 209
Rounding VII, 101, 119–124, 134–136,
170–175, 191

– iterated 213, 217–218
– randomized 120–122, 124, 157–160,
164, 247–248, 260–263

RP 348

Scaling and rounding 73, 117
Self-reducibility IX, 9, 10, 303,
348–351

– tree 10, 303, 349
Semidefinite program 197, 266, 267
– duality theory 268
Separating hyperplane 259
Separation oracle 102, 107, 170, 179,
217

Short-cutting 29, 31, 32, 85, 241
Simplex 155
Sparsity of a cut 181
Spread of an edge 196
Square of a graph 48
Standard deviation 352
Steiner tree 316–318
Sublattice 285, 290
Submodular function 215, 224

Supermodular function
– weakly supermodular 216

Throughput 180, 182
Tight example IX, 4, 8, 17, 19, 23–25,
29, 31, 33, 39, 43, 49, 51, 59, 80, 83,
120, 123, 128, 137, 144, 153, 165, 175,
206, 218, 238, 239, 249, 268

Totally unimodular matrix 104
Tournament 25
Traveling salesman tour
– maximum weight 66
– minimum weight 62
Triangle inequality 27, 51, 52, 178
– directed 34

Unbiased estimator 295
Uncrossable function 224
Uniform generator 302, 303
– almost uniform 303
Unimodular matrix 274, 274–276, 288
Unit sphere 260
Upper bounding OPT 256

Vector program 256, 255–257, 266,
267

Verifier 309
Vertex cover 316–318
Vertex-disjoint s–t paths 103, 336
VLSI design 178
– clock routing 36
von Neumann’s minimax theorem 106

Witness family 225

ZPP 10, 348
ZTIME 329, 332, 348

