## Range searching

Aritra Banik*<br>National Institute of Science Education and Research



Summer School on Graph Theory and Graph Algorithm at NIT Calicut
*Slide ideas borrowed from Marc van Kreveld and Subhash Suri

## Range query



- A range query is a common database operation that retrieves all records where some value is between an upper and lower boundary.
- Range query: Asks for the objects whose coordinates lie in a specified query range (interval)

- Range Searching: Process a set of given data points efficiently such that given a range window set of points inside the range can e reported "QUICKLY".
- Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query.
- A (search) data structure has a storage requirement, a query time, and a construction time (and an update time)


## Range searching



- Construction time $O(1)$ : query time??
- Objective is sub linear query time.


## Range searching



- Construction time $O(1)$ : query time??
- Objective is sub linear query time.


## 1D range query problem



- 1D range query problem: Preprocess a set of $n$ points on the real line such that the ones inside a 1D query range (interval) can be reported fast.
- The points $p_{1} \ldots p_{n}$ are known beforehand, the query $[x, y]$ arises at run time.
- A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm.


## 1D range query problem

- 1D range query problem: Preprocess a set of $n$ points on the real line such that the ones inside a 1D query range (interval) can be reported fast.
- The points $p_{1} \ldots p_{n}$ are known beforehand, the query $[x, y]$ arises at run time.
- A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm.

The Data Structure

The Data Structure: Balanced binary search trees


- Query $[34,80]$
- Search path for 34.
- Search path for 80.

The Data Structure

The Data Structure: Balanced binary search trees


- Query $[34,80]$
- Search path for 34.
- Search path for 80.

The Data Structure

The Data Structure: Balanced binary search trees


- Query $[34,80]$
- Search path for 34 .
- Search path for 80.

The Data Structure

The Data Structure: Balanced binary search trees


- Query $[34,80]$
- Search path for 34 .
- Search path for 80.

Three types of nodes for a given query:


- White nodes: never visited by the query
- Grey nodes: visited by the query, unclear if they lead to output
- Black nodes: Visited by the query, whole subtree is output

Three types of nodes for a given query:


- White nodes: never visited by the query
- Grey nodes: visited by the query, unclear if they lead to output
- Black nodes: Visited by the query, whole subtree is output

The Data Structure

Find a split node [50-70]


## Algorithm

Algorithm 1 1DRangeQuery $(T,[x: y])$
1: $v_{\text {split }} \leftarrow$ FindSplitNode $(T, x, y)$
2: if $v_{\text {split }}$ is a leaf then
Check if the point in $v_{\text {split }}$ must be reported.
else
5: $\quad v \leftarrow l c\left(v_{\text {split }}\right)$
6: while $v v$ is not a leaf do
7: $\quad$ if $x \leq \operatorname{value}(v)$ then
8: $\quad \operatorname{ReportSubtree}(r c(v))$
9: $\quad v \leftarrow l c(v)$
10: else
11: $\quad v \leftarrow r c(v)$
12: end if
13: end while
14: $\quad v \leftarrow r c\left(v_{\text {split }}\right)$
15: Similarly, follow the path to $y$
16. and if

## Runtime



- White nodes: never visited by the query; no time spent
- Grey nodes: visited by the query, unclear if they lead to output; time determines dependency on $n$
- Black nodes: visited by the query, whole subtree is output; time determines dependency on $k$, the output size


## Runtime



- Grey nodes: they occur on only two paths in the tree, and since the tree is balanced, its depth is $O(\log n)$
- Black nodes: Charged on output

The time spent at each node is $O(1) \Rightarrow O(\log n+k)$ query time

## Storage requirement and preprocessing

- A (balanced) binary search tree storing n points uses $O(n)$ storage
- A balanced binary search tree storing $n$ points can be built in $O(n)$ time after sorting, so in $O(n \log n$ ) time overall (or by repeated insertion in $O(n \log n)$ time)


## A 1-dimensional range tree for range counting queries

A 1-dimensional range tree for range counting queries


## Theorem

A sei of $n$ points on the real line can be preprocessed in $O(n l o g n)$ time into a data structure of $O(n)$ size so that any range counting queries can be answered in $O(\log n)$ time

## A 1-dimensional range tree for range counting queries

A 1-dimensional range tree for range counting queries


## Theorem

A set of $n$ points on the real line can be preprocessed in $O(n \operatorname{logn})$ time into a data structure of $O(n)$ size so that any range counting queries can be answered in $O(\log n)$ time

## 2D Range queries

Kd-trees, the idea:

- Split the point set alternatingly by $x$-coordinate and by $y$-coordinate
- Split by x-coordinate: split by a vertical line that has half the points left and half right
- Split by y-coordinate: split by a horizontal line that has half the points below and half above


## Kd-tree Construction



## Algorithm

Algorithm 2 BuildKdTree( $P$, depth)
1: if $P$ contains only one point then
2: return a leaf storing this point
3: else if depth is even then
4: $\quad$ Split $P$ with a vertical line $\ell$ through the median $x$-coordinate into $P_{1}$ (left of $\ell$ ) and $P_{2}$ (right of $\ell$ )
5: else
6: $\quad$ Split $P$ with a horizontal line $\ell$ through the median $x$-coordinate into $P_{1}$ (below $\ell$ ) and $P_{2}$ (above $\ell$ )
7: end if
8: left $\leftarrow$ BuildKdTree $\left(P_{1}\right.$, depth +1$)$
9: right $\leftarrow$ BuildKdTree $\left(P_{2}\right.$, depth +1$)$
10: Create a node $v$ storing $\ell$, make left left the left child of $v$, and make right right the right child of $v$.
11: return(v)

## Complexity

- The median of a set of $n$ values can be computed in $O(n)$ time
- Let $T(n)$ be the time needed to build a kd-tree on $n$ points
$T(1)=O(1)$
$T(n)=2 T(n / 2)+O(n)$
A kd-tree can be built in $O(n \log n)$ time


## Kd-tree querying



## Complexity Analysis

White, grey, and black nodes with respect to region $(v)$ :

- White node $v: \mathrm{R}$ does not intersect region $(v)$
- Grey node $v: \mathrm{R}$ intersects region $(v)$, but region $(v) \nsubseteq R$
- Black node $v:$ region $(v) \subseteq R$


## Complexity Analysis

- White node $v$ : R does not intersect region( $v$ ) Not visiting
- Grey node $v: \mathrm{R}$ intersects region $(v)$, but region $(v) \nsubseteq R$
- Black node $v$ : region $(v) \subseteq R$ Charged on the output size


## Complexity Analysis

- White node v: R does not intersect region(v) Not visiting
- Grey node $v: \mathrm{R}$ intersects region $(v)$, but region $(v) \nsubseteq R$
- Black node $v:$ region $(v) \subseteq R$ Charged on the output size


## Complexity Analysis



- How many grey nodes can be there among the leaf nodes.
- How many regions can be intersected by a axis parallel straight line.


## Complexity Analysis



- At $\max O(\sqrt{(n)})$
- In the previous level $O(\sqrt{(n / 2)})$


## Complexity Analysis



- At $\max O(\sqrt{(n)})$
- In the previous level $O(\sqrt{(n / 2)})$


## Complexity Analysis



- Total no of Gray cells are $\sqrt{n}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{8}} \ldots\right)$
- $O(\sqrt{(n)})$


## Complexity Analysis



- Total no of Gray cells are $\sqrt{n}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{8}} \ldots\right)$
- $O(\sqrt{( } n))$


## Higher dimensions

- A 3-dimensional kd-tree alternates splits on $x, y$, and $z$ coordinate
- A 3D range query is performed with a box
$\square$
Theorem
$A$ set of $n$ points in $d$-space can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any d-dimensional range query can be answered in $O\left(n^{1-1 / d}+k\right)$ time, where $k$ is the number of answers reported.


## Higher dimensions

- A 3-dimensional kd-tree alternates splits on $x, y$, and $z$ coordinate
- A 3D range query is performed with a box


## Theorem

A set of $n$ points in $d$-space can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any d-dimensional range query can be answered in $O\left(n^{1-1 / d}+k\right)$ time, where $k$ is the number of answers reported.

