P-completeness

Simon Samuel

National Institute of Technology Calicut

March 5, 2014

Overview

(1) CIRCUIT VALUE PROBLEM

(2) ODD MAX FLOW

CIRCUIT VALUE IS P-COMPLETE

To prove that CIRCUIT VALUE is P-Complete, - CIRCUIT VALUE should be in P.

- For any language

$$
L \in P
$$

there is a reduction R from L to CIRCUIT VALUE.

Let M be the Turing machine that decides L in time n^{k}, and consider the computation table of M on x , call it T .

D	0 s	1	1	0	\sqcup	\sqcup	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup		\sqcup
\triangleright	D	$1_{q_{0}}$	1	0	\sqcup	ப	\square	\sqcup							
D	D	1	$1_{q 0}$	0	\sqcup		\pm								
D	D	1	1	$0_{q_{0}}$	\sqcup	\square	\sqcup								
D	D	1	1	0	\sqcup_{q}	\sqcup	ப	\sqcup	\sqcup	ப	ப	\sqcup	ப		\sqcup
D	\triangleright	1	1	$0_{q_{0}^{\prime}}$	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	ப	\sqcup	\sqcup		ப
D	D	1	1_{q}	\square	\sqcup	\square	\sqcup								
\triangleright	-	1_{q}	1	\sqcup	\sqcup	\sqcup	\sqcup	ப	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup		\sqcup
\triangleright	∇_{q}	1	1	\sqcup	ப	\sqcup	\sqcup	\pm							
D		$1 s$	1	\sqcup	ப	ப	\sqcup	\square	\pm						
\triangleright	D	D	$1_{q_{1}}$	\sqcup	ப	\sqcup		\pm							
\triangleright	D	\triangleright	1	$\sqcup_{q_{1}}$	ப	\sqcup	\pm	\pm							
D	D	\triangleright	$1_{q_{1}^{\prime}}$	\sqcup	\square	\sqcup	\sqcup	\sqcup	\sqcup	\sqcup	\square	\sqcup	\sqcup		\square
\triangleright	D	∇_{q}	\sqcup		L										
\triangleright	\triangleright	,	\sqcup_{s}	\sqcup											
>	\triangleright	D	"yes"	\sqcup	ப	\sqcup	\sqcup								

Figure: Computation Table

- When $\mathrm{i}=0$, or $\mathrm{j}=0$, or $\mathrm{j}=|x|^{k}-1$, then the value of Tij is a priori known
- The value of $T_{i j}$ reflects the contents of position j of the string at time i , which depends only on the contents of the same position or adjacent positions at time i-1.
- That is, $T_{i j}$ depends only on the entries $T_{i-1, j-1}, T_{i-1, j}$, and $T_{i-1, j+1}$

- Let γ denote the set of all symbols that can appear on the table (symbols of the alphabet of M , or symbol-state combinations).
- Encode next each symbol a $\sigma \in \gamma$ a vector $\left(s_{1}, . ., s_{m}\right)$, where $s_{1}, \ldots, s_{m} \in\{0,1\}$, and $m=[\log |\gamma|]$.
- The computation table can now be thought of as a table of binary entries $S_{i j l}$ with $0<i<|x|^{k}-1,0<j<|x|^{k}-1$, and $1<I<m$.
- Each binary entry $S_{i j l}$ only depends on the $3 m$ entries $S_{i-1, j-1, I^{\prime}}$, $S_{i-1, j, I^{\prime}}$, and $S_{i-1, j+1, I^{\prime}}$, where I^{\prime} ranges over $1, \ldots$, m.
- That is, there are m Boolean functions F_{1}, \ldots, F_{m} with 3 m inputs each such that, for all $i, j>0$ $S_{i j l}=F_{l}\left(S_{i-l, j-l, l}, \ldots, S_{i-l, j-l, m}, S_{i-1, j, l}, \ldots, S_{i-l, j+l, m}\right)$

Figure: The construction of the circuit.

- It follows that there is a Boolean circuit C with $3 m$ inputs and m outputs that computes the binary encoding of $T_{i j}$ given the binary encodings of $T_{i-1, j-1}, T_{i-1, j}$, and $T_{i-1, j+1}$ for all $i=1, \ldots,|x|^{k}$ and $j=1, \ldots,|x|^{k}-1$.
- Circuit C depends only on M, and has a fixed, constant size, independent of the length of x.
- In our reduction R from L, for each input $x, R(x)$ will basically consist of $\left(|x|^{k}-1\right) .\left(|x|^{k}-2\right)$ copies of the circuit C.
- If $C_{i j}$ is the (i, j) th copy of C , then for $i>1$, the input gates of $C_{i j}$ will be identified with the output gates of $C_{i-1, j-1}, C_{i-1, j}$, and $C_{i-1, j+1}$.
- The input gates of the overall circuit are the gates corresponding to the first row, and the first and last column.
- Finally, the output gate of the $R(x)$ is the first output of circuit $C_{|x|^{k}-1,1}$ (assuming that M always ends with "yes" or "no")
- Circuit C is fixed, depending only on M. The computation of R entails constructing the input gates (easy to do by inspecting x and counting up to $|x|^{k}$), and generating many indexed copies of the fixed circuit C and identifying appropriate input and output gates of these copies-tasks involving straightforward manipulations of indices, and thus easy to perform in $O(\log |x|)$ space.
- As every language L (in P) can be reduced to CIRCUIT VALUE, it is P-Complete.

ODD MAX-FLOW IS P-COMPLETE

ODD MAX-FLOW is P-Complete if,

- ODD MAX FLOW is in P .
- there is a reduction from CIRCUIT VALUE PROBLEM to ODD MAX FLOW.
- Given a monotone circuit C, we assume that the output gate of C is an OR gate and no gate of C has out degree more than two.
- The gates of C are given consecutive numbers $0,1, \ldots$, n, so that each gate has a smaller label than its predecessor.
- Thus the output gate will have label 0 , and the larger labels will be assigned to the inputs

Construction:

- The network $N=(V, E, s, t, c)$ produced from C has as its set of nodes the gates $0, \ldots, n$, plus two new nodes s and t.
- Edges leaving each node are given capacities $=d 2^{i}$ where d is the outdegree of the gate and i is the label of the gate.
- Since AND or OR gate has at most two outgoing edges of capacity 2^{i} , and the capacities of each of the two incoming edges is at least twice (the labels of- its predecessors are strictly larger than i), there is a surplus of incoming capacity denoted as $\mathrm{S}(\mathrm{i})$.
- If i is an AND gate, there is an edge ($i, t)$ of capacity $S(i)$; if it is an OR gate, then there is an edge (i, s) of capacity $\mathrm{S}(\mathrm{i})$.
- A Gate is called full with respect to this flow if all of its outgoing edges to its successors gates are filled to capacity.
- It is called empty if all of these edges have zero flow.
- Flow f is called standard if all gates that have value true are full, and all gates that have value false are empty

(a)

- All true input gates have enough flow to become full and all false input gates must be empty (no incoming flow).
- All OR gates with true value have at least one incoming edge filled to capacity.
- All OR gates that have value false have no incoming flow, because their predecessors are empty.
- All AND gates with value true have both incoming edges filled.
- Finally all AND gates that have value false have at most one incoming edge filled with flow, which they can direct to the surplus edge .

- As CIRCUIT VALUE (which is P-Complete) can be reduced to ODD MAX FLOW, it is P-Complete.

