
Problems on graph theory with solutions

2 - 6 January, 2017

Covering Problems

1. Let G be a graph such that the number of cycles in G of length at most g is at most n/2. Let the
cardinality of the minimum vertex cover β(G) = k. Then show that there exists a subgraph G′ of G
with χ(G′) ≥ n

2(n−k) and girth > g.

Solution: We delete one vertex from each cycle of G whose length is ≤ g to obtain graph G′. Hence
G′ contains ≥ n/2 vertices. Clearly G′ has girth > g. We have α(G′) ≤ α(G) = n− β(G) = n− k and
χ(G′)α(G′) ≥ |V (G′)|, hence the result.

2. Let A be an n× n matrix where the entry at the (i, j)th position aij is either 1 or 0 for 1 ≤ i, j ≤ n.
Let Aij denote the (n− 1)× (n− 1) matrix obtained from A by deleting the ith row and jth column.
Define the permanant of A, per(A) as follows:

per(A) =

n∑
j=1

a1j .per(A1j)

LetGA denote the bipartite graph with one part being {u1, . . . , un} and the other part being {v1, . . . , vn}
and ui is adjacent to vj if and only if aij = 1 in the matrix A. Show that per(A) = the total number
of perfect matchings in GA.

Solution: It can be observed that per(A) is the sum of n! terms where each term is the product of n
elements. Every term is the product of elements taken from each of the n rows and columns. Hence,
a perfect matching in GA shows up in A as n 1’s placed suitably, one in each row and one in each
column. Hence the product of these elements is a term of per(A). Therefore per(A) counts the number
of perfect matching of GA.

3. Consider the matrix A defined in the previous question. Show that per(A) = 0 if and only if A contains
an s× t zero submatrix such that s+ t = n+ 1.

Solution: ⇒: We know perm(A) = 0 iff there exists no perfect matching in GA. From Hall’s theorem,
there exists a set S ⊆ {u1, . . . , un} such that |S| = s > N(S). Hence N(S) contains at most s − 1
vertices. V \N(S) contains at least n− s+ 1 = t vertices. There is no edge from S to V \N(S). Hence
there exits a sub-matrix with the required property.

⇐: LetM be the s×t zero sub-matrix. Let S = {ui : aij ∈M}. Then |S| = s and |N(S)| ≤ n−t = s−1,
hence there is no perfect matching.

4. Consider a complete r-partite graph G having even number of vertices and with parts A1, A2, . . . , Ar.
Assume that |A1| ≥ |A2| ≥ · · · ≥ |Ar| ≥ 1. Show that there exists a perfect matching in G if and only
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if |A1| ≤
∑r
i=2 |Ai|, using Tutte’s theorem.

Solution: ⇒: Suppose G has a perfect matching and |A1| >
∑r
i=2 |Ai|. Then if G − S = A1, S is a

‘bad’ set.
⇐: Suppose G does not have a perfect matching. Then there exists a ‘bad’ set S such that q(G−S) >
|S|. If G− S 6= Ak for some k, then G− S is connected and the number of odd components of G− S
is either 0 or 1 which is ≤ |S| and hence S cannot be a bad set. Therefore G− S has to be some Ak.
q(G− S) is maximum when G− S = A1 but then |A1| ≤ |S|, hence there is no ‘bad’ set.

5. Show that in a bipartite graph a minimum vertex cover is a “barrier”. (A set S ⊆ V is a barrier
if there exists a matching M such that the number of unmatched vertices with respect to M equals
q(G− S)− |S|, where q(G− S) is the number of odd components of G− S.)

Solution: Let S be a minimum vertex cover. Consider a maximum matching M of the bipartite graph
G (thus |M | = |S|). Then there is no matched edge in S. Hence, the number of matched vertices in
V − S is |S|. We have |V − S| = q(G− S) and hence the result.

6. Let G be a bipartite graph with parts X and Y where |X| = |Y |. Let d = max(|S| − |N(S)| : S ⊆ X).
Show that α′(G) = |X| − d.

Solution: d ≥ 0 (consider S = X; if N(S) 6= Y then d > 0, if N(S) = Y then d ≥ 0). Add d many
vertices and connect each of them to every vertex of X. The resulting graph satisfies Hall’s condition.
Now construct a perfect matching for the graph and then delete the new vertices. Thus α′(G) = |X|−d.

Connectivity

1. What is the vertex connectivity κ of Km,n, the complete bipartite graph with m and n vertices on the
two parts. Explain your answer.

Solution: Let m ≤ n. Then removing all m vertices of the smaller part disconnects the graph. Suppose
κ(Km,n) ≤ m − 1. If a set of κ vertices intersects both parts, then its deletion cannot disconnect the
graph. Upon deleting κ vertices of one part, the graph remains connected, hence κ(Km,n) = m.

2. Let G be a simple graph of diameter two. Show that the edge connectivity of G is equal to its minimum
degree, i.e. λ = δ(G).

Solution: Suppose λ ≤ δ − 1. Let X,Y be two disjoint subsets of V (G) such that the edges between
them form a cut. If every vertex of X contributes an edge to the cut, then |X| ≤ δ − 1. Then every
vertex of X has degree ≤ δ−1, a contradiction. Hence X contains a vertex that does not contribute to
the cut and so does Y . This implies the distance between these two vertices is at least 3, a contradiction
to the diameter of the graph.

3. (a) Show that if G is simple and the minimum degree δ(G) ≥ n− 2, (n being the number of vertices
in G) then the vertex connectivity κ(G) = δ(G).

(b) For each n ≥ 4, find a simple graph with δ(G) = n− 3 and κ(G) < δ(G).

Solution:
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(a) If δ = n−1, then G is a complete graph and the result follows. Let δ = n−2. If κ(G) = δ(G)−1,
then there are n − 3 vertices in an A,B separator of G. Then either A or B contains a single
vertex and its degree is at most n− 3 = δ − 1, a contradiction.

(a) Let V (G) = A1 ∪ B ∪ A2 where Ai ' K2 and B ' Kn−4 and every vertex of Ai is adjacent to
every vertex of B.

4. Show that if G is simple, with n ≥ k + 1, and δ(G) ≥ (n+ k − 2)/2, then G is k-connected.

Solution: Suppose there exists an A,B separator with k− 1 vertices. Then A or B has at most n−k+1
2

vertices and every vertex in this set has degree at most n−k+1
2 − 1 + k− 1 = n+k−3

2 , a contradiction to
δ(G).

5. Show that a connected graph G is a complete graph if and only if G does not contain any induced
subgraph isomorphic to 2K2 (i.e. just two disjoint edges) or a P3 (a path on 3 vertices).

Solution: ⇐: Proof by induction on the number of vertices. Suppose G is a graph that does not contain
2K2 nor P3. Then G − x is complete where x ∈ V (G). If x is not adjacent to any pair of vertices of
G− x, then we have a 2K2; if x is not adjacent to any vertex of G− x, then we have a P3.

6. Show that the vertex connectivity of d-dimensional hypercube is d.

Solution: Since a d-dimensional hypercube is d-regular, deleting all neighbours of a vertex disconnects
the graph, hence κ ≤ d. We now prove by induction on d that between every pair of vertices in Hd,
there are d internally vertex disjoint paths: let the two copies of Hd−1 in Hd be H and H ′. If vertices
x, y belong to H, then there are already d− 1 internally vertex disjoint (x, y)-paths in H. Let x′, y′ be
the neighbours of x, y in H ′. Then (x, (x′, y′)-path in H ′, y) is a new internally vertex disjoint path.
Suppose x ∈ H and y′ ∈ H ′. Let y1, . . . , yd be the neighbours of y in H. Let y′1, . . . , y

′
d be their

neighbours respectively in H ′. Then d internally vertex disjoint (x, y′)-paths are (i) ((x, y1)-path in
H, y, y′) (ii) ((x, yi)-path in H, y′i, y

′) for i = 2, d. (iii) (x, (x′, y′1)-path in H, y′).

7. Let G be an undirected k-regular graph for an odd integer k, and let its edge connectivity be at least
k − 1. Then show that G has a perfect matching.

Solution: Suppose G does not have a perfect matching, then let S ⊂ V be a ‘bad’ set according to
Tutte’s theorem. Since degree of every vertex in an odd component of G−S is k, the number of edges
between any odd component and S must be odd. Also, due to edge connectivity, the number of edges
between any component and S must be at least k − 1. Since k − 1 is even, there must be at least k
edges between every component and S. Hence the total number of edges between all odd components
and S ≥ q(G− S)k > |S|k. But every vertex of S has degree k hence the number of edges incident on
S can be at most |S|k.

Colouring

1. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}. Consider a graph G defined as follows: V (G)
is a subset of X × Y and two distinct vertices [xi, yj ], [xa, yb] ∈ V (G) are adjacent if and only if:
either xi = xa or yj = yb. For xi ∈ X, let γ(xi) = |({xi} × Y ) ∩ V (G)| and for yj ∈ Y , let
γ(yj) = |({yj} ×X) ∩ V (G)|. Now get an expression for the chromatic number χ(G) of G in terms of
the function γ. Prove your answer.
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Solution: Construct a graph H such that V (H) = X∪Y and xiyj ∈ E(H) iff [xi, yj ] ∈ V (H). Then two
edges of H are adjacent iff two vertices of G are adjacent. Thus G is the line graph of H and χ(G) =
χ′(H). H is a bipartite graph and we know its edge chromatic number is ∆(H) = max{γ(xi), γ(yj)}
over all i, j.

2. Let Kn,n,n denote the complete tri-partite graph with n vertices in each part.

(a) When n ≥ 1 is an odd integer, what is the edge chromatic number of Kn,n,n, i.e. χ′(Kn,n,n)?
Prove your answer.

(b) Find a proper edge coloring of K2,2,2 using 4 colors.

(c) Show that χ′(Kn,n,n) = 2n, when n ≥ 2 is even. (Hint: You may try to use part (b) of this
question.)

Solution:

(a) The total number of edges is 3n2. Each colour class is a matching and can hence contain at most
3n−1

2 edges. From Vizing’s theorem, if ∆ = 2n colours are enough, then at most 3n−1
2 × 2n =

3n2 − n edges are coloured. Hence χ′(G) = 2n+ 1.

(b) K2,2,2 can be decomposed into 4 edge-disjoint perfect matchings, each matching obtaining a colour.

(c) Each partite set can be viewed as two sets containing n/2 vertices each. This overall structure
resembles that of K2,2,2. Since χ′(K2,2,2) = 4, each colour class of (K2,2,2) can be replaced with
a set of n/2 colours, hence the edges of Kn,n,n can be coloured with 4× n

2 colours (it might help
to see that χ′(Kn/2,n/2) = n/2).

3. Consider a drawing G′ of a (not necessarily planar) graph G in the plane. Two edges of G′ cross if
they meet at a point other than a vertex of G′. Each such point is called a crossing of the two edges.
The crossing number of G, denoted by cr(G), is the least number of crossings in a drawing of G in the
plane. Show that, cr(K5) = 1 and cr(K3,3) = 1.

Solution: K5 and K3,3 with one crossing each:

b b

b

b

b

b

b b b

b

b

4. Show that the crossing number of a graph G satisfies the inequality cr(G) ≥ m−3n+6 provided n ≥ 3.

Solution: Draw a subgraph of G with maximum number of edges m′ such that the subgraph is planar.
Then m′ = 3n + 6. For each of the m −m′ edges that we introduce back into the graph, there is at
least one crossing, else the edge would already be drawn in the subgraph. Hence cr(G) ≥ m−m′.

5. Let G be a connected planar graph with girth k, where k ≥ 3. Show that the number of edges,
m ≤ k(n− 2)/(k − 2).

Solution: Every face has at least k edges hence e ≥ fk/2⇒ f ≤ 2e/k. The result follows from Euler’s
formula n− e+ f = 2.
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6. Consider the vertex coloring problem: we need to give a color to each vertex in the graph making sure
that no two adjacent vertices get the same color. Given a graph G, the chromatic number of G is
defined to be the minimum positive integer k such that we can color the vertices of G with k colors as
described above. Show that if G is a co-comparability graph (i.e. the compliment of a comparability
graph) then the biggest complete subgraph (clique) in G has exactly k vertices.

Solution: We need to prove that ω(G) = χ(G). This is equivalent to proving that α(G) = θ(G). Since
G is a comparability graph, it does not contain a directed cycle. Hence (V (G), <) is a partially ordered
set. We use Dilworth’s theorem: in any finite partially ordered set, the maximum number of elements
in any antichain equals the minimum number of chains in any partition of the set into chains. This
corresponds to the size of a maximum independent set equals the smallest clique cover number, hence
α(G) = θ(G).

7. Consider the d-dimensional hypercube Hd. Recall that the vertices of Hd corresponds to the 2d, d-
dimensional 0 − 1 vectors, and two vertices are adjacent if and only if the hamming distance of the
corresponding vectors is exactly 1. Show that Hd is non-planar for each d ≥ 4.

Solution: If d ≥ 4, then we can find two disjoint copies of H3 in Hd. On suitable contraction of vertices
of one copy of H3, we obtain a K4; we contract the other copy of H3 to a single vertex, which is
adjacent to every vertex of the K4, thus obtaining a K5 minor. Hence Hd is non-planar.

8. What is the chromatic number of Hd, the d-dimensional hypercube?

Solution: Let a vertex of Hd belong to A1 if its hamming weight is odd, and A2 if even. Any two
vertices of Ai have a hamming distance of at least two and hence are not adjacent. Thus Hd is bipartite
and χ(Hd) = 2.

Special classes of graphs

1. Let G be an interval graph: that is to each vertex v ∈ V (G), we can associate an interval I(v) on
the real line such that two vertices u and v are adjacent if and only if I(v) ∩ I(u) 6= ∅. Show that
χ(G) = ω(G), where ω(G) is the clique number of G.

Solution: Order the vertices according to the left endpoints of their intervals and colour greedily. A
vertex gets the kth colour only if it is adjacent to k − 1 coloured neighbours. Since each vertex is
associated with an interval, all of its neighbours are adjacent to each other, hence forming a k-clique.

2. Let G be a non-trivial simple graph with degree sequence (d1, d2, . . . , dn) where d1 ≤ d2 ≤ · · · ≤ dn.
Suppose that there is no integer k < (n + 1)/2 such that dk < k and dn−k+1 < n − k. Show that G
has a hamiltonian path.

Solution: In G, for every k < n+1
2 if dk < k then dn−k+1 ≥ n− k. Let G′ be the graph obtained from

G by adding a vertex and making it adjacent to all vertices of G. Then in G′ we have if dk < k + 1
(i.e dk ≤ k) then dn−k+1 ≥ n− k + 1. Hence from Chvátal’s condition, G′ is Hamiltonian and thus G
contains a Hamiltonian path.

3. A graph G is called self-complementary if it is isomorphic to G, its complement. Give an example of
a self-complementary graph.
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Solution: P4, C5.

4. Prove that every self-complementary graph has a hamiltonian path.

Solution: Let (d1, d2, . . . , dn) be the degree sequence of G. We observe for self-complementary graphs
that a vertex with degree di in G has degree dn−i+1 in G. Let G′ be the graph obtained from G by
adding a vertex and making it adjacent to all vertices of G. Then (d1 + 1, d2 + 1, . . . , dn + 1, n) is the
degree sequence of G′. We prove that Chvátal’s condition holds for G′ : suppose ∃v 3 dG(v) = di+1 ≤ i
and i < n+1

2 . Then di ≤ i− 1 and hence dn−i+1 ≥ n− i. Hence dn−i+1 + 1 ≥ n− i+ 1 and thus G′ is
Hamiltonian, which implies that G contains a Hamiltonian path.

5. Let P = {p0, p1, . . . , pn−1} be a set of n distinct points on the plane. Let r0, . . . , rn−1 be positive
real numbers. Let (pi, ri) represent the circle centered at pi and of radius ri. Let us define a simple
graph G = (V,E) with |V | = 2n as follows: Let V = {v0, v1, . . . , v2n−1} and f : V → P be such that
f(vi) = pi mod n. In G let vi and vj (for i 6= j) be adjacent if and only if the two circles (pi, ri) and
(pj , rj) intersect. Let G′ be the induced subgraph of G on the vertex set V ′ = {v0, v1, . . . , vn−1} ⊂ V
. Show that G is a perfect graph if and only if G′ is a perfect graph. (Give a complete argument).

Solution: ⇐: It only needs to be seen that G is an expansion of G′ where vertex vi is expanded to the
edge vivi+n (0 ≤ i ≤ n − 1). Recall a lemma by Lovász which states that any graph obtained from a
perfect graph by expanding a vertex is again perfect.

6. A graph G is a self-complementary graph iff G is isomorphic to its complement G. Show that any
regular self-complementary graph has a hamiltonian path.

Solution: We have δ(G) = n−1
2 as G is regular and self-complementary. Let G′ be the graph obtained

from G by adding a vertex and making it adjacent to all vertices of G. Then δ(G′) = n+1
2 . Hence by

Dirac’s theorem, G′ contains a Hamiltonian cycle, thus G contains a Hamiltonian path.

7. Let G be a simple graph of minimum degree δ. Show that G contains a path of length 2δ if G is
connected and δ ≤ (n− 1)/2.

Solution: On the contrary, let (x = v1, v2, . . . , v2δ = y) be a longest path in G (the path contains
at most n − 1 vertices, let z be a vertex not in the path). Every neighbour of x and y must be
on the path, else we can produce a longer path. Then ∃i 3 x ↔ vi and y ↔ vi−1 and hence
(vi, vi+1, . . . , y, vi−1, vi−2, . . . , x, vi) is a cycle. Since z is adjacent to some vj , deleting the edge vjvj+1

we obtain a a longer path, a contradiction.

Miscellaneous

1. Show that every automorphism of a tree fixes a vertex or an edge.

Solution: Consider a tree T (V,E). Let T ′ be a copy of T and let f be an automorphism from T to T ′.
Then the leaf set of T is equal to the leaf set of T ′. Deleting these leaf sets produces two subtrees say
T1 and T ′1 respectively. We repeatedly delete leaf sets until we are left with either a single vertex or a
single edge.

2. Show that every 2-connected graph contains a cycle.
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Solution: If some 2-connected graph did not contain a cycle, then it is a tree, which contains a cut
vertex (the vertex adjacent to a leaf vertex), a contradiction.

3. Show that a tree without a vertex of degree 2 has more leaves than other vertices.

Solution: Let i be the number of internal vertices and l be the number of leaves. Then the degree
sum over all vertices is at least 3i + l ≤ 2(n − 1) since there are exactly n − 1 edges. Thus 3i + l ≤
2(i+ l − 1)⇒ i+ 2 ≤ l hence the result.

4. Show that a graph is bipartite iff every induced cycle has even length.

Solution: ⇒: Since it is not possible to partition the vertex set of an odd cycle into two independent
sets, a bipartite graph cannot contain an odd cycle.
⇐: Let x be a vertex of a connected graph without induced odd cycles. Let d(v) be the distance
between x and v for every vertex v. Let A = {v|d(v) is even} and B = {v|d(v) is odd}. Then an edge
in either A or B produces an odd cycle. If it not induced, then a chord of the cycle divides it into two
cycles: one of even length and one of odd length. We repeatedly check if these odd cycles have a chord
or not until we obtain a chordless odd cycle, a contradiction as every induced cycle is even.

5. Let T be a set of sub-trees of a tree. Assume that the trees in T have pairwise non-empty intersections.
Show that their overall intersection is non-empty.

Solution: Let the tree in question be a rooted tree. For every subtree in T , we identify a vertex of
the subtree which has the smallest depth, and designate it as the root of the subtree. Among all such
roots, consider the subtree whose root has the largest depth. Every other tree must contain this root,
hence the overall intersection is at least this root.
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