
• Alternating Turing Machine (ATM)

– ∃ node is marked accept iff any of its children is marked accept.

– ∀ node is marked accept iff all of its children are marked accept.

∃

∀ ∃

∀ ∀accept

reject ∃

An ATM is an NTM with all states, except
accept and reject states, divided into universal
states and existential states.

Alternation and Polynomial Time Hierarchy

Tautology

• TAUT={<f>|f is a tautology} (in coNP)

On input <f>:

• Universally select all assignments to the

variables of f.

• For a particular assignment evaluate f

• If f evaluates to 1 accept, else reject

MIN-FORMULA={ < φ> | φ is a minimal Boolean formula, i.e.,

there is no shorter equivalent}.

(formula is equivalent if they evaluate to same value on assigning the

same values to its variables)

MIN-FORMULA∈AP. (not known to be in NP or coNP)

On input φ :

1. Universally select all formula f that are shorter than φ.

2. Existentially select an assignment to the input variables of
φ .

3. Evaluate both φ and f on this assignment.

4. Accept if the formulas evaluate to different values; else
reject.

EXACT-INDSET

• INDSET = {(G, k) : graph G has an

independent set of size k} .

• EXACT INDSET = {(G, k) : the largest

independent set in G has size exactly k} .

EXACT INDSET iff there exists an

independent set of size k in G and every

other independent set has size at most k.

• It seems that the way to capture such

languages is to allow not only an“exists“

quantifier (as in Definition of NP) or only a

“for all” quantifier (as Definition of coNP)

but a combination of both quantifiers. This

motivates the following definition:

The class ∑2
p is defined to be the set of all

languages L for which there exists a

polynomial-time TM M and a polynomial q

such that

• x €L , ∃ u €{0, 1} q(|x|) ∀ v € {0, 1} q(|x|) such

that M(x, u, v) = 1 ∀ x € {0, 1}*.

• Note that ∑2
p contains both the classes NP

and coNP.

• The language EXACT INDSET above is in

since as we noted above, pair (G, k) is in

EXACT INDSET iff

∃ S ∀ T, set S is an independent set of size k

in G and T is not an independent set of size

k + 1.

• The class ∏2
p is defined to be the set of all

languages L for which there exists a

polynomial-time TM M and a polynomial q

such that

x €L , ∀ u €{0, 1} q(|x|) ∃ v € {0, 1} q(|x|) such

that M(x, u, v) = 1 ∀ x € {0, 1}*.

• Polynomial Hierarchy:

Let ΣkT(n) be a class of language L accepted by an

Alternating Turing Machine that begins in an existential

state, alternates between ∃ and ∀ states ≤ k-1 times and

halts within O(T(n)) .

– Define

The class of complement of languages within ΣkP is

called ΠkP = co-ΣkP.

ΠkP: where ATM begins in a ∀ state.

Note that ΣkP ⊆ Πk+1P and ΠkP ⊆ Σk+1P ,

Σ1P=NP and Π1P=co-NP .

MIN-CIRCUIT is in Π2P.

1

i
k k

i

P n
∞

=

=∑ ∑

– Def: The polynomial hierarchy

. PPPH k
k

k
k

Π== ∑

• Alternating Time and Space :

ATIME(f(n))={ L : ∃ an ATM that decides L in

O(f(n)) time}

ASPACE(f(n)) is defined similarly.

AL= ASPACE(log n), AP = ATIME(nk) .

• Thm: ATIME(f(n)) ⊆ SPACE(f(n)) ⊆
ATIME(f2(n)) .

Thus, AP = PSPACE .

• Thm: ASPACE(f(n)) = TIME(2O(f(n))) .

Thus, ASPACE = EXP , AL=P

k

Lemma: For f(n) >= n we have ATIME(f(n)) ⊆ SPACE(f(n)).

Proof:

Convert an O(f(n))-time ATM M to a O(f(n))-space DTM S.

S makes a depth-first search of M’s computation tree to

determine whether the start configuration is “accept”

or not. It is done by recursion and the depth

is O(f(n)), since the computation tree has depth O(f(n)).

For each level of recursion, the stack store the non-det choice
that M made to reach that configuration from its parent and
this uses only constant space. S can recover the
configuration by “replaying” the computation from the start
and following the recorded “signposts.”

•

• •

• •

• ••

•

• •

•

Lemma: Let f(n)>= n we have SPACE(f(n)) ⊆ ATIME(f2(n)).

Proof:
• Let M be an O(f(n))-space DTM. We want to construct an

O(f2(n))-time ATM S to simulate M.
• It is very similar to the proof of Savitch’s Theorem.

φc1,c2,t=∃m [φc1,m, t/2 ∧ φm,c2,t/2]: indicate if C2 is reachable
from C1 in t steps for M.

• S uses the above recursive alternating procedure to test
whether the start configuration can reach an accepting conf.
within 2df(n) steps. The recursive depth is O(f(n)).

• For each level it takes O(f(n)) time to write a conf.
Thus the algorithm runs in O(f2(n)) alternating time.

Lemma: f(n) >= log n we have ASPACE(f(n)) ⊆ TIME (2O(f(n))) .

Proof:
•Construct a 2O(f(n)) -time DTM S to simulate an O(f(n))-space

ATM M. On input w, S constructs the following graphs of the
computation M on w.
•Nodes are conf of M on w and edges go from a conf to those
configurations that it can yield in a step.
•After the graph is constructed, S repeatedly scans it and
marks certain conf as accepting. Initially, only actual accepting
conf are marked “accepting”. A conf that performs universal
branching is marked “accepting” if all its children are marked
and an existential conf is marked if any of its children are
marked.
•S continues until no additional nodes are marked in a scan. Finally, S

checks if the start conf is marked. There are 2O(f(n)) conf of M on w,
which is also the size of the graph. Hence the total time used is
2O(f(n)) .

Lemma: f(n) >= log n we have TIME (2O(f(n))) ⊆ ASPACE(f(n))

Proof:
Construct an O(f(n))-space ATM S to simulate a 2O(f(n)) -time DTM M.
On input w, S has only enough space to store pointers into a
tableau of the computation M on w as depicted in the following.

The content of d is determined by the contents of its parents a, b, and c.

#

#

#

#

q0 w1
∪∪nww2 #

#

#

#

start configuration

2nd configuration

window

th configuration(())
2

O f n

cell

(())2O f n

a b
d

c
(())2 O f n

S operates recursively to guess and then verify the contents of
the individual cells of the tableau. It is easy to verify the cells
of the first row, since it knows the start conf of M on w.

For other cell d, S existentially guesses the contents of the
parents, checks whether their contents would yield d’s
contents according to M’s transition, and then universally
branches to verify these guesses recursively.

Assume M moves its head to the leftmost cell after entering
accepting state. Thus S can determine whether M accepts w
by checking the contents of the lower leftmost cell of the
tableau. Hence S never needs to store more than a pointer
to a cell in the tableau. So it uses at most O(f(n)) space.

