1. On a graph $G(V, E)$, define the following:
2. A vertex cover C in G is a subset of vertices such that, for each edge $u v \in E$ either $u \in C$ or $v \in C$ (or both). The decision problem VC is: Given a) a graph $G(V, E)$ and b) a positive integer c, to determine whether G contains a vertex cover of size less than or equal to c. Show that $\mathrm{VC} \in \mathrm{NP}$.
3. A clique K in G is a subset of vertices such that for each $u, v \in K$, both $u v \in E$. The decision problem CLIQUE is: Given a) a graph $G(V, E)$ and b) a positive integer k, to determine whether G contains a clique of size greater than or equal to k. Show that CLIQUE \in NP.
4. An independent set I in G is a subset of vertices such that for each $u, v \in I, u v \notin I$. The decision problem IS is: Given a) a graph $G(V, E)$ and b) a positive integer i, to determine whether G contains an independent set of size greater than or equal to i. Show that IS \in NP.
5. Design polynomial time reduction algorithms between each pair of these problems.
6. The Hitting Set Problem (HS) is defined as follows. Given a) a non-empty set U, b) a positive integer m, c) a collection of non-empty subsets $S_{1}, S_{2}, \ldots S_{m}$ of U and d) a positive integer h. The question is to determine whether there exists a subset H of U such that H contains at most h elements and $H \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$. That is, H must "hit" every set S_{i}. Show that the problem is NP-complete.
7. The Set Cover Problem (SC) takes as instance a) non-empty set $U, \mathrm{~b}$) a positive integer m, c) a collection of non-empty subsets $S_{1}, S_{2}, \ldots S_{m}$ of U and d) a positive integer k. The question is to determine whether we can choose a k or fewer sets from among $S_{1}, S_{2}, \ldots S_{m}$ such that the union of the k selected sets is U. That is, the selected sets must "cover" U. Show that the problem is NP-complete.
8. Integer Linear Constraint Satisfiability Problem (ILCS): A Constraint system is specified by a set of linear inequalities. For instance, the set $\{2 x+5 y \geq 3,3 x-4 y \leq 4\}$ forms a constraint system of two inequaliies in two variables. The question is whether a given constraint system is integraly satisfiable that is, whether it has an integer solution (for example, $x=1, y=1$ is an integer solution to the above constraint system). Show that the problem of determining whether a given constraint system is satisfiable is NP complete.
9. Let L, L^{\prime} be languages. In each case determine whether the language L i) is in P , ii) is in NP, iii) is NP-hard iv) is NP-complete. (There are three possibliies in each case - "Yes", "No" or "No conclusion can be drawn from the given assumpions").
10. $L^{\prime} \in \mathrm{P}$ and $L \preceq_{p}^{m} L^{\prime}$.
11. $L^{\prime} \in \mathrm{NP}$ and $L \preceq_{p}^{m} L^{\prime}$.
12. $L^{\prime} \in \mathrm{NP}$ and $L^{\prime} \preceq_{p}^{m} L$.
13. $L^{\prime} \notin \mathrm{P}$ and $L^{\prime} \preceq_{p}^{m} L$.
14. $L^{\prime} \in$ NP complete, $L^{\prime} \preceq_{p}^{m} L$ and $L \preceq_{p}^{m} L^{\prime}$.
15. Let L, L^{\prime} be languages. In each case determine whether i) $\mathrm{P}=\mathrm{NP}$ ii) $\mathrm{P} \neq \mathrm{NP}$ or iii) neither of the above conclusions are possible from the given assumptions.
16. $L \in \mathrm{P}, L \preceq_{p}^{m} L^{\prime}, L^{\prime} \in \mathrm{NP}$. Will the conclusion change if L^{\prime} is NP complete?
17. $L \in \mathrm{NP}, L \preceq_{p}^{m} L^{\prime}, L^{\prime} \in \mathrm{P}$.
18. L is NP hard, $L \preceq_{p}^{m} L^{\prime}, L^{\prime} \in \mathrm{P}$. Will the conclusion change if L is NP-complete?
19. $L \notin \mathrm{P}, L \preceq_{p}^{m} L^{\prime}, L^{\prime} \in \mathrm{NP}$.
