
Theorem

Let Σ = {0,1,#}.
The set of Palindromes

PAL = {zε Σ∗ | z = revz}

requires Ω(n2) time on a

single tape Turing Machine.
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Proof :

PALn = { x #n/2 rev x | xε {0,1}n/4}
where n is a multiple of 4.

PALn ⊆ PAL

For each x ε PALn and for each position i, 0 ≤
i ≤ n, let ci(x) denote the sequence q1, q2, q3, ..., qk
of states of the finite control Q of M that M

is in as it passes over the line between the ith

symbol and i + 1st symbol in either direction

while scanning x.

ci(x) is called the Crossing Sequence at i.
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Let

C(x) = {ci(x) | n/4 ≤ i ≤ 3n/4}

Lemma: If x, y ε PALn and x 6= y, then

C(x) ∩ C(y) = ø .

Proof : Suppose c = C(x) ∩ C(y). Let c =
ci(x) = cj(y) Let x′ be the prefix of x consisting
of the first i symbols and y′ be the suffix of y
consisting of the last n− j symbols.

Then x′y′ will be accepted by M.

But x′y′ is not in PALn, since it is not a palin-
drome.

This is a contradiction
Therefore

C(x) ∩ C(y) = ø.
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Let mx be the length of the smallest crossing

sequence in C(x).

Let m = max{mx | xεPALn}

Number of Crossing Sequences

of length atmost m =
m∑
i=1
| Q |i= |Q|m+1−1

|Q|−1

Number of elements of PALn = 2n/4

Since all the shortest crossing sequences of

PALn must be different,

2n/4 ≤
m∑
i=1
| Q |i= |Q|m+1−1

|Q|−1

We get

m ≥ Ω(n)
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Since mx is the length of the shortest cross-

ing sequence in C(x), all crossing sequences in

PALn are of length ≥ Ω(n).

Therefore, it takes at least n/2.Ω(n) = Ω(n2)

time to generate all the crossing sequences in

C(x).



Theorem

A Turing Machine that accepts

a Non-regular set uses at least

Ω(loglogn) space.
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M has a read only input tape and a read/write

work tape,and that M always moves its input

head all the way to the right of the input string

before accepting.

If M is s(n) space bounded , Number of possi-

ble configurations,

N = q.s(n).ds(n)

where q is the number of states and d is the

size of the worktape alphabet of M.

Taking logarithm on both sides, we get

log N = log q + log s(n) + s(n) log (d)

Since q,d are independent of s(n), we can say,

s(n) = Ω(logN) (1)
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In this proof, the crossing sequence at i consist

of sequence of such configurations occuring at

position i in the input string in either direction.

Number of possible Crossing Sequences

of length atmost m =
m∑
i=1
| N |i= |N |m+1−1

|N |−1



Lemma : If there is a fixed finite bound k on

the amount of space used by M on accepted

inputs, then L(M) is a regular set.

Proof : We can modify M to mark off k cells

initially. ( k can be kept in the finite control)

Whenever computation tries to use more than

k cells, we reject it.

But then, no worktape memory would be re-

quired at all. All contents of the worktape can

be kept in the finite control and then, M is

equivalent to a two way finite automaton.
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Since L(M) is not regular, for each k, there

exist a string, x ε L(M) of minimum length for

which at least k worktape cells are used.

There are n/2 distinct crossing sequences

In order to have n/2 distinct crossing sequences,

there must be a crossing sequence of length at

least m, where

n/2 ≤
m∑
i=1
| N |i= |N |m+1−1

|N |−1

Taking logarithm on both sides, we get

m = Ω(logn) (2)
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If a crossing sequence is of length ≥ 2N, it

would mean a configuration would appear in

the crossing sequence twice in the same direc-

tion, which implies that M is looping.

m ≤ 2N

we can state,

N = Ω(m) (3)
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From (1) and (3), we get

s(n) = Ω(logm) (4)

From (4) and (2), we get

s(n) = Ω(loglogn) (5)

which is the required result.
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