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Introduction

Computational geometry

@ Study of geometric problems that arise in various applications and how
geometric algorithms can help to solve well-defined versions of such
problems

@ Application areas that require geometric algorithms are computer
graphics, motion planning and robotics, geographic information
systems, CAD/CAM, statistics, physics simulations, databases, games,
multimedia retrieval
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Introduction

Computational geometry history

EARLY 70s: First attention for geometric problems from algorithms
researchers

1976: First PhD thesis in computational geometry (Michael Shamos)
1985: First Annual ACM Symposium on Computational Geometry. Also:
first textbook

1996: CGAL: first serious implementation effort for robust geometric
algorithms

1997: First handbook on computational geometry (second one in 2000)
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Convex Hull

Convexity

A shape or set is CONVEX if for any two points that are part of the shape,
the whole connecting line segment is also part of the shape

Computational Geometry-Introduction 6/37



Convex Hull

Convex hull

NECSA U

For any subset of the plane (set of points, rectangle, simple polygon), its
convex hull is the smallest cONVEX SET that contains that subset.
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Convex Hull

Convex hull problem

Give an algorithm that computes the convex hull of any given set of n
points in the plane efficiently.

The input has 2n coordinates, so O(n) size
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Convex Hull

Convex hull problem

Give an algorithm that computes the convex hull of any given set of n
points in the plane efficiently.

The input has 2n coordinates, so O(n) size

For non-negative functions, f(n) and g(n), if there exists an integer ny and
a constant ¢ > 0 such that for all integers n > ng, f(n) < cg(n), then f(n)
is big O of (g(n)). This is denoted as f(n) = O(g(n)).
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Convex Hull

Convex hull problem

o PROPERTY The vertices of the convex hull are always points from the
input

o Consequently, the edges of the convex hull connect two points of the
input
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Convex Hull

Convex hull problem

o PROPERTY The vertices of the convex hull are always points from the
input

o Consequently, the edges of the convex hull connect two points of the
input

@ PROPERTY The supporting line of any convex hull edge has all input
points to one side

@ All points lie right of the directed line from p to g, if the edge from p
to q is a CW convex hull edge.
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Convex Hull

Convex hull problem

o PROPERTY The vertices of the convex hull are always points from the
input

o Consequently, the edges of the convex hull connect two points of the
input

@ PROPERTY The supporting line of any convex hull edge has all input
points to one side

@ All points lie right of the directed line from p to g, if the edge from p
to q is a CW convex hull edge.

@ ALGORITHM?
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Convex Hull

An incremental Algorithm

AN

INCREMENTAL ALGORITHM
Incremental, from left to right

Let's first compute the upper boundary of the convex hull this way
(property: on the upper hull, points appear in x-order)

Main idea: Sort the points from left to right (= by x-coordinate).

Then insert the points in this order, and maintain the upper hull so far
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM

@ Observation: from left to right, there are only right turns on the upper
hull
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM

@ Observation: from left to right, there are only right turns on the upper
hull
o Initialize by inserting the leftmost two points
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM

@ Observation: from left to right, there are only right turns on the upper
hull

o Initialize by inserting the leftmost two points

o If we add the third point there will be a right turn at the previous
point, so we add it.

o If we add the fourth point we get a left turn at the third point
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM
o If we add the fifth point we get a left turn at the fourth point
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM
o If we add the fifth point we get a left turn at the fourth point
@ So we remove the fourth point when we add the fifth

@ and so on ...
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Convex Hull

An incremental Algorithm

AN INCREMENTAL ALGORITHM
o If we add the fifth point we get a left turn at the fourth point
@ So we remove the fourth point when we add the fifth

@ and so on ...
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Convex Hull

An incremental Algorithm
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o If we add the fifth point we get a left turn at the fourth point
@ So we remove the fourth point when we add the fifth
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Convex Hull

The pseudo-code

Algorithm 1 ConvexHull(P)
Input: A set P of points in the plane
Output: A list containing the vertices of CH(P) in clockwise order

1: Sort the points by x-coordinate, resulting in a sequence p;.p2,- -+ pp

2: Put the points p; and py in a LIST UPPER, with p; as the first point.

3: for i <3 to ndo

4:  Append p; to LIST UPPER.

5:  while LIST UPPER contains more than two points and the last three
points in LIST UPPER do not make a right turn do

6: Delete the middle of the last three points from LIST UPPER

7:  end while

8: end for

9: Do the same for the lower convex hull, from right to left
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Convex Hull

Algorithm Analysis

ALGORITHM ANALYSIS
o If we add the fifth point we get a left turn at the fourth point
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Convex Hull

Algorithm Analysis

ALGORITHM ANALYSIS
o If we add the fifth point we get a left turn at the fourth point
@ So we remove the fourth point when we add the fifth

@ and so on ...
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Convex Hull

Algorithm Analysis

ALGORITHM ANALYSIS
@ The sorting step takes O(nlogn) time

o Adding a point takes O(1) time for the adding-part. Removing points
takes constant time for each removed point. If due to an addition, k
points are removed, the step takes O(1 + k) time

ToTAL TIME: O(nlogn) + > 5., , 01 + ki)
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Convex Hull

Algorithm Analysis

ALGORITHM ANALYSIS
@ The sorting step takes O(nlogn) time
o Adding a point takes O(1) time for the adding-part. Removing points
takes constant time for each removed point. If due to an addition, k
points are removed, the step takes O(1 + k) time
ToTAL TIME: O(nlogn) + > 5., , 01 + ki)
Since Since ki = O(n), we get
ToTtaL TiME: O(n?)
GLOBAL ARGUMENT each point can be removed only once from the upper
hull This gives us the fact:
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Convex Hull

Algorithm Analysis

ALGORITHM ANALYSIS
@ The sorting step takes O(nlogn) time
o Adding a point takes O(1) time for the adding-part. Removing points
takes constant time for each removed point. If due to an addition, k
points are removed, the step takes O(1 + k) time
ToTAL TIME: O(nlogn) + > 5., , 01 + ki)
Since Since ki = O(n), we get
ToTtaL TiME: O(n?)
GLOBAL ARGUMENT each point can be removed only once from the upper
hull This gives us the fact:

23 ton kf =n
ToraL TIME: O(nlog n)
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Art Gallery Problem

Art Gallery Theorem

T2 International Terminal

T3 Virgin Australia
Domestic Terminal

T4 Domestic Terminal
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Art Gallery Problem

Art Gallery Theorem

@ The floor plan of an art gallery/museum/airport modeled as a simple
polygon with n vertices.
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Art Gallery Problem

Art Gallery Theorem

@ The floor plan of an art gallery/museum/airport modeled as a simple
polygon with n vertices.

@ Objective is to secure the interior of the polygon by placing guards.

e Each guard is stationed at a fixed point, has 360°vision, and cannot see
through the walls.
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Art Gallery Problem

Art Gallery Theorem

@ The floor plan of an art gallery/museum/airport modeled as a simple
polygon with n vertices.

@ Objective is to secure the interior of the polygon by placing guards.

e Each guard is stationed at a fixed point, has 360°vision, and cannot see
through the walls.

@ How many guards needed to see the whole room?
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Art Gallery Problem

Formulation

o Visibility: p, g visible if pg € P.

@ x is visible from y and z. But y and z not visible to each other.
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Art Gallery Problem

Formulation

o Visibility: p, g visible if pg € P.

@ x is visible from y and z. But y and z not visible to each other.
@ g(P) = min. number of guards to see P
°

g(n) = maxy(py=n &(P) where maximum is taken over all simple
polygons with n vertices

Art Gallery Theorem asks for bounds on function g(n): what is the
smallest g(n) that always works for any n-gon?

Computational Geometry-Introduction 18/37



Art Gallery Problem

Short story long:

@ Problem posed to Vasek Chvatal by Victor Klee at a math conference
in 1973. Chvatal solved it quickly with a complicated proof.
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Art Gallery Problem

Short story long:

@ Problem posed to Vasek Chvatal by Victor Klee at a math conference
in 1973. Chvatal solved it quickly with a complicated proof.

e Steve Fisk gave a proof from "THE BOOK".

e "THE BOOK" in which God keeps the most elegant proof of each
mathematical theorem. During a lecture in 1985, Erdds said, "You
don’t have to believe in God, but you should believe in The Book."
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Art Gallery Problem

Simple Polygon

Simple Polygon Not a simple polygon

@ A simple polygon is a closed polygonal curve without self-intersection.
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Art Gallery Problem

Simple Polygon

Simple Polygon Not a simple polygon

@ A simple polygon is a closed polygonal curve without self-intersection.

@ By Jordan Theorem, a polygon divides the plane into interior, exterior,
and boundary.

o We use polygon both for boundary and its interior; the context will
make the usage clear.

@ Polygons with holes are topologically different
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@ By Jordan Theorem, a polygon divides the plane into interior, exterior,
and boundary.

o We use polygon both for boundary and its interior; the context will
make the usage clear.

@ Polygons with holes are topologically different

Computational Geometry-Introduction 20/37



Art Gallery Problem

Trying it Out

e g(3)7?
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Art Gallery Problem

Trying it Out

e g(3)77g(4)?7g(5)??

e Forn=3,4,5 g(n)=1
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Art Gallery Problem

Trying it Out

) g(3 ??g ??g

IANYPNY

o Forn=3,4,5 g(n)=1

@ Is there a general formula in terms of n?
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Art Gallery Problem

Trying it Out

@ Seeing the boundary = seeing the whole interior??
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Art Gallery Problem

Trying it Out

@ Seeing the boundary = seeing the whole interior??

@ Even putting guards at every other vertex is not sufficient
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Art Gallery Problem

Art Gallery Theorem

Art Gallery Theorem g(n) = [n/3]
@ Every n-gon can be guarded with |n/3] vertex guards.

@ Some n-gons require at least | n/3| (arbitrary) guards.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

o Diagonal: Given a simple polygon, P, a diagonal is a line segment
between two non-adjacent vertices that lies entirely within the interior
of the polygon.
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o Diagonal: Given a simple polygon, P, a diagonal is a line segment
between two non-adjacent vertices that lies entirely within the interior
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Triangulations: Given a simple polygon P, a triangulation of P is a
partition of the interior of P into triangles using diagonals.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Observe the polygon P along with the triangulation 7 can be
considered as a graph G(P,T).
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Observe the polygon P along with the triangulation 7 can be
considered as a graph G(P,T).

@ Vertices: Polygon vertices

o Edges of the graph: Polygon edges | diagonals of the triangulation
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Properties of the graph
e Planar = Four colorable

Computational Geometry-Introduction 27/37



Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Properties of the graph
e Planar = Four colorable

o Is it three colorable?
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

e What if the graph is three colorable
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

e What if the graph is three colorable
e Does |n/3] guards suffice??
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ There exist a color that is used at most [n/3] times
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ There exist a color that is used at most [n/3] times

@ Post guards at the least popular color vertices
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

e Why G(P,T) is three colorable?
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Dual graph of a polygon: Given a polygon P and a triangulation 7 for
that polygon, the dual graph is defined as D(T) = (V, E), where
vi € V corresponds to a specific triangle in T, and (va, vp) € E if the
two corresponding triangles share an edge.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Lemma: Dual graph of a triangulation of a simple polygon is a tree
with maximum degree three.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Lemma: Dual graph of a triangulation of a simple polygon is a tree
with maximum degree three.

@ Edge of the dual graph corresponds to a diagonal.
o Each diagonal breaks the polygon into two disjoint pieces.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Lemma: Dual graph of a triangulation of a simple polygon is a tree
with maximum degree three.

@ Deleting an edge from the dual graph breaks the graph into two
connected components.

o Thus the iraih is a_tree.
Computational Geometry-Introduction 33/37



Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

o Lemma: G(P,T) is three colorable
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@ Proof by Induction:

@ Remove a triangle which is a leaf node in the tree.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Inductively 3-color the rest.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Inductively 3-color the rest.

o Put the triangle back, coloring new vertex with the label not used by
the boundary diagonal.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

@ Inductively 3-color the rest.

o Put the triangle back, coloring new vertex with the label not used by
the boundary diagonal.
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Art Gallery Problem

Fisk's proof from THE BOOK that |n/3] guards suffice

3 guards are always sufficient and sometimes necessary to guard a simple
polygon with n vertices.
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Art Gallery Problem

Text Book

o Berg, M., D., Kreveld, M., V., Overmars, M., and Schwarzkopf, O.,
Computational Geometry: Algorithms and Applications, 3rd Edition,
Springer, 2008

@ Preparata, F., and Shamos, M., Computational Geometry,
Springer-Verlag, 1985
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