P-completeness

Simon Samuel

National Institute of Technology Calicut

March 5, 2014

Simon Samuel (NITC)

P COMPLETENESS

P COMPLETENESS

-

To prove that CIRCUIT VALUE is P-Complete,

- CIRCUIT VALUE should be in P.
- For any language

 $L \in P$

there is a reduction R from L to CIRCUIT VALUE.

Let M be the Turing machine that decides L in time n^k , and consider the computation table of M on x, call it T.

⊳	0_s	1	1	0	Ц	Ц	Ц	Ш	Ш	Ш	Ш	Ц	Ц	Ш	Ц
⊳	⊳	1_{q_0}	1	0	Ц	Ц	Ц	\Box	Ц	Ш	Ц	Ш	Ц	Ш	Ш
⊳	⊳	1	1_{q_0}	0	Ц	Ц	Ц	Ц	Ш	Ш	Ц	Ц	Ц	Ц	Ц
\triangleright	⊳	1	1	0_{q_0}	Ц	L	Ш	Ц	Ш	Ш	Ц	Ц	Ш	Ш	Ц
\triangleright	⊳	1	1	0	\sqcup_{q_0}	L	Ц	Ц	Ш	\Box	Ш	Ш	Ц	Ц	Ц
\triangleright	⊳	1	1	$0_{q'_0}$	Ц	Ц	Ц	Ц	Ш	Ш	Ц	Ш	Ц	Ц	\Box
⊳	⊳	1	1_q	Ľ	Ц	Ц	Ц	Ц	Ш	Ц	Ш	Ц	Ш	Ц	Ľ
⊳	⊳	1_q	1	Ц	\Box	Ш	Ц	Ц	Ц	Ш	Ц	Ц	Ц	Ц	Ш
⊳	\triangleright_q	1	1	Ц	Ц	Ц	Ц	Ш	Ш	Ц	Ц	Ц	П	Ц	Ц
⊳	⊳	1_s	1	Ц	Ц	\Box	Ц	Ш	Ш	Ш	Ш	Ц	Ц	Ц	Ц
⊳	⊳	⊳	1_{q_1}	Ц	Ц	Ш	Ш	Ц	Ш	Ц	Ц	Ш	Ц	Ц	Ц
⊳	⊳	⊳	1	\sqcup_{q_1}	Ц	Ц	L	Ш	Ш	Ц	Ш	Ц	Ш	Ц	Ц
\triangleright	⊳	⊳	$1_{q'_1}$		Ц	Ц	Ц	Ц	Ш	Ц	Ш	Ц	Ц	Ц	Ц
⊳	⊳	\triangleright_q	Ū,	Ц	\Box	Ш	Ц	Ц	Ц	Ш	Ш	Ц	Ц	Ш	Ц
⊳	\triangleright		\sqcup_s	Ц	Ш	Ш	Ц	Ц	Ш	Ц	Ц	Ш	Ц	Ц	Ц
⊳	\triangleright	⊳	"yes"	Ц	Ц	Ц	Ш	Ц	Ц	Ш	Ц	Ш	Ш	Ц	Ц

Figure : Computation Table

- When i = 0, or j = 0, or j = $|x|^k$ 1, then the value of Tij is a priori known
- The value of *T_{ij}* reflects the contents of position j of the string at time i, which depends only on the contents of the same position or adjacent positions at time i-1.
- That is, T_{ij} depends only on the entries $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$

i-1, j-1	i-1,j	i-1, j+1
	i,j	

- Let γ denote the set of all symbols that can appear on the table (symbols of the alphabet of M, or symbol-state combinations).
- Encode next each symbol a $\sigma \in \gamma$ a vector $(s_1, ..., s_m)$, where $s_1, ..., s_m \in \{0, 1\}$, and $m = [\log |\gamma|]$.
- The computation table can now be thought of as a table of binary entries S_{ijl} with $0 < i < |x|^k 1, 0 < j < |x|^k 1, and 1 < l < m$.
- Each binary entry S_{ijl} only depends on the 3m entries $S_{i-1,j-1,l'}$, $S_{i-1,j,l'}$, and $S_{i-1,j+1,l'}$, where l' ranges over 1,..., m.

• That is, there are m Boolean functions $F_1, ..., F_m$ with 3m inputs each such that, for all i, j > 0 $S_{ijl} = F_l(S_{i-l,j-l,l}, ..., S_{i-l,j-l,m}, S_{i-1,j,l}, ..., S_{i-l,j+l,m})$

Figure : The construction of the circuit.

- It follows that there is a Boolean circuit C with 3m inputs and m outputs that computes the binary encoding of T_{ij} given the binary encodings of T_{i-1,j-1}, T_{i-1,j}, and T_{i-1,j+1} for all i = 1, ..., |x|^k and j = 1, ..., |x|^k 1.
- Circuit C depends only on M, and has a fixed, constant size, independent of the length of x.

- In our reduction R from L, for each input x, R(x) will basically consist of (|x|^k - 1).(|x|^k - 2) copies of the circuit C.
- If C_{ij} is the (i, j)th copy of C, then for i > 1, the input gates of C_{ij} will be identified with the output gates of C_{i-1,j-1}, C_{i-1,j}, and C_{i-1,j+1}.
- The input gates of the overall circuit are the gates corresponding to the first row, and the first and last column.
- Finally, the output gate of the R(x) is the first output of circuit $C_{|x|^k-1,1}$ (assuming that M always ends with "yes" or "no")

- Circuit C is fixed, depending only on M. The computation of R entails constructing the input gates (easy to do by inspecting x and counting up to |x|^k), and generating many indexed copies of the fixed circuit C and identifying appropriate input and output gates of these copies-tasks involving straightforward manipulations of indices, and thus easy to perform in O(log |x|) space.
- As every language L (in P) can be reduced to CIRCUIT VALUE, it is P-Complete.

ODD MAX-FLOW is P-Complete if,

- ODD MAX FLOW is in P.
- there is a reduction from CIRCUIT VALUE PROBLEM to ODD MAX FLOW.

- Given a monotone circuit C, we assume that the output gate of C is an OR gate and no gate of C has out degree more than two.
- The gates of C are given consecutive numbers 0,1, . . . , n, so that each gate has a smaller label than its predecessor.
- Thus the output gate will have label 0, and the larger labels will be assigned to the inputs

Construction:

- The network N = (V, E, s, t, c) produced from C has as its set of nodes the gates 0, . . . , n, plus two new nodes s and t.
- Edges leaving each node are given capacities= $d2^i$ where d is the outdegree of the gate and i is the label of the gate.
- Since AND or OR gate has at most two outgoing edges of capacity 2ⁱ, and the capacities of each of the two incoming edges is at least twice (the labels of- its predecessors are strictly larger than i), there is a surplus of incoming capacity denoted as S(i).
- If i is an AND gate, there is an edge (i, t) of capacity S(i); if it is an OR gate, then there is an edge (i, s) of capacity S(i).

- A Gate is called full with respect to this flow if all of its outgoing edges to its successors gates are filled to capacity.
- It is called empty if all of these edges have zero flow.
- Flow f is called standard if all gates that have value true are full, and all gates that have value false are empty

P COMPLETENESS

3

<ロ> (日) (日) (日) (日) (日)

- All true input gates have enough flow to become full and all false input gates must be empty (no incoming flow).
- All OR gates with true value have at least one incoming edge filled to capacity.
- All OR gates that have value false have no incoming flow, because their predecessors are empty.
- All AND gates with value true have both incoming edges filled.
- Finally all AND gates that have value false have at most one incoming edge filled with flow, which they can direct to the surplus edge .

 As CIRCUIT VALUE (which is P-Complete) can be reduced to ODD MAX FLOW, it is P-Complete.