THE CLASS PSPACE

Thejus Gore
\section*{B100090EC}

March 12, 2014

$$
\begin{gathered}
P S P A C E=\bigcup_{k} \operatorname{SPACE}\left(n^{k}\right) \\
N P S P A C E=P S P A C E \\
P \subseteq P S P A C E \\
N P \subseteq N P S P A C E \\
\text { so } N P \subseteq P S P A C E
\end{gathered}
$$

A TM that uses $f(n)$ space can have atmost $f(n) 2^{O(f(n))}$ different configurations so PSPACE \subseteq EXPTIME
$P \subseteq N P \subseteq P S P A C E=N P S P A C E \subseteq E X P T I M E$

A language B is PSPACE - complete if
■ $B \in P S P A C E$ and

- $\forall A \in P S P A C E \quad A \leq_{P} B$

TQBF

- $\forall \quad$ Universal Quantifier
- $\exists \quad$ Existential Quantifier

■ $\forall x \exists y[y>x], \quad x, y \in N$
Every natural number has another natural number larger than it.

- fully quantified boolean formula $\phi=\forall x \exists y[(x \vee y) \wedge(\bar{x} \vee \bar{y})]$ is true
- $T Q B F=\{\langle\phi\rangle \mid \phi$ is a true fully quantified Boolean formula $\}$

TQBF is PSPACE - complete

Polynomial space algorithm deciding TQBF
$T=$ "On input $\langle\phi\rangle$, a fully quantified Boolean formula "

- If ϕ contains no quantifiers, evaluate ϕ accept if true; else reject
■ If $\phi=\exists x \psi$, recursively call T on ψ, first with $x=0$ and then $x=1$. If either is accept, accept; else reject
- If $\phi=\forall x \psi$, recursively call T on ψ, first with $x=0$ and then $x=1$. If both are accept, accept; else reject
Depth is atmost number of variables. Each recursion stores one variable.
T runs in linear space

Polynomial time reduction $A<_{P} T Q B F$
$w \in A, \quad \phi \in T Q B F$
$w \notin A, \quad \phi \notin T Q B F$
$\phi_{c_{1}, c_{2}, t}$ is true if and only if M can go from configuration c_{1} to c_{2} in atmost t steps.
Each configuration has n^{k} cells
$\mathrm{t}=1: c_{1}=c_{2}$ or c_{1} to c_{2} in 1 step
for $t_{i} 1$
$\phi_{c_{1}, c_{2}, t}=\exists m_{1}\left[\phi_{c_{1}, m_{1},\lceil t / 2\rceil} \wedge \phi_{m_{1}, c_{2},\lceil t / 2\rceil}\right]$
m_{1} represents a configuration of M.
t is cut in half. Size of formula doubles. $t=2^{d f(n)}$.

Reduce size
$\phi_{c_{1}, c_{2}, t}=\exists m_{1} \forall\left(c_{3}, c_{4}\right) \in\left(c_{1}, m_{1}\right),\left(m 1, c_{2}\right)\left[\phi_{c_{3}, c_{4},\lceil t / 27}\right]$
$\begin{array}{ll}c_{3} & c_{1}, m_{1} \\ c_{4} & m_{1}, c_{2}\end{array}$
$\phi_{c_{\text {start }}, c_{\text {accepp } t}, h}$
Each recursion adds a portion of formula linear in the size of configuration, $O(f(n))$.
Number of levels $\log \left(2^{d f(n)}\right), O(f(n))$. $O\left(f^{2}(n)\right)$

Formula Game

$\phi=\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{k}[\psi], \quad Q \in\{\forall, \exists\}$
Player $\mathrm{A}(\forall)$ and $\mathrm{E}(\exists)$ select values of $x_{1}, x_{2} \ldots x_{k}$
Player E wins if ψ is TRUE
Winning strategy
FORMULA - GAME $=\{\langle\phi\rangle \mid$ Player E has a winning strategy in the formula game associated eith $\phi\}$
$F O R M U L A-G A M E=T Q B F$

GENERALIZED GEOGRAPHY

- Simple directed graph with a start node
- The player unable to extend the path fails

Figure : A sample generalized geography game
$G G=\{\langle\phi\rangle \mid$ Player 1 has a winning strategy for the generalized geography game played on graph G at node b \} GG is PSPACE - complete
$M=$ "On input $\langle G, b\rangle$, where G is a directed graph and b is a node in G "

■ If b has outdegree 0 , reject

- Remove node b and all arrows touching it to get a new graph G1
■ For each of the nodes $b_{1}, b_{2}, \ldots ., b_{k}$ that b originally pointed at, recursively call M on $\left\langle G_{i}, b_{i}\right\rangle$
■ If all of these accept Player 2 has a winning strategy, so reject. else accept"

Each recursion adds a single node to the stack. At most m number of nodes. Linear space.
FORMULA - GAME is polynomial time reducible to $G G$
$\phi=\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{k}[\psi], \quad Q \in\{\forall, \exists\}$
ϕ is mapped to $G G$

- Quantifiers begin and end with \exists
- Alternate between \exists and \forall

Player 1 - E
Player 2 - A

Player 1 can win if Player E wins
At node c Player 2 can choose a node corresponding to one of the clauses of ψ

If ϕ is FALSE, Player 2 may win by selecting the unsatisfied clause. Any literal that Player 1 may then pick is FALSE and is connected to the side of the diamond that hasn't yet been played. Thus Player 2 may play the node in the diamond,but then Player 1 is unable to move and loses. If ϕ is TRUE, any clause that Player 2 picks contains a TRUE literal. Player 1 selects that literal after Player 2's move. Because the literal is TRUE, it is connected to the side of the diamond that has already been played, so Player 2 is unable to move and loses

